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Abstract—In this paper a filtering method for non-Gaussian
linear systems is adopted to face the problem of the target
tracking in the presence of the glint noise. In particular, we extend
the quadratic filtering method with virtual measurements to the
three-dimensional case of the target tracking problem. Moreover,
we present extensive numerical simulation by comparing our
method with several filtering algorithms used in the case of
heavy tailed noises. The latter numerical results confirm the
effectiveness of the proposed approach.

Keywords: target tracking; Kalman filtering; heavy tailed
noise; glint noise; non-Gaussian systems.

I. INTRODUCTION

In this paper we are interested in the problem of state
estimation for radar target tracking in the presence of heavy
tailed noises, in particular the glint noise, which is a non-
Gaussian noise that appear in Aerospace applications ([1]).
The addressed problem consists in dealing with the filtering
of noisy data retrieved from the measurements of the position,
velocity and acceleration of an object tracked by a radar.
In fact, under some conditions depending on the physical
structure of the object to be tracked, the output of the radar
may give readings which are particularly misleading, in a way
which is really difficult to cope with. In [2], [3] it is introduced
a nonlinear score function as a correction term in the state
estimate, in the works [4], [5], [6] Kalman filtering techniques
are developed, while particle filter-based methodologies are
deepened in the works [7], [8], [9], [10], [11] and a Maximum
Likelihood identification method for the Gaussian-Laplacian
mixture was proposed in [12]. Another layer of complexity
is added for the modeling of the glint noise. Several methods
have been and are being developed and applied in order to
filter the noisy measurements, and a relatively wide state-of-
the-art showing solutions to glint noise filtering can be found
in the literature. Yet many common methods, even showing
relatively satisfactory results, return far-to-optimal solutions.

The approach proposed here is based on the recursive
quadratic estimator of [13], [14] and [15]. In particular, the
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contribution of this work is the construction of the latter
estimator for the 3D case of the target tracking problem in glint
noise environment. Moreover, we present extensive numerical
simulations and comparisons with standard approaches. The
main advantage of this approach is to retain the benefits
of linear filters, like internal stability of the filter and the
computation of the variance of the state estimation error
together with better performance.

Theory of glint noise in target tracking
The nature of radar systems have been largely investigated

in the works [16], [17]. A radar is an electromagnetic system
whose aim is the detection and the location of objects. A
radar basic principle consists in the emission of radiating
electromagnetic energy and the detection of the echoes re-
turned from the object to be tracked. However, in a target
tracking environment there are numerous sources of noise. The
most troublesome sources of noise are the ones which cannot
be avoided in any case, since they arise from the physical
structure of the object to be tracked. Since the target position
changes in time, the superposition rises unexpectedly in time,
which is the reason why the nature of such errors is stochastic.
A particular kind of fluctuation in the measured angle is the
angle glint, also called target glint noise. The effect of this
distortion is a deviation on the computation over the apparent
angle of the tracked object, as discussed in [1], so that it is read
a wandering of the object with respect to the true position. The
state-of-the-art regarding the modeling of glint noise is indeed
still a work in progress. What is well-known, as stated in
the work [18], is the experimentally-obtained power spectrum
of the noise affecting the measurements and its heavily non-
Gaussian behaviour. Such power spectrum expresses a record
of a background component which is strongly dominating with
respect to a second behavior which appears in the form of a
certain random number of spikes as it is possible to highlight
in Figure 1.

Fig. 1. A typical glint noise record ([4])



In this work glint noise will be modeled as a Gaussian-
Laplacian mixture. This idea has been supported for instance
in the work [19], so that the resulting probability density
function is described by

p(x) = εpL(x) + (1− ε)pG(x) (1)

where ε is the occurrence probability of the Laplacian noise,
and:

pG(x) := N (x; 0, σ2
G) :=

1√
2πσG

e
− x2

2σ2
G

pL(x) := L(x; 0, σ2
L) :=

1

2η
e−

|x|
η

with η such that 2η2 = σ2
L.

The paper is organised as follows. We recall some existing
concepts on quadratic filtering and the virtual measurement
approach in Section II. The 2D and 3D target tracking
equations are derived in Section II-B. Numerical simulations
and comparisons are presented in Section IV and conclusions
follow.

Notation. The symbol ⊗ denotes the Kronecker product
between vector or matrices. The n-th Kronecker power of A is
A[n]. For a stochastic vector v ∈ Rn, E[v] is the expectation,
Ψv the covariance matrix and Ψ

(i)
v = E[v[i]] ∈ Rni the

expected value of its n-th Kronecker power. The spectrum
of a square matrix A is σ(A).

II. QUADRATIC FILTERING AND VIRTUAL MEASUREMENT
APPROACH

In this section we recall some existing results in the context
of filtering of non-Gaussian systems [13] and the so-called
virtual measurement map [15] that will be instrumental for
the application to the target tracking problem. We refer the
interested reader to those papers for further details.

A. Quadratic filtering

In the context of linear non-Gaussian systems it is possible
to use quadratic (or in general polynomial) functions of the ob-
servations to improve the estimation accuracy while preserving
easy computability and recursion ([13], [14]). In few words,
this approach consists in obtaining a sub-optimal quadratic
estimate by applying the Kalman Filter to an augmented
system that contains the second order (Kronecker) powers of
the state and of the observations.
This technique applies to a discrete-time linear system with
non-Gaussian noise in the form

x(k + 1) = Ax(k) + fk, x(0) = x0 (2)
y(k) = Cx(k) + gk (3)

where x(k) ∈ Rn, y(k) ∈ Rp, A ∈ Rnxn, C ∈ Rqxn. {fk} and
{gk} are sequences of non-Gaussian random variables with
values in Rn and Rq , respectively. The systems is assumed
to be fully observable. The random sequences {fk} and {gk}
and the initial random variable x0 are required to satisfy the
following conditions ∀k ≥ 0:

• x0 ∼ N (x̄0, ψx0)
• {fk} and {gk} are sequences of zero mean temporally

independent random vectors.
• x0, fk and gk have finite fourth moments.
• ψ

(i)
x0 , ψ

(i)
f , ψ

(i)
g , i = 2, 3, 4, are known vectors.

• [C ψg], ψg = st−1
q (ψ

(2)
g ) is full row rank (FRR).

The idea is to obtain a state estimation by projecting the
state x(k) onto larger subspace w.r.t. the subspace of affine
transformations of the measurement vector. Here, we consider
the space of quadratic transformations of

Ȳ
(2)
k = (Y

′

k , y(0)[2], ..., y(k)[2]), Yk := (y(0), y(1), . . . , y(k))>

where the mixed-products at different time are not considered.
The new projection space will be then:

Q̄ky =
{
z : Ω→ Rn : ∃T ∈ Rn x l̄ : z = T Ȳ

(2)
k

}
(4)

The obtained recursively computable quadratic estimate x̂ will
not be the optimal quadratic estimate, but will still be closer to
optimality than the affine one. We shall call this filter Feedback
Quadratic Filter (FQF).
In the next section, we show how to extend the application of
this filter to systems with nonlinear measurements ([15]). The
application of this methodology to target tracking problems
is an intuition which dates back to some of the earliest
investigations on target tracking, as it can be deepened in
the work [20] and in the survey [21]. To the obtained linear
system, a standard Kalman Filter procedure can finally be
carried on.

B. Virtual Measurement approach

In the case of target tracking the measurements of the target
are tipically nonlinear (distance and angle). In fact, instead of
the measurement equation (3) we consider

y(k) = h(Cx(k)) + vk (5)

where the matrix C ∈ Rñ x n determines the portion of the
state involved in the, possibly nonlinear, measurement map.
The discrete-time noise sequence {vk} is zero-mean i.i.d. and
same assumptions as before hold true. We point out that the
measurement noise sequence {vk} (as also for {fk}) is not
restricted to have a Gaussian distribution. In particular, in our
case of interest, the sequence {vk} is characterized by the
glint noise, which is an heavy tailed (non-Gaussian) noise (see
Section I).

The final goal is extracting a linear measurement equation
through an output transformation. In particular, it is given the
following definition ([15]).

Definition 1: System (5) admits a linear representation of the
measurement map if there are Γ : Rq → Rqv , Ψ : Rq x Rq →
Rqv and a constant matrix Cv ∈ Rqv x n with qv ≥ q such
that, for any k ≥ 0:

yv(k) = Cvx(k) + gk, (6)

where yv(k) := Γ(y(k)), gk := Ψ(y(k), vk).
The obtained output yv(k) is said to be the linear-transformed
output. A further characterization rises for the case in which



the observability matrix O(A,Cv) has full rank: if so, the sys-
tem (2) together with the nonlinear measurement equation (5)
admits an observable linear representation of the measurement
map.
The virtual measurement map is recovered based on the
following definition. II:

Definition 2: Be z ∈ Rnz a random vector with probability
density function fz , let θ ∈ Rnθ be a known parameter and
η : Rnθ x Rnz � Rnη an integrable function. The moments
of order i of η(θ, z) are defined as:

mi[η] :=

∫
Ω

η[i]dP (ω) =

∫
Rnz

η(θ, τ)[i]fz(τ)dτ (7)

Assuming now the following assumptions:
1) O(A,C) is full rank.
2) The function h(·) is invertible with known h−1(·) in the

domain of interest.
For the case ñ = q, the virtual measurement map transforma-
tion is found as:

yv(k) = Γ(y(k)) := m1

[
h−1(y(k)− vk)

]
(8)

Proposition 1: If ñ = q and the assumptions 1 and 2 hold
true, then (8) is an observable linear representation of the
measurement map for the system (5) with qv = q, Cv = C
and:

gk = Ψ(y(k), vk) := −h−1(y(k)−vk)+m1

[
h−1(y(k)−vk)

]
where m1[gk] = 0 and m1[gkg

T
j ] = 0 for k 6= j.

We point out that this transformation map is not a lineariza-
tion of the system (as it happens for instance in the EKF
procedure). Thus, one may benefit of a much faithfulness
of the model to the system and provide a more accurate
stability analysis together with designing algorithm with better
performance.

III. 2D AND 3D TARGET TRACKING

A target tracking problem is generally described by the
system (2) and (5), moreover it satisfies the Proposition 1, i.e.
it admits a linear observable representation of the measurement
map. The idea is to apply the standard procedure of virtual
measurement map and exploit the definitions of polar to
cartesian change of coordinates in order to recover a linear
representation of the original system.

A. 2D virtual measurement map

The literature provides several ways of modeling a target
tracking problem, which must be defined as accurate as
possible in order to capture the evolution of the dynamical
features of the object to be tracked, which are usually hardly
identifiable and unknown. The model of target tracking which
is here used is the one introduced in the previous section. In
particular, in a two-dimensional target tracking problem the
characteristics of the object to be tracked can be described by
the state vector x(k) ∈ R6 with (x1(k), x4(k)) being the po-
sition in the plan at step k, (x2(k), x5(k)) and (x3(k), x6(k))
being respectively the velocity and the acceleration vector. In
the present work, a Constant velocity (CV) model is used to

model the dynamics of the state. Consider A = diag(Ā, Ā),
i.e. define as Ā the state matrix for each component in the
space, and be F ∈ Rn x p a matrix such that wk = Fw̃k
where w̃k ∼ N (0, Ip) such that F = diag(F̄ , F̄ ). Calling
σa the acceleration standard deviation and τ the discretization
step, the CV model is defined as the following:

Ā =

1 τ (τ)2

2
0 1 τ
0 0 0

 F̄ = σa

0
0
1

 . (9)

Regarding the nonlinear measurements, defined as ρ(k) and
θ(k) respectively the distance and the angular position at time
k, the output vector at time k in (5) is of dimension 2 and it
follows:

y(k) = h(Cx(k)) =

[
y1(k)
y2(k)

]
=

[
ρ(k)
θ(k)

]
+

[
ερ,k
εθ,k

]
(10)

where:

ρ(k) =
√
x2

1(k) + x2
4(k) (11)

θ(k) = atan2(x4(k), x1(k)) (12)

The sequences ερ,k and εθ,k are zero-mean noises sampled
from the glint noise probability density function introduced
in (1). Details on the parameters of the latter density will
be defined in Section IV. The numerical computations for
the bi-dimensional case are left to the reader, whereas the
tri-dimensional case is discussed in the next section. Notice
that, the measurement equation (10) can be rewritten into a
virtual linear stochastic equivalent system of the form (6)

with Cv =

(
1 0 0 0 0 0
0 0 0 1 0 0

)
. We recall that the state

noise sequence {fk} is a Gaussian zero-mean noise sequence,
whilst the obtained output noise {gk} is a transformation of
the the glint noise vk and it is a non-Gaussian zero-mean non-
stationary noise sequence.

B. 3D virtual measurement map

We still consider for the 3D case the dynamical
system of the CV model with nonlinear measurements
affected by a general non-Gaussian noise sequence.
The state space vector is defined on the space
x(k) ∈ Rn = R9, being (x1(k), x4(k), x7(k)) the
position vector, (x2(k), x5(k), x8(k)) the velocity vector
and (x3(k), x6(k), x9(k)) the acceleration vector.
The state matrix A ∈ R9 x 9 is defined as A = diag(Ā, Ā, Ā).
The noise matrix F ∈ R9 x 3 is instead defined as
F = diag(F̄ , F̄ , F̄ ). The nonlinear measurements equation
(5) in the 3D space are composed now also by the definition
of the bearing angle φ:

y(k) =


√
x2

1(k) + x2
4(k) + x2

7(k)
atan2(x4, x1)

arccos
(

x7(k)√
x2
1(k)+x2

4(k)+x2
7(k)

)
+

ερ,kεθ,k
εφ,k

 (13)

=

ρ(k)
θ(k)
φ(k)

+

ερ,kεθ,k
εφ,k

 . (14)



The inverse mapping from spherical to Cartesian coordinates
at time k ≥ 0 follows the equations

x1(k) = ρ(k) sin(θ(k)) cos(φ(k)),

x4(k) = ρ(k) sin(θ(k)) sin(φ(k)),

x7(k) = ρ(k) cos(θ(k)).

(15)

From (13), equations in (15) can be rewritten as

x1(k) = (y1(k)− ερ,k) sin(y2(k)− εθ,k) cos(y3(k)− εφ,k),

x4(k) = (y1(k)− ερ,k) sin(y2(k)− εθ,k) sin(y3(k)− εφ,k),

x7(k) = (y1(k)− ερ,k) cos(y2(k)− εθ,k).
(16)

Define now

yv,1(k) = y1(k)m1[sin(y2(k)− εθ,k) cos(y3(k)− εφ,k)],

yv,2(k) = y1(k)m1[sin(y2(k)− εθ,k) sin(y3(k)− εφ,k)],

yv,3(k) = y1(k)m1[cos(y2(k)− εθ,k)],
(17)

which entails the linear transformation. Finally, calling {gk}
the new noise sequence defined by:

g1,k = y1(k)
(
m1[sin(y2(k)− εθ,k) cos(y3(k)− εφ,k)]+

− sin(y2(k)− εθ,k) cos(y3(k)− εφ,k)
)
+

+ ερ,k
(

sin(y2(k)− εθ,k) cos(y3(k)− εφ,k)
)

g2,k = y1(k)
(
m1[sin(y2(k)− εθ,k) sin(y3(k)− εφ,k)]+

− sin(y2(k)− εθ,k) sin(y3(k)− εφ,k)
)
+

+ ερ,k
(

sin(y2(k)− εθ,k) sin(y3(k)− εφ,k)
)

g3,k = y1(k)
(
m1[cos(y2(k)− εθ,k)]− cos(y2(k)− εθ,k)

)
+

+ ερ,k(cos(y2(k)− εθ,k)
(18)

one obtains again the equivalent linear system with Gaussian
state noise sequence {fk} and zero-mean non-Gaussian non-
stationary output noise sequence {gk}, which is the final
equivalent transformation. We point out again that also the
orginal noise sequence {vk} is a non-Gaussian sequence (the
glint noise).

IV. NUMERICAL SIMULATIONS AND COMPARISONS

The algorithm for the Feedback Quadratic Filter (FQF)
introduced in Section II is implemented for the virtual
measurement mapping developed in the previous section. In
order to show the advantages of the proposed approach, we
make a comparison with other existing solutions that are
generally applied in the context of non-Gaussian systems.
The results will be mainly compared in terms of estimation
accuracy (and computational time).

A. Numerical simulations: 2D target tracking

All the simulation scenarios will share the same parameters
regarding the initial state, the state noise and the glint noise.
The initial state is

x0 =
[
1000,−5, 0,−1000, 5, 0

]>
. (19)

The noise sequence is defined as fk ∼ N (0, σ2
fI2), where

σ2
f = 5·10−2. Concerning the measurement noise covariances,

the covariance matrix for the background Gaussian measure-
ment noise and the glint-noise matrix covariance are

Σg =

(
5 0
0 0.1

)
, Σl =

(
150 0
0 1

)
. (20)

The total number T of target-tracking steps is the same for all
the simulations and fixed at T = 50 and the radar position
will be always at s = [0, 0], for the sake of simplicity
and indeed w.l.o.g. in the application of the filters. The
time step and the glint noise occurrence probability will
be chosen accordingly to the specific scenarios, allowing
to perform the process of validation of the results with
different boundary conditions. Regarding the Particle Filters
(PFs), the number of particles is chosen as Ns = 500 for
all the simulations, in order to keep a suitable and com-
parable computation time, which is found to be the main
drawback in the application of such methodologies. The PF
algorithm is implemented making use of the sequential im-
portance sampling procedure, whilst an output injection gain
matrix L of the FQF is such that A − LC has eigenvalues
{0.4730, 0.4620, 0.4510,−0.4400, 0.4500, 0.4000} (see [13]
for details). The numerical results will be compared according
to the standard relative position errors (RPEs). It is defined for
a noise realization i at time k as:

RPEi(k) = 100 ·

√
ê

(i)
1 (k)2 + ê

(i)
4 (k)2

x2
1(k) + x2

4(k)
(21)

where ê(i)
j (k) = xj(k) − x̂(i)

j (k), j = 1, 4 with x̂
(i)
1 (k) and

x̂
(i)
4 (k) being respectively the estimated position on the x −
axis and on the y−axis at time k. Also, computational time
is shown. It is finally necessary to point out that all the results
will consist of a mean of 50 Monte Carlo runs.

The first scenario will consist in testing the reaction of each
filter to different choices of the time step τ , in particular three
scenarios for each filter will be built for a total of twelve
scenarios. It is naturally expected that the performance will
decrease proportionally to the increasing of the time step,
so that this scenarios are drawn in order to underline the
robustness of the methods to more and more challenging
situations dictated by different radar settings. For these first
scenarios, the glint noise probability is always chosen as
ε = 5%. The results show the superiority of the FQF with
virtual measurements with respect to the other filters under
all the three conditions. It is worth noticing how the Markov
Chain Monte Carlo (MCMC) improves the reliability of the
PF, yet indeed it depends on the application whether the
performance may be considered enough or not to justify the
increase in complexity. It is finally evident how the Interacting
Multiple Model (IMM) filter has the important downside of
decreasing its performance at higher values of the time step
τ , which indeed holds true also for the FQF implementation,
yet for the PF methods the decrease in performance is almost
negligible, showing the interest on applying likelihood-based
methods.



Fig. 2. RPE values for each filter varying time step τ , 2D case.

The second scenario has been developed to draw conclu-
sions which have as a main aim to check the robustness
of the methods with respect to wrong assumptions over the
glint noise parameters. In particular, in this section it will be
checked the reaction of the filters under different values of
the glint noise probability ε. Thus, the simulations are carried
fixing the time step at τ = 1s and for three values of the glint
noise probability. The results show also that, even if there is
a clear variation on the error of the other filters, the solutions
are still indeed acceptable and, most importantly, the errors of
all the filters keep staying under the values returned by the
IMM filter. Finally, as the first scenario, also in this case the
Quadratic Filter is shown to be dominant.

Fig. 3. RPE values for each filter varying glint noise probability ε.

As a last glimpse to the filters’ behaviours in the two-
dimensional space, the computational times are compared.
A renowned feature of the IMM methodology is its com-
putational speed, so that it is expected to behave well in
this scenario. Vice versa, the computational complexity in the
evaluation of the evolution of the particles and the re-sampling
step are a severe computational burden in the evaluation of a
solution for the PF methodologies.
The results shown in the table show that the evaluation time
for the FQF is a good trade-off among the IMM and the PF
methods.

IMM PF MCMC-PF FQF

0.006966s 0.032208s 0.070264s 0.008574s
TABLE I

COMPUTATIONAL TIMES TABLE [SECONDS].

B. Numerical simulations: 3D target tracking
Here the matrix L is chosen in each simu-

lation such that the eigenvalues are moved to

ρ(A) = {0.4730, 0.4620, 0.4510, 0.4400, 0.4555,
0.4420, 0.4660, 0.4566, 0.4860}, whereas the IMM, the
PF and the MCMC-PF are developed under the same design
choices of the previous chapter concerning the problem in
two dimensions. The initial state is now set to be defined as:

x0 =
[
1000,−5, 0,−1000, 5, 0, 2000,−5, 0

]>
. (22)

The glint noise covariance matrices are now specified adding
the value of the variance on the bearing angle noise, which is
considered to be equal to the one acting on the polar angle. In
particular, the covariance matrix for the background Gaussian
measurement noise and the glint-noise matrix covariance are

Σg =

5 0 0
0 0.1 0
0 0 0.1

 Σl =

150 0 0
0 1 0
0 0 1

 . (23)

Again, total simulation steps and radar position are set respec-
tively to T = 50 and s = [0m, 0m].
The RPE is now defined as:

RPEi(k) = 100 ·

√
ê

(i)
1 (k)2 + ê

(i)
4 (k)2 + ê

(i)
7 (k)2

x2
1(k) + x2

4(k) + x2
7(k)

(24)

where ê
(i)
j (k) = xj(k) − x̂

(i)
j (k), j = 1, 4, 7 with x̂

(i)
1 (k),

x̂
(i)
4 (k) and x̂

(i)
7 (k) being respectively the estimated position

on the x− axis, on the y− axis and on the z− axis at time
k.
The first scenarios which will be investigated will deal with
the comparison of the results of the four filters made on a
basis of different choices of the time steps, which will follow
the same design choices of the first scenarios of the previous
section. The results still follow the conclusions drawn in the
previous section, proving a superiority of target tracking devel-
oping the Feedback Quadratic Filter methodology. Differently
from the bi-dimensional case, a few non-convergent runs (i.e.
RPE(k) > 30%) occurred, especially for the application of
the Feedback Quadratic Filter for τ = 2s, which counts a
total of 10 non-convergent Monte Carlo runs. The reason may
be found in the fundamental principle of the FQF algorithm
which is the challenging application to systems which are not
internally stable. In other applications the number of non-
convergent runs does not count a total of more than 3 non-
convergent runs.

Fig. 4. RPE values for each filter varying time step τ , 3D case.

A second scenario is developed to show the robustness to
higher values of the glint noise covariance matrix, which is



indeed the case for closer to-be-tracked objects. The time step
is now fixed at τ = 0.5s, for which the MCMC-PF and the
PF filters were showing the most similar behaviour, and the
glint noise occurrence probability is fixed at ε = 5% for all
the simulations. The new glint noise covariance matrix Σnewl

is now defined as Σnewl = 2 · Σl.

Fig. 5. RPE values for each filter varying measurement glint noise covariance.

Finally, it is shown again the computational time of each
filter for a random step in {1, T} of the algorithm and a
random Monte Carlo run in the following table:

IMM PF MCMC-PF FQF

0.013534s 0.123702s 0.165724s 0.050230s
TABLE II

COMPUTATIONAL TIMES TABLE, 3D CASE [SECONDS].

V. CONCLUSIONS

A solution to the problem of the 2D and 3D target tracking
in the presence of heavy tailed noise (and in particular in
the case of the glint noise) is given in this paper. Several
combinations of the problem parameters were interchanged,
in order to stress the filters under different conditions. Nu-
merical simulations and comparisons with standard methods
in a case of study validate the proposed approach. Further
extensions can include the study of other and complex tar-
get dynamics, multi-agents case in a cooperative/distributed
filtering framework ([22], [23]), packet dropping scenarios
([24], [25]), learning-based approaches ([26], [27]), delayed
measurements ([28], [29]), analysis in Hamiltonian framework
([30]). Another pioneering development could be the extension
of the presented technique to infinite-dimensional systems
([31]).
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