
ar
X

iv
:2

11
1.

09
95

1v
1

 [
m

at
h.

O
C

]
 1

8
N

ov
 2

02
1

Time-Optimal Paths for Simple Cars with Moving Obstacles in the

Hamilton-Jacobi Formulation

Christian Parkinson1 and Madeline Ceccia2

Abstract— We consider the problem of time-optimal path
planning for simple nonholonomic vehicles. In previous similar
work, the vehicle has been simplified to a point mass and
the obstacles have been stationary. Our formulation accounts
for a rectangular vehicle, and involves the dynamic program-
ming principle and a time-dependent Hamilton-Jacobi-Bellman
(HJB) formulation which allows for moving obstacles. To our
knowledge, this is the first HJB formulation of the problem
which allows for moving obstacles. We design an upwind finite
difference scheme to approximate the equation and demonstrate
the efficacy of our model with a few synthetic examples.

I. INTRODUCTION

As automated driving technology becomes more prevalent,

it is ever more important to develop interpretable trajectory

planning algorithms. In this manuscript, we address the

problem of trajectory planning for simple self-driving cars

using a method rooted in optimal control theory and dynamic

programming. We consider the vehicle pictured in fig. 1.

The configuration space for the car is (x, y, θ) where (x, y)
denotes the coordinate for the center of mass of the car,

and θ ∈ [0, 2π) denotes the angle of inclination from the

horizontal. The rear axle has length 2R and the distance

from the rear axle to the center of mass is d. Such cars

are typically propelled using actuators which supply torque

Fig. 1. A simple rectangular car.

1Christian Parkinson is a postdoctoral research associate with the
Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave,
Tucson, AZ, 85721 chparkin@math.arizona.edu

2Madeline Ceccia is a student in the Department of Mathematics,
California State University - Fullerton, 800 North State College Blvd.
Fullerton, CA 92831 madelinececcia@csu.fullerton.edu

to either of the rear wheels [1]. The motion is subject to a

nonholonomic constraint

ẏ cos θ − ẋ sin θ = dθ̇. (1)

This ensures motion (approximately) tangential to the rear

wheels; indeed, in the case that d = 0, the constraint reduces

to dy/dx = tan θ. We also assume the car has a minimum

turning radius, or equivalently, a maximum angular velocity

so that |θ̇| ≤ W , for some W > 0. LaValle [2, Chap.

13] includes an extended discussion of models for this and

similar vehicles.

Trajectory planning for simple cars goes back to Dubins

[3] who considered that case that d = R = 0 (so that

the car is simplified to a point mass) and only allowed

unidirectional (“foward”) movement. Reeds and Shepp [4]

considered forward and backward motion, and proved that

in the absence of obstacles, the optimal trajectories are

combinations of straight lines and arcs of circles of minimum

radius, and that optimal trajectories have at most two kinks

where the car changes from moving forward to backward or

vice versa. Later effort was devoted toward adding obstacles

[5], and developing an algorithm for near-optimal trajectories

which are robust to perturbation [6]. All of this work was

carried out in a discrete and combinatorial fashion, breaking

the paths into “turning” or “straight” segments and proving

results regarding the possible combinations of these pieces.

To the authors’ knowledge, this problem was first analyzed

in the context of optimal control theory by Boissonnat et

al. [7], [8], [9] who gave shorter proofs and extensions of

results of [3] and [4]. Later, Takei and Tsai et al. [10], [11]

used dynamic programming to derive a partial differential

equation (PDE) which is solved by the optimal travel time

function. Through all this work, the car was still simplified

to a point mass. Later, the same approach was applied while

considering the rectangular vehicle pictured in fig. 1 [12].

PDE-based optimal path planning algorithms have also been

developed for a number of applications besides simple self-

driving cars, including underwater path planning in dynamic

currents [13], human navigation in a number of contexts,

[14], [15], [16] and recent models for environmental crime

[17], [18], [19].

Other recent work has been devoted to machine learning

and variatial approaches to the problem; for example, [20],

[21], [22]. Such approaches often rely on a hierarchical algo-

rithms with global trajectory generation and local collision

avoidance as in [23], [24].

http://arxiv.org/abs/2111.09951v1

A. Our Contribution

We present a PDE based optimal path planning algorithm

for simple self-driving vehicles. Our method is in the same

spirit as [10], [11], [12]. We use dynamic programming to

derive a Hamilton-Jacobi-Bellman (HJB) equation which is

satisfied by the optimal travel time function. The optimal

steering plan is generated using the solution to the HJB

equation. To the authors’ knowledge, in all previous HJB

formulations of optimal trajectory planning for simple self-

driving cars, the obstacles are stationary. We present a time-

dependent formulation in which obstacles are allowed to

move, which is a significant step in adding realism to this

formulation.

In general, the time depedent HJB equation has the form

ut +H(x,∇u(x)) = r(x). (2)

Because the equation is nonlinear and solutions develop

kinks [25], some care is needed when solving HJB equations

numerically; for example, they are not amenable to the

simplest finite difference methods. Accordingly, we present

an upwind finite difference scheme to solve our equation.

The HJB formulation of minimal time path planning has

a number of natural advantages. Because it is rooted in

optimal control theory, there are some theoretical guarantees

and there are no “black box” components, so the results are

interpretable. It is also a very robust modeling framework,

wherein one can easily account for a number of other realistic

concerns such as energy minimization. Finally, it eschews

the need for hierarchical algorithms, and after a single PDE

solve, this formuation can resolve optimal paths from any

initial configuration to the desired ending configuration.

II. MATHEMATICAL FORMULATION

Our algorithm is based on a control theoretic formulation.

Generally, to analyze control problems using dynamic pro-

gramming, one derives a Hamilton-Jacobi-Bellman equation

which is satisfied by the optimal travel time function. Solving

the equation provides the optimal travel time from any given

starting configuration to a fixed ending configuration, and the

derivatives of the travel time function determine the optimal

steering plan. For general treatment of this approach (in both

theory and practice), see [26], [27].

A. Equations of Motion & Control Problem

We consider a kinematic model of a self driving car which

moves about a domain Ω ⊂ R
2 in the presence of moving

obstacles. Fix a horizon time T > 0. At any time t ∈ [0, T],
the obstacles occupy a set Ωobs(t) ⊂ Ω, so that the free space

is given by Ωfree(t) = Ω \ Ωobs(t).
As described above, we track the current configuration of

the car using variables (x,y, θ) : [0, T] → Ω×[0, 2π), which

obey the kinematic equations

ẋ = v cosθ − ωWd sinθ,

ẏ = v sinθ + ωWd cosθ,

θ̇ = ωW.

(3)

Here W > 0 is a bound on the angular velocity of the

vehicle which enforces bounded curvature of the trajectory.

The control variables are v(·),ω(·) ∈ [−1, 1], representing

the tangential and angular velocity respectively. By taking

velocities to be control variables, we are neglecting some of

the ambient dynamics. In a more complete dynamic model,

the control variables would be the torques applied to the

rear wheels by the actuators. For a derivation of both this

kinematic model and a dynamic model, see [28], and for

generalizations of the kinematic model, see [29].

For configurations (x, y, θ) ∈ Ω × [0, 2π), define

C(x, y, θ) ⊂ Ω to be the space occupied by the car. In gen-

eral, this could be any shape but for our purposes it will be

a rectangle as pictured in fig. 1. Then given a desired ending

configuration (xf , yf , θf), a trajectory (x(t),y(t), θ(t)) is

referred to as admissable if each of the following is true:

(1) it obeys (3) for t ∈ [0, T],
(2) C(x(t),y(t), θ(t)) ∩Ωobs(t) = ∅ for all t ∈ [0, T],
(3) (x(T),y(T), θ(T)) = (xf , yf , θf).

Here (2) signifies that the car does not collide with obstacles,

and (3) signifies that the trajectory ends at the desired ending

configuration.

Given an initial configuration (x, y, θ), the goal is then

to resolve the steering plan v(t),ω(t) that determines the

minimal time required to traverse an admissable trajectory

from (x, y, θ) to (xf , yf , θf).

B. The Dynamic Programming Approach

We resolve the optimal steering plan using dynamic pro-

gramming and a Hamilton-Jacobi-Bellman (HJB) equation.

To analyze the problem in the dynamic programming frame-

work, we first define the travel-time function. For a given

configuration (x, y, θ) ∈ Ω × [0, 2π) and time t ∈ [0, T],
we restrict ourselves to trajectories (x(·),y(·), θ(·)) such

that (x(t),y(t), θ(t)) = (x, y, θ). For such trajectories, if

v(·),ω(·) is the corresponding steering plan, we define the

first arrival time

t∗
v,ω = inf{s : (x(s),y(s), θ(s)) = (xf , yf , θf)}. (4)

The cost functional for the control problem is then

T (x, y, θ, t,v(·),ω(·)) =

{

t∗
v,ω, if t∗

v,ω ≤ T,
+∞, otherwise.

(5)

The optimal travel time function is then defined

u(x, y, θ, t) = inf
v(·),ω(·)

T (x, y, θ, t,v(·),ω(·)). (6)

Intuitively, u(x, y, θ, t) is the minimal time required to steer

the car to (xf , yf , θf), given that the car is at (x, y, θ) at time

t. Note that if (x, y, θ) is far from (xf , yf , θf) and t is close

to T , there may be no way to steer the car to the ending

configuration in the allotted time. If this is the case, then

u(x, y, θ, t) = +∞. However, if there are any admissable

trajectories (x(·),y(·), θ(·)) such that (x(t),y(t), θ(t)) =
(x, y, θ), then u(x, y, θ, t) ≤ T .

We want to derive a partial differental equation satisfied by

the optimal travel time function. The dynamic programming

principle [30] for this control problem is

u(x, y, θ, t) =

δ + inf
v(·),ω(·)

{u(x(t+ δ),y(t+ δ), θ(t+ δ), t+ δ)} (7)

where (x(t),y(t), θ(t)) = (x, y, θ) and the infimum is taken

with respect to the values v(s),ω(s) for s ∈ (t, t+ δ).
Supposing that u(x, y, θ, t) is smooth, we can divide by δ

and take the limit as δ → 0 to arrive at

inf
v,ω

{

ut + ẋux + ẏuy + θ̇uθ

}

= −1, (8)

whereupon inserting (3) yields

ut+inf
v,ω

{

(ux cos θ + uy sin θ)v +

W (−dux sin θ + duy cos θ + uθ)ω

}

= −1. (9)

Notice the minimization is linear in the variables v, ω ∈
[−1, 1], and thus the minimizing values can be resolved

explicitly. We see that

v = −sign(ux cos θ + uy sin θ),

ω = −sign(−d sin θux + d cos θuy + uθ),
(10)

where u(x, y, θ, t) solves the HJB equation

ut − |ux cos θ + uy sin θ|

−W |−dux sin θ + duy cos θ + uθ|
= −1. (11)

This derivation is only valid when u(x, y, θ, t) is smooth,

which is not expected to be the case. However, under very

general conditions, the travel time function is the unique

viscosity solution of (11) [31]. For a fully rigorous derivation

of the Hamilton-Jacobi-Bellman equation, see [32].

There are a few natural conditions appended to (11). At

the terminal time T , the cost functional (5) assigns a value of

either 0 or +∞, depending on whether car is at the ending

configuration or not. Thus, we have the terminal condition

u(x, y, θ, T) =

{

0, (x, y, θ) = (xf , yf , θf),
+∞, otherwise,

(12)

and we want to resolve u(x, y, θ, t) for preceding times t ∈
[0, T). So the equation runs “backwards” in time.

Likewise, if the trajectory has already arrived at the ending

configuration, the remaining travel time is 0, so we have the

boundary condition

u(xf , yf , θf , t) = 0, t ∈ [0, T]. (13)

Lastly, to ensure the car does not collide with obstacles,

we assign u(x, y, θ, t) = +∞ for any (x, y, θ, t) such that

C(x, y, θ) ∩Ωobs(t) 6= ∅.

By (10), the only possible values of the control variables

are v, ω ∈ {−1, 0, 1}, resulting in a bang-bang controller

which has a “no bang” option. This makes intuitive sense

because there is never incentive to drive or turn slower than

the maximum possible speed, unless one needs to wait for an

obstacle to move out of the way (whereupon v = 0) or one

needs to drive in a straight line (whereupon ω = 0). When

no obstacles are present, one can eliminate the v = 0 option

and the path will consist of straight lines and arcs of circles

of minimum radius, which agrees with early analysis of the

problem [3], [4].

As a final note, this derivation is very similar to that

in [12]. However, when the obstacles are stationary, as in

[10], [11], [12], the optimal travel time function does not

depend on t, since the optimal trajectory depends only

upon the current configuration, not upon the time t when

the car occupies that configuration. In that case, one can

eliminate the time horizon T , and opt instead for a stationary

HJB equation. One can than visualize solving the stationary

HJB equation by evolving a front outward from the final

configuration, and recording the time as the front passes

through other configurations, terminating when each point in

the domain Ω× [0, 2π) has been assigned a value. This is the

philosophy behind level-set inspired optimal path planning

[15], [16], and numerical implementations like fast sweeping

[33], [34], [35] and fast marching methods [36], [37]. In

theory, something similar is possible here. If one does not

care to enforce a finite time horizon, then making the

substitution τ = T − t and taking T → ∞ will do away with

it. However, in practice, we will want to discretize the HJB

equation in order to solve computationally, which will require

choosing a fixed time horizon. Thus we cannot do away

with T , but to minimize its effect, we set it large enough

that the travel time u(x, y, θ, 0) is finite for all (x, y, θ) ∈
Ω × [0, 2π). In this manner, any initial configuration (not

overlapping the obstacles) will have admissable paths which

reach (xf , yf , θf) within time T .

III. NUMERICAL METHODS

In this section, we design a numerical scheme to ap-

proximate (11). Since Hamilton-Jacobi equation admit non-

smooth solutions which cannot be approximated by simple

finite difference schemes, effort has been expended to de-

velop schemes which resolve the viscosity solution. For a

survey of numerical methods for Hamilton-Jacobi equations,

see [25], [38].

A. An Upwind, Monotone Scheme for (11)

For simplicity, we confine ourselves to a rectangular

spatial domain Ω = [xmin, xmax] × [ymin, ymax]. Choosing

I, J,K,N ∈ N, let (xi)
I
i=0, (yj)

J
j=0, (θk)

K
k=0, (tn)

N
n=0 be

uniform discretizations of their respective domains with grid

parameters ∆x,∆y,∆θ,∆t, and let un
ijk be our approxima-

tion to u(xi, yj, θk, tn). For each v, ω ∈ {−1, 0, 1}, define

Ak(v, ω) = v cos θk − ωWd sin θk,

ak(v, ω) = sign(v cos θk − ωWd sin θk),

Bk(v, ω) = v sin θk + ωWd cos θk,

bk(v, ω) = sign(v sin θk + ωWd cos θk).

(14)

Then (8) can be rewritten

ut+min
v,ω

{Ak(v, ω)ux+Bk(v, ω)uy +ωWuθ} = −1. (15)

Recall, the terminal values uN
ijk are supplied here, and we

need to integrate this equation backwards in time. Thus at

time step tn, we need to resolve un
ijk given known values

un+1
ijk . This suggests backward Euler time integration

(ut)
n
ijk =

un+1
ijk − un

ijk

∆t
. (16)

The upwind approximations to the other derivatives in (15)

using un+1
ijk are given by

(Ak(v, ω)ux)
n+1
ijk = |Ak(v, ω)|

(

un+1
i+ak(v,ω),j,k − un+1

ijk

∆x

)

,

(Bk(v, ω)uy)
n+1
ijk = |Bk(v, ω)|

(

un+1
i,j+bk(v,ω),k − un+1

ijk

∆y

)

,

(ωWuθ)
n+1
ijk = |ω|W

(

un+1
i,j,k+sign(ω) − un+1

ijk

∆θ

)

.

(17)

We insert these approximations in (15) to arrive at

un
ijk = un+1

ijk +∆t

(

1 + min
v,w

{(Ak(v, ω)ux)
n+1
ijk

+ (Bk(v, ω)uy)
n+1
ijk + (ωWuθ)

n+1
ijk }

)

.

(18)

Since there are only finitely many pairs (v, ω), we can com-

pute the right hand side for each pair and explicity choose

the pair which suggests the minimum possible value. Using

this formula and stepping through n = N−1, N−2, . . . , 1, 0,

we arrive at our approximation of the travel time function.

To initialize, we set un
ijk = +∞ (or some very large

number) for all i, j, k, n except at the node (if , jf , kf)
respresenting the configuration nearest to (xf , yf , θf) where

we set un
if ,jf ,kf

= 0 for all n. We then only update the

node un
ijk if the value suggested by (18) is smaller than the

value already stored at un
ijk. This ensures that the scheme is

monotone so long as the CFL condition

∆t

(

1 +Wd

∆x
+

1 +Wd

∆y
+

W

∆θ

)

≤ 1 (19)

is satisfied [25], [38]. In this case, since the scheme is

also consistent, the approximation converges to the viscosity

solution of (11) as ∆x,∆y,∆θ,∆t → 0.

We include a few implementation notes. First, to account

for obstacles, at each time step n, we first need to find the

illegal nodes (i.e. those which correspond to configurations

wherein the car collides with an obstacle). At these nodes

(i∗, j∗, k∗), we do not use (18), but rather set un
i∗,j∗,k∗ =

+∞. In previous work, this could be done in pre-processing

since the obstacles were stationary and illegal configurations

only needed to be resolved once. In this work, since the

obstacles move, this must be repeated at every time step.

Second, we use (18) for i = 2, . . . , I − 1, j = 2, . . . , J −
1. The values un

ijk at nodes corresponding to the spatial

boundary are never updated, but should be given the value

+∞. This will ensure that the car never leaves the domain.

Because we enforce the correct causality, the boundary

nodes have no effect on interior nodes. Third, one needs

to enforce periodic boundary conditions in θ by identifyting

the nodes at k = 0 and k = K . Lastly, above it is stated

that v, ω ∈ {−1, 0, 1}. However, because it is impossible

to turn a car without moving backward or forward, one

should eliminate the cases (v, ω) = (0,±1). So there are

seven possible pairs of (v, ω) to consider in total; in short,

(v, ω) = (±1,±1), (±1, 0), (0, 0).

B. Generating Optimal Trajectories

There are a few different manners in which one can obtain

optimal control values and generate optimal trajectories. It is

possible to resolve control values vnijk, ω
n
ijk while evaluating

(18). One can define them to be the pair that achieves the

minimum in (18) at any node (i, j, k, n). Alternatively, after

resolving un
ijk , one can interpolate to off-grid values and

use (10) to resolve the optimal steering plan at any point

(x, y, θ, t). In either case, after choosing an initial point, one

can insert the optimal control values into (3) and integrate the

equations of motion until the trajectory reaches (xf , yf , θf).
This is the approach taken by [12].

In a different approach, we opt for a semi-Lagrangian

path-planner as in [11], [14]. Specifically, we first interpolate

un
ijk to off grid values, so we have an approximate travel

time function u(x, y, θ, t). Then, choosing an initial point

(x0,y0, θ0) and a time step δ > 0, and rewriting (3) as

(ẋ, ẏ, θ̇) = F (x,y, θ,v,ω), we set

(v∗, ω∗) = argmin
v,ω

u((xℓ,yℓ, θℓ) + δF (xℓ,yℓ, θℓ, v, ω), ℓδ),

(xℓ+1,yℓ+1, θℓ+1) = (xℓ,yℓ, θℓ) + δF (xℓ,yℓ, θℓ, v
∗, ω∗),

(20)

for ℓ = 0, 1, 2, . . ., halting when (xℓ,yℓ, θℓ) is within some

tolerance of (xf , yf , θf).

IV. RESULTS & EXAMPLES

We present results of our algorithm in three examples. In

all cases, we use the spatial domain Ω = [−1, 1]× [−1, 1].
We take the car to be a rectangles as pictured in fig. 1 with

d = 0.07 and R = 0.04 and we take the maximum angular

velocity to be W = 4. These are dimensionaless variables

used for testing purposes. In each of the following pictures

the final configuration (xf , yf , θf) will be marked with a

red star and the initial configurations of the various cars

will be marked with green stars. We use a 101× 101× 101
discretization of Ω×[0, 2π) and then choose ∆t according to

the CFL condition (19). We choose the time horizon T = 10.

As mentioned before, this simply needs to be chosen so that

there are admissable paths from every point on the domain

to the final configuration which take time less than T to

traverse. In some of the examples it could likely be smaller,

but T = 10 was sufficiently large for all of them.

In the first example, the final configuration is

(xf , yf , θf) = (0, 0, π) meaning the cars will end at

the center of the domain, facing due west. In this case, the

obstacles Ωobs(t) are 4 annular sectors which will rotate

Fig. 2. In the first example, we have several cars starting in the corners and ending in the center facing due west. The obstacles (black and blue sectors)
rotate counterclockwise with black obstacles rotating at three times the speed of the blue ones.

about the origin in the counterclockwise direction. These

are represented in black and blue in fig. 2. The black

obstacles rotate with 3 times the speed of the blue obstacles.

Notice that in the second panel, the green and blue cars

(respectively bottom right and top left corners) need to stop

and wait to let the obstacles pass before completing their

path. The grey and pink cars are essentially unoccluded and

can travel directly to the destination. We note that these

paths are generated individually, and simply plotted over

each other. There is no competition between the cars.

In the second example, the final configuration is

(xf , yf , θf) = (0.8, 0.8, π/4) so that the car needs to end

near the top right corner of the domain facing northeast. The

car begins in the bottom left corner of the domain as seen

in fig. 3, and must navigate through three moving doorways.

The black bars represent the obstacles and they oscillate as

indicated by the arrows. The car is able to navigate through

the domain without stopping to wait for the doors.

In the third example, we consider the more realistic

scenario of a car changing lanes in between two other cars

as seen in fig. 4. In this case the two blue cars are treated

as obstacles and the orange car must slide in between them.

V. CONCLUSION & DISCUSSION

We present a Hamilton-Jacobi-Bellman formulation for

time-optimal paths of simple vehicles in the presence of

moving obstacles. This is distinguished from previous similar

formulations which could only handle stationary obstacles.

There are many ways in which this work could be ex-

tended. Some simple improvements would be to account

for other realistic concerns such as energy minimization or

intrumentation noise, which can both be added to the model

in a straightforward manner, though they may complicate the

numerical methods.

Perhaps the biggest drawback of this method is that

it is currently too computationally intensive for real-time

applications. The simulations for each of the examples in

section IV required several minutes of CPU time (on the

authors’ home computers). However, one may be able to

apply recent methods for high-dimensional Hamilton-Jacobi

equations [39], [40]. These methods are based on Hopf-Lax

type formulas and trade finite differences for optimization

problems. It may be difficult to account for crucial boundary

conditions in our model when using such schemes, so some

care would be required. However, if they could be applied to

this problem, it would also provide an opportunity to extend

the model to higher dimensions where finite difference

methods are infeasible.

ACKNOWLEDGMENT

The authors were supported in part by NSF DMS-1937229

through the Data Driven Discovery Research Training Group

at the University of Arizona.

REFERENCES

[1] K. K. Leung, C. H. Hsieh, Y. R. Huang, A. Joshi, V. Voroninski,
and A. L. Bertozzi, “A second generation micro-vehicle testbed for
cooperative control and sensing strategies,” in 2007 American Control

Conference, pp. 1900–1907, 2007.
[2] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[3] L. E. Dubins, “On curves of minimal length with a constraint on

average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3,
pp. 497–516, 1957.

[4] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards.,” Pacific J. Math., vol. 145, no. 2, pp. 367–
393, 1990.

[5] J. Barraquand and J.-C. Latombe, “Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obsta-
cles,” Algorithmica, vol. 10, no. 2-4, p. 121, 1993.

[6] P. K. Agarwal and H. Wang, “Approximation algorithms for curvature-
constrained shortest paths,” SIAM Journal on Computing, vol. 30,
no. 6, pp. 1739–1772, 2001.

[7] J.-D. Boissonnat, A. Cérézo, and J. Leblond, “Shortest paths of
bounded curvature in the plane,” Journal of Intelligent and Robotic

Systems, vol. 11, no. 1, pp. 5–20, 1994.
[8] X.-N. Bui, J.-D. Boissonnat, P. Soueres, and J.-P. Laumond, “Shortest

path synthesis for dubins non-holonomic robot,” in Proceedings of

the 1994 IEEE International Conference on Robotics and Automation,
pp. 2–7, IEEE, 1994.

[9] X.-N. Bui and J.-D. Boissonnat, “Accessibility region for a car that
only moves forwards along optimal paths,” tech. rep., 1994.

[10] R. Takei, R. Tsai, H. Shen, and Y. Landa, “A practical path-planning
algorithm for a simple car: a Hamilton-Jacobi approach,” in Proceed-
ings of the 2010 American Control Conference, pp. 6175–6180, June
2010.

[11] R. Takei and R. Tsai, “Optimal trajectories of curvature constrained
motion in the Hamilton-Jacobi formulation,” Journal of Scientific
Computing, vol. 54, pp. 622–644, Feb 2013.

[12] C. Parkinson, A. L. Bertozzi, and S. J. Osher, “A Hamilton-Jacobi
formulation for time-optimal paths of rectangular nonholonomic vehi-
cles,” in 2020 59th IEEE Conference on Decision and Control (CDC),
pp. 4073–4078, IEEE, 2020.

[13] T. Lolla, M. P. Ueckermann, K. Yiğit, P. J. Haley, and P. F. Lermusiaux,
“Path planning in time dependent flow fields using level set methods,”
in 2012 IEEE International Conference on Robotics and Automation,
pp. 166–173, IEEE, 2012.

Fig. 3. In the second example, one care attempts to navigate through moving doorways. The black obstacles oscillate up and down as indicated by the
arrows in each panel.

Fig. 4. A car (orange) changing lanes between two other cars (blue). Here
the blue cars are the obstacles.

[14] E. Cartee, L. Lai, Q. Song, and A. Vladimirsky, “Time-dependent
surveillance-evasion games,” in 2019 IEEE 58th Conference on Deci-

sion and Control (CDC), pp. 7128–7133, IEEE, 2019.

[15] C. Parkinson, D. Arnold, A. L. Bertozzi, Y. T. Chow, and S. Os-
her, “Optimal human navigation in steep terrain: a Hamilton-
Jacobi-Bellman approach,” Communications in Mathematical Sci-
ences, vol. 17, no. 1, pp. 227–242, 2019.

[16] C. Parkinson, D. Arnold, A. Bertozzi, and S. Osher, “A model for
optimal human navigation with stochastic effects,” SIAM Journal on

Applied Mathematics, vol. 80, no. 4, pp. 1862–1881, 2020.

[17] D. J. Arnold, D. Fernandez, R. Jia, C. Parkinson, D. Tonne, Y. Yaniv,
A. L. Bertozzi, and S. J. Osher, “Modeling environmental crime in
protected areas using the level set method,” SIAM Journal on Applied
Mathematics, vol. 79, no. 3, pp. 802–821, 2019.

[18] E. Cartee and A. Vladimirsky, “Control-theoretic models of environ-
mental crime,” SIAM Journal on Applied Mathematics, vol. 80, no. 3,
pp. 1441–1466, 2020.

[19] B. Chen, K. Peng, C. Parkinson, A. L. Bertozzi, T. L. Slough, and
J. Urpelainen, “Modeling illegal logging in Brazil,” Research in the
Mathematical Sciences, vol. 8, no. 2, pp. 1–21, 2021.

[20] A. Shukla, E. Singla, P. Wahi, and B. Dasgupta, “A direct varia-
tional method for planning monotonically optimal paths for redundant
manipulators in constrained workspaces,” Robotics and Autonomous

Systems, vol. 61, no. 2, pp. 209–220, 2013.

[21] R. Gao, X. Gao, P. Liang, F. Han, B. Lan, J. Li, J. Li, and S. Li, “Mo-
tion control of non-holonomic constrained mobile robot using deep
reinforcement learning,” in 2019 IEEE 4th International Conference on

Advanced Robotics and Mechatronics (ICARM), pp. 348–353, IEEE,
2019.

[22] J. J. Johnson, L. Li, F. Liu, A. H. Qureshi, and M. C. Yip, “Dy-
namically constrained motion planning networks for non-holonomic
robots,” in 2020 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 6937–6943, IEEE, 2020.

[23] E. J. Rodrı́guez-Seda, C. Tang, M. W. Spong, and D. M. Stipanović,
“Trajectory tracking with collision avoidance for nonholonomic vehi-
cles with acceleration constraints and limited sensing,” The Interna-

tional Journal of Robotics Research, vol. 33, no. 12, pp. 1569–1592,
2014.

[24] R. Mao, H. Gao, and L. Guo, “A novel collision-free navigation
approach for multiple nonholonomic robots based on orca and linear
mpc,” Mathematical Problems in Engineering, vol. 2020, 2020.

[25] M. Falcone and R. Ferretti, “Numerical methods for Hamilton–Jacobi
type equations,” in Handbook of Numerical Methods for Hyperbolic

Problems (R. Abgrall and C.-W. Shu, eds.), vol. 17 of Handbook of

Numerical Analysis, pp. 603 – 626, Elsevier, 2016.
[26] W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal

control, vol. 1. Springer Science & Business Media, 2012.
[27] D. P. Bertsekas, “Dynamic programming and optimal control 3rd

edition, volume ii,” Belmont, MA: Athena Scientific, 2011.
[28] E. N. Moret, Dynamic modeling and control of a car-like robot. PhD

thesis, Virginia Tech, 2003.
[29] B. Triggs, “Motion planning for nonholonomic vehicles: An introduc-

tion,” 1993.
[30] R. Bellman, Dynamic Programming. RAND Corporation research

study, Princeton University Press, 1957.
[31] M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton-

Jacobi equations,” Transactions of the American Mathematical Society,
vol. 277, no. 1, pp. 1–42, 1983.

[32] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity

Solutions of Hamilton-Jacobi-Bellman Equations. Modern Birkhäuser
Classics, Birkhäuser Boston, 2008.

[33] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, “Fast sweeping
algorithms for a class of Hamilton–Jacobi equations,” SIAM journal
on numerical analysis, vol. 41, no. 2, pp. 673–694, 2003.

[34] C. Y. Kao, S. Osher, and J. Qian, “Lax–Friedrichs sweeping scheme for
static Hamilton–Jacobi equations,” Journal of Computational Physics,
vol. 196, no. 1, pp. 367–391, 2004.

[35] C. Parkinson, “A rotating-grid upwind fast sweeping scheme for a
class of Hamilton-Jacobi equations,” Journal of Scientific Computing,
vol. 88, no. 1, pp. 1–36, 2021.

[36] J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,”
IEEE Transactions on Automatic Control, vol. 40, pp. 1528–1538, Sep
1995.

[37] J. A. Sethian, “A fast marching level set method for monotonically
advancing fronts,” Proceedings of the National Academy of Sciences,
vol. 93, no. 4, pp. 1591–1595, 1996.

[38] S. Osher and R. P. Fedkiw, Level set methods and dynamic implicit

surfaces, vol. 153 of Applied Mathematical Sciences. Springer–Verlag,
2003.

[39] J. Darbon and S. Osher, “Algorithms for overcoming the curse of di-
mensionality for certain Hamilton–Jacobi equations arising in control
theory and elsewhere,” Research in the Mathematical Sciences, vol. 3,
no. 1, pp. 1–26, 2016.

[40] A. T. Lin, Y. T. Chow, and S. J. Osher, “A splitting method for
overcoming the curse of dimensionality in Hamilton–Jacobi equations
arising from nonlinear optimal control and differential games with ap-
plications to trajectory generation,” Communications in Mathematical

Sciences, vol. 16, 1 2018.

	I INTRODUCTION
	I-A Our Contribution

	II MATHEMATICAL FORMULATION
	II-A Equations of Motion & Control Problem
	II-B The Dynamic Programming Approach

	III NUMERICAL METHODS
	III-A An Upwind, Monotone Scheme for (11)
	III-B Generating Optimal Trajectories

	IV RESULTS & EXAMPLES
	V CONCLUSION & DISCUSSION
	References

