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Abstract— This paper presents an alternative approach to the
study of distance rigidity in networks of mobile agents, based on
a subframework scheme. The advantage of the proposed strategy
lies in expressing framework rigidity, which is inherently global,
as a set of local properties. Also, we show that a framework’s
normalized rigidity eigenvalue degrades as the graph’s diameter
increases. Thus, the rigidity eigenvalue associated to each
subframework arise naturally as a local rigidity metric. A
decentralized subframework-based controller for maintaining
rigidity using only range measurements is developed, which
is also aimed to minimize the network’s communication load.
Finally, we show that the information exchange required by
the controller is completed in a finite number of iterations,
indicating the convenience of the proposed scheme.

I. INTRODUCTION

In the last decade, the coordination of networked mul-
tirobot systems has become an intensive area of research,
motivated by their advantages in adaptability, robustness, and
scalability, in a wide variety of applications [1]. Several chal-
lenges are associated with the decentralized implementation
of cooperative missions, specially when dealing with energy,
sensing, and communications constraints. Some of the most
fundamental topics in multirobot control systems arise when
only relative information is available. In such cases, the
structure of the underlying network, given by the agents’
interactions, has a prominent place. In particular, distance
rigidity theory plays an outstanding role when only inter-
agent distances are known. Firstly, it presents a sufficient
condition for formation stabilization when the geometric
pattern is specified by a set of inter-agent distances [2]. Sec-
ondly, in network localization, rigidity theory provides with
necessary and sufficient conditions for unique localizability
of the agents when only relative distance measurements are
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available [3]. A related emerging subject, not studied here,
is the so called bearing rigidity, which uses relative angles
instead of distances, see [4] for a complete review.

Since rigidity is a desired property of networked systems,
important efforts have been made towards control strategies
for maintaining or recovering it in networks with dynamic
topology. The strategies adopted in earlier work can be
classified as continuum [5]–[7] or combinatorial [8], [9].
Nevertheless, to develop fully decentralized algorithms is
a common difficulty. This is due to the fact that rigidity
is inherently a global property, i.e., it depends on both the
topology and the robots’ positions of the entire network.

In [5], [6], the authors proposed a gradient-based con-
troller for rigidity maintenance. The strategy aims to guide
the robots’ motion to keep the positivity of the rigidity
eigenvalue, which is a measure of the framework’s degree
of rigidity. A similar scheme was presented in [7], although
the latter is intended to maximize the rigidity eigenvalue,
thus converging to a local optimal formation. As a strategy
for decentralized implementation, such works developed
consensus-based estimators to locally update global infor-
mation (the rigidity eigenvalue and eigenvector) needed to
apply the gradient protocol.

A combinatorial approach to rigidity maintenance was
developed in [8]. Local rules for link addition and deletion
are employed to dictate the robots’ movements to preserve
rigidity. The combinatorial nature of the scheme makes it
efficient, since computations and communications are only
required during transitions in the network topology. However,
the rigidity maintenance strategy developed is currently only
valid in a two dimensional space, limiting its applicability.
A more recent work [9], presents a distributed technique to
recover from the loss of rigidity caused by a link failure.
A lattice of configurations is applied to locally recover the
rigidity of faulty subframeworks by adding new links. In such
work, a subframework is established by a node, its nearest
neighbors, and the edges within. The technique adopted is
valid since the rigidity of all subframeworks is a sufficient
condition for framework rigidity, as the authors prove.

In the existing continuum methods, global information
is locally required, thus the control performance greatly
depends on the ability of the estimators to track the network’s
dynamics. These approaches rely on the supposition that
the rigidity matrices are static, however they are functions
of the robots’ positions, limiting their velocities. Also, the
convergence properties of these distributed estimators are
strongly affected by the diameter [10], which increases with
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the network’s size1, thus posing a limitation on the scalability
of these schemes. In contrast, combinatorial approaches have
a better scalability since the robots apply local rigidity rules,
with no requirement of global information. However, they are
conservative in link deletions since redundant edges may not
be detected locally. Also, these schemes do not consider any
measure of rigidity related the robots’ positions, therefore
no optimal criteria concerning the geometrical realization is
pursued.

In this work, we aim to overcome these limitations by
proposing an extension of the subframework definition, that
allows us to state a necessary and sufficient condition for
framework rigidity in terms of its subframeworks. This
enables us to express rigidity as a set of localized conditions,
without requiring global information nor being conservative.
The rigidity eigenvalues associated to the subframeworks
arise naturally as local rigidity metrics. This allows us to
develop a fully scalable gradient-based controller to maintain
network’s rigidity through robot mobility, by preserving
the positivity of every rigidity eigenvalue. To reduce the
communication load required by this strategy, we include
an associated cost functional in the control law.

The remainder of this paper is organized as follows. In
Section II we present our notation and an overview of
graph theory. Section III provides with an introduction to
distance-based rigidity theory and our first contribution, an
upper bound for the rigidity eigenvalue in terms of the
graph diameter. In Section IV, we present our subframework
definition, and the statement of framework rigidity in terms
of its subframeworks, our second contribution. The proposed
subframework-based gradient controller is presented in Sec-
tion V, together with its convergence properties, our third
contribution. Simulations and results are presented in Section
VI, and Section VII provides with final conclusions and
directions for future work.

II. PRELIMINARIES AND NOTATION

In this work, column vectors in u ∈ Rd are written in
lowercase, and ‖u‖ denotes the euclidean norm. A column
stack of n vectors or matrices of appropriate dimensions is
denoted by u = [u1; . . . ; un]. The n× 1 vector of all ones
is indicated by 1n, and the all zeroes vector by 0n. Matrices
A ∈ Rm×n are denoted by letters in uppercase, and the
identity matrix of m×m is Im. The null space and rank of
a matrix A are denoted by null (A) and rank (A). The set
of ordered eigenvalues of a real symmetric matrix A∈Rn×n
are indicated by λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A).

Let G = (V, E) be an undirected graph with a vertex (or
node) set V = {i}ni=1 that represents n autonomous agents,
and m edges E = {ek}mk=1 where ek , {i, j} indicates
an interaction between nodes i and j. The neighborhood
of the ith node is the set Ni = {j ∈ V | {i, j} ∈ E}; and
the inclusive neighborhood is defined as N ∗i = {i} ∪ Ni.
The degree of a vertex δi , |Ni| is the cardinality of

1The increase of diameter with the network’s size is expected because
of constraints on energy and computing resources that limit the number of
connections.

its neighborhood. A path in G is a sequence of distinct
vertices (i1, i2, . . . , ip) such that ik is adjacent to ik+1 for
k = 1, . . . , p − 1. Two nodes are connected if there is a
path containing them. The geodesic distance between two
connected nodes gij ∈{0, . . . , n−1}, is the number of edges
in a (not necessarily unique) shortest path between them.
The eccentricity of a vertex i is the largest geodesic distance
with any other node, i.e., εi = maxj gij . And the diameter
of a connected graph is equal to the maximum eccentricity
D(G) = maxi εi.

III. FRAMEWORK RIGIDITY

A framework F = (G,x) is a geometric realization of a
graph G in a d-dimensional space (typically d = 2 or 3),
given by the set of positions x = {xi}i∈V ⊂ Rd. Rigidity
is a property of frameworks that can be defined in terms of
two concepts: equivalence and congruence.

Definition 3.1: Two frameworks with equal topology
(G,x) and (G,x′) are equivalent if ‖xi−xj‖ = ‖x′i−x′j‖ for
all {i, j}∈E . They are congruent if ‖xi − xj‖ = ‖x′i − x′j‖
for all i, j∈V .

Definition 3.2 (Rigidity): A framework (G,x) is rigid if
there exists an ε>0 such that every framework (G,x′) which
is equivalent to (G,x) and satisfies ‖xi−x′i‖ < ε for all i∈V ,
is also congruent to (G,x).
Intuitively, rigidity states that there are not continuous mo-
tions of the vertices that preserve distances between each
pair of nodes, apart from translations and rotations as a rigid
body.

Closely related to Definition 3.2 is the concept of infinites-
imal rigidity, which is a sufficient condition for rigidity, and
is preferred in continuum mobility control applications since
it can be tested by an algebraic condition. For a more detailed
analysis on the relationship between this two properties, the
reader is referred to [3] and references therein.

A. Infinitesimal Rigidity

Consider a set of velocities (or motions) ui∈Rd associated
to each agent, and the vector u = [u1; . . . ; un]. If frame-
works are considered as bars and joints, then u produces in
the bar ek = {i, j} a strain equal to

σk , rTij(ui − uj), (1)

where rij , (xi − xj)/‖xi − xj‖. The vector of all strains
σ = [σ1; . . . ;σm] induced by a motion is obtained by σ =
Ru, where R =

[
R1; . . . ; Rm

]
∈ Rm×dn is the normalized

rigidity matrix [11]. Each row Rk ∈ R1×dn corresponds to
an edge {i, j} and has the form

Rk =
[
0Td(i−1) rTij 0Td(j−i−1) rTji 0Td(n−j)

]
.

Associated to each velocity, there is an induced energy

E(u) , ‖Ru‖2 =

m∑
k=1

σ2
k, (2)

that is, the sum of the squared strains over all edges. An
infinitesimal motion is any vector u ∈ Rdn that produces



zero energy, i.e., u ∈ null (R). An important subspace is
that of trivial motions Td ⊆ null (R), which correspond to
framework displacements as a rigid body (translations and
rotations in Rd). From these definitions, emerges the concept
of infinitesimal rigidity.

Definition 3.3 (Infinitesimal Rigidity): A framework is in-
finitesimally rigid if every infinitesimal motion is also a
trivial motion, i.e., Td = null (R).
From this definition, it is clear that a framework is infinites-
imally rigid if and only if rank (R) = dn − f , where
f , d(d+1)

2 is the dimension of Td, equal to the number
of degrees of freedom of a rigid body in Rd. The spectral
characterization of infinitesimal rigidity can be defined in
terms of the positive semi-definite symmetric rigidity matrix

S , RTWR, (3)

where W is an m×m diagonal positive matrix. It is clear that
the spectrum of S contains the eigenvalues λ1 = . . . = λf =
0 associated to the subspace Td. Therefore, the following
theorem holds.

Theorem 3.1 (Rigidity Eigenvalue [5]): Let S be the
symmetric rigidity matrix of a framework F , and ρ ,
λf+1(S) the associated rigidity eigenvalue, then F is in-
finitesimally rigid if and only if ρ > 0.
The normalized rigidity eigenvalue, obtained by setting W =
Im, is of great importance since it measures a framework’s
degree of rigidity in terms of its geometric shape only. Its
properties, as well as lower and upper bounds can be found
in [11], [12].

B. A Rigidity Eigenvalue Upper Bound

We present our first contribution, an upper bound of the
normalized rigidity eigenvalue in terms of the underlying
graph’s diameter. This is powerful since it uses graph invari-
ants only, regardless of the realization

Theorem 3.2: Let F = (G,x) be a framework with n
nodes, m edges and diameter D, then its normalized rigidity
eigenvalue ρ is bounded above by 2m/D2.

Proof: We leverage the recent result in [12, Theo-
rem 4.2] which, for two dimensional frameworks, implies
ρ ≤ λ2(L(G)), where L(G) denotes the graph’s laplacian.
Therefore, it is sufficient to provide with an upper bound for
λ2. Let p, q be two vertices of G such that gpq = D. Consider
the vector u = [u1; . . . ; un] where ui = gpi/D. Now let
µ = 1

n

∑n
i=1 ui, and define ũ = u− µ1n. Observe that, for

each edge ek = {i, j}∈E , and denoting σk , ũi − ũj ,

σk =
gpi − gpj

D
∈ {−1

D , 0, 1
D}.

Noting that L(G)1n = 0 and 1Tn ũ = 0, it follows that

λ2(L(G)) ≤ ũ
TL(G)ũ

ũT ũ
=

∑m
k=1 σ

2
k∑n

i=1(ui − µ)2
≤ m/D2

1/2
.

Which follows since up = 0 and uq = 1, hence
∑n
i=1(ui −

µ)2 ≥ µ2 + (1− µ)2 ≥ 1
2 .

This bound result suggests that penalizing low values of the
normalized rigidity eigenvalue as a control objective is not

appropriate for high diameter networks, indicating the need
for new measures in such cases.

IV. SUBFRAMEWORKS

In this section we present a framework subsetting that
yields to n subframeworks Fi = (Gi,xi), each one asso-
ciated to a unique vertex i ∈ V , called the center. Each
subframework is determined by the maximum number of
hops (from the center) in which other nodes are included.
This number of hops is called the extent of Fi and is
denoted by hi∈N. Formally, the ith subframework contains
the vertex subset Vi = {j ∈ V | gij ≤ hi}, the edge
subset Ei = {{j, k} ∈ E | j, k ∈ Vi}, and the positions
xi = {xj | j ∈ Vi}. Observe that any node might belong to
multiple subframeworks, however it is the center of exactly
one of them.

A. Rigidity

We present the relationship between the rigidity of a
framework and the rigidity of its subframeworks. The work
done in [9] defines subframeworks that are constrained to
have only one-hop of extent, which allowed the authors to
state only a sufficient condition for rigidity. By allowing
multi-hops, in Theorem 4.2 we are able to present the
necessary and sufficient condition for subframework-based
rigidity. Before that, we prove the following useful lemma
for d-dimensional frameworks (d = 2 or 3).

Lemma 4.1: Let F be an infinitesimally rigid framework
with n ≥ d + 1 nodes. Then, for each vertex i, the set of
points x∗i = {xj | j ∈ N ∗i } is in general position, i.e., they
do not lie in an affine subspace of Rd.

Proof: We prove for d = 3, and for d = 2 follows
by analogy. Consider a node i ∈ V and a labeling of
its neighbors Ni = {1, 2, . . . , δi}. Suppose that the points
x∗i = {xi, x1, . . . , xδi} are contained by a plane, then
{xi − x1, . . . , xi − xδi} spans a subspace S of dimension
≤ 2. Thus, assigning a motion u = [u1; . . . ;un] such that
ui 6= 0 and orthogonal to S, and uj = 0 for every j 6= i,
then clearly u /∈ Td. Therefore, for k = 1, . . . ,m, the strain
σk=0 if i is not an endpoint of edge ek. But, if ek = {i, j}
for some j ∈ Ni, then by (1), σk = rTijui = 0 since ui is
orthogonal to rij ∈ S . Then u is a non-trivial infinitesimal
motion, which means the framework is not infinitesimally
rigid.

Theorem 4.2 (Subframework-Based Rigidity): Let F be a
connected d-dimensional framework. Then F is infinites-
imally rigid if and only if there exists a set of extents
h = {hi}i∈V such that every subframework Fi, i ∈ V is
infinitesimally rigid.

Proof: Sufficiency is derived as follows since a frame-
work is equal to the union of its subframeworks. Consider
two subframeworks Fi and Fj with adjacent centers. Since
i ∈ Fj and the latter is infinitesimally rigid, then set of
inclusive neighbors of i that are also in Fj , i.e., N ∗i ∩ Vj ,
contains at least d+1 nodes in general position (from lemma
4.1). But N ∗i ⊆ Vi, thus N ∗i ∩ Vj is included in both Vi
and Vj . This means that the two subframeworks share at



Fig. 1: A rigid framework with its 100 nodes marked accord-
ing to their rigidity extent (left). A 2-hop rigid subframework
Fi is highlighted, with is center surrounded by a circle
(right).

least d + 1 agents in general position, therefore the union
Fi∪Fj = (Gi∪Gj ,xi∪xj) is infinitesimally rigid. Repeating
this for all adjacent subframeworks proves sufficiency. To
show necessity, set h = {εi}i∈V , i.e., the eccentricity of
each node.

The contribution of this theorem is that it translates a
property such as framework rigidity, which is global in
nature, to a collection of conditions that are distributed over
the network. Having subframeworks with small extents is
desirable since it is more amenable to the decentralized
implementation of control algorithms. If hi = 1 for all
i ∈ V , agents need only to obtain information from its
nearest neighbors. In contrast, as hi grows, information
from more distant nodes are needed, thus augmenting load
and latency of the communication channels. Nevertheless,
allowing values hi ≥ 1 is a necessary condition as stated in
Theorem 4.2.

A given collection of extents h for which all subframe-
works are rigid might not be unique. Therefore, we define
the rigidity extent of the ith agent as

ηi , min{h∈N | Fi is infinitesimally rigid}, (4)

a minimum achieved for rigid frameworks. As a measure of
the number of hops required for subframework-based rigid-
ity, we define the worst-case rigidity extent of a framework
as η , maxi∈V ηi.

An example of a rigid framework and its rigidity extents
(4) is shown in Fig. 1. Agents’ positions were generated by
a uniform distribution, and links using the disk-proximity
model with range Ω = 17.5. Using this model, we simulated
three groups, each one with 250 networks, corresponding
to different communication ranges Ω ∈ {25, 20, 17.5}. Fre-
quencies of the worst-case rigidity extent obtained are shown
in the left panel of Fig. 2. The most frequent values for
the graph diameter were 7, 9 and 10 for Ω = 25, 20 and
17.5, respectively. The worst-case rigidity extent in relation
to the diameter dictates how powerful is Theorem 4.2 in these
examples. We will discuss this in more detail in Section V-D.

Fig. 2: Results for 3 groups of 250 rigid frameworks with
different communication ranges. In the right panel, the load’s
upper bound is presented in dashed lines.

B. Communication Load

The proposed subframework approach implies that each
edge in the graph belongs to a number of subframeworks
that increases as the extents grow. This means that the links’
load augment as more distant nodes use it to broadcast
messages within their subframeworks. To quantify the total
communication burden, we propose the following metric,

` ,
∑
i∈V

`i, `i ,
∑
j∈Vi

cijδj , (5)

where the coefficients cij≥0 account for the more intensive
use of edges that are closer to the ith center, when the latter
spreads information. For this we define cij = max{0, hi −
gij} which, for a certain agent i, decreases as gij grows until
cij=0 when gij≥hi.

If every hi=1 (as in a nearest neighbors rule) then `=2m,
which serves as a load’s lower bound. Conversely, setting
hi = εi configures the upper-bound of (5). Fig. 2 (right)
shows, for the set of simulated networks, the standardized
load `/2m. It can be seen that, for the three groups, there
is an increase of the load with the parameter η. However,
in the given examples, we found that 85% of the simulated
networks had η ≤ 5, which corresponded to 1 ≤ `/2m ≤ 4
approximately. In Section V-B we include the load metric in
the control scheme to reduce it through robot mobility.

V. DECENTRALIZED CONTROL

To validate the subframework-based rigidity approach,
we propose a decentralized localization and control scheme
to command a network of mobile robots, using distance
measurements only. Three objectives are pursued: namely,
minimization of the total communication load and collision
avoidance, which act as repulsive forces; and rigidity main-
tenance, which is cohesive.

The scheme must be able to adapt to time-varying topolo-
gies, allowing changes in the network’s structure. To this
end, we adopted the classic approach of assigning a weight
0 < wk ≤ 1 to each edge ek = {i, j} in the graph.
Weights are defined in such a way that wk is close to 1
if ‖xi − xj‖ < Ω, and close to 0 otherwise, with a smooth
decay near ‖xi − xj‖ = Ω. Therefore, we employed the “s”
shaped logistic curve,

wk = (1 + e−β(Ω−‖xi−xj‖))−1, (6)



where β > 0 is the steepness of the decay. These weights
are included in the scheme by setting them as the diagonal
entries of the matrix W employed in (3).

A. Rigidity Maintenance

The strategy adopted is to maintain rigidity of every
subframework, hence, of the entire framework. To do so,
we employ the n rigidity eigenvalues ρi , λf+1(Si),
and the corresponding unit eigenvector νi, where Si is the
rigidity matrix of the ith subframework. Setting the extents
hi(t0) = ηi(t0) for all i, at initialization time t0, guarantees
the positivity of every ρi(t0). In this work, we adopt the
strategy of maintaining rigidity through robot mobility while
the extents remain invariant for all t > t0. To this end, we
define a function that penalizes low values of the rigidity
eigenvalues,

φ ,
∑
i∈V

φi, φi , ρ−qi , q > 0. (7)

Thus, framework rigidity is maintained if φ remains bounded,
since it grows unlimited if any ρi vanishes, which happens
only if the corresponding subframework loses rigidity. There-
fore, the ith robot follows the negative gradient of φ with
respect to xi. We define the “inclusion group” of a node i
as the set of nodes that include it in their subframeworks,
formally Ii = {j∈V | gij ≤ hj}, then

∂φ

∂xi
=
∑
j∈V

∂φj
∂xi

=
∑
j∈Ii

dφj
dρj

νTj
∂Sj
∂xi

νj , (8)

where we used the fact that ∂φj/∂xi = 0 if j /∈ Ii. We also
used an eigenvalue derivative formula for symmetric matrices
as in [5], [7]. Note that (8) contains only information of
a subset of subframeworks {Fj | j ∈ Ii}, and no further
knowledge is required.

B. Communication Load Reduction

While maintaining rigidity, our control scheme is capable
of reducing as much as possible the network’s communica-
tion load (`). The gradient of the load function is

∂`

∂xi
=
∑
j∈Ii

∑
k∈Vj

cjk
∂δ̃k
∂xi

, (9)

where δ̃k ,
∑
l∈Nk

wkl is the weighted degree of the
kth node.

C. Collision Avoidance

In order to avoid collisions it is sufficient to consider
only adjacent nodes, due to the disk-proximity model. The
collision avoidance function and its gradient are

ψ ,
∑
{i,j}∈E

‖xi − xj‖−p, p > 0,

∂ψ

∂xi
= −

∑
j∈Ni

p‖xi − xj‖−(p+2)(xi − xj).
(10)

(a) (b) (c)

Fig. 3: In (a) we labeled the rigidity extent at each node;
(b) shows the ith inclusion group, arrows indicate the
communications to implement (11). In (c) we highlight Vi,
i.e., the agents that follow commands from i, and a possible
information flow.

D. Decentralized implementation

Consider the functional J , φ + ` + ψ, that measures
the performance in rigidity, communications and collisions.
Then, the formation converges to a local minimizer of J if
every robot follows the gradient-descent protocol

ẋi = − ∂J
∂xi

= −
∑
j∈Ii

(
∂φj
∂xi

+
∂`j
∂xi

)
−
∑
j∈Ni

∂ψ

∂xi
, (11)

which is implemented using a time discretization. As a
consequence of the subframework-based scheme, control law
(11) is inherently decentralized. This is formalized in the
following theorem.

Theorem 5.1: Consider a framework F with worst-case
rigidity extent η. Then the information exchange required
such that every agent applies (11) in a decentralized fashion
is completed in a finite number of iterations equal to 2η.
This is achieved by implementing a routing protocol that
ensures every node i receives the input uji , ∂φj/∂xi +
∂`j/∂xi from each j ∈ Ii. To this end, agent i sends
its current position xi to robots in Ii through at most
max{hj | j ∈ Ii} hops; then each jth node computes uji
and broadcast it back to i. This is depicted in Fig. 3 where
a rigid framework is considered.

As proven in [10], the minimum number of iterations
needed for the convergence of average consensus algorithms
is, in the best scenario, equal to the diameter. Therefore,
our scheme is preferable whenever 2η ≤ D, which gets
more likely as the size of the network grows, since η is
not expected to grow.

E. Distributed Robot Localization

In order to apply (11), each robot must have an estimate
of its position x̂i. In this work, we propose an approximate
Kalman Filter, applied distributedly by each robot, to up-
date its own position from range measurements with their
neighbors. Let zi(tk)∈Rδi be the vector of noisy distance
measurements that the ith agent gets by interacting with
its neighbors Ni = {1, 2, . . . , δi}. Each robot models the
measurements by the function fi : Rd(1+δi) → Rδi

ẑi , fi(x̂i, x̂1, . . . , x̂δi) = [‖x̂i − x̂1‖; . . . ; ‖x̂i − x̂δi‖],



Fig. 4: Two realizations at instants t = 0s and t = 200s.
Markers denote the rigidity extent of a node. Robots’ trajec-
tories are indicated with small dots.

and applies the update

x̂i(tk) = x̂i(tk−1) +Ki(tk)(zi(tk)− ẑi(tk)),

Pi(tk) = Pi(tk−1)−Ki(tk)Fi(tk)Pi(tk−1)
(12)

where Ki = PiF
T
i (FiPiF

T
i + Ci)

−1 is the kalman gain;
Pi the covariance of the estimate x̂i; the model jacobian
Fi , ∂fi/∂xi; and Ci the covariance associated to the noisy
measurement zi. The communications protocol required for
the control scheme ensures that every robot receives the
estimated positions x̂j of its neighbors.

In a noiseless setup, update (12) ensures that the estimates
x̂1, . . . , x̂n converge to a formation that is equal to the
true positions up to a trivial displacement, provided that
the framework is rigid and that the initial guesses x̂i(t0)
are close enough to xi(t0). Still, a distance-only filter will
not correctly estimate the position and the orientation of the
framework. Therefore, additional information must be given
to the robots. To this end, we arbitrarily selecte d robots and
provided them with absolute position measurements, which
is sufficient in the d-dimensional case.

VI. SIMULATIONS

To validate our control scheme, we present simulation
results for a disk-proximity network of n = 60 agents,
randomly located within a region of 100 × 100m2 and
range Ω = 40m, as in Fig. 4 (left). Robots were set to
follow the control law (11). Fig. 5 shows the evolution of
the rigidity eigenvalues and the standardized communication
load (`/2m). It is noted that in the first 25s, the controllers
manages to rapidly augment the rigidity eigenvalues, by both
improving robots relative positions and creating new links,
with a corresponding increase in the load. Thereafter, the
communication load was considerably decreased (about a
40%) without degrading the rigidity eigenvalues. The frame-
work’s rigidity eigenvalue, although not directly employed
in the control scheme, was also maintained positive as a
consequence of Theorem 4.2. This is shown in Fig. 5 (left)
in a black dashed line. The network’s realization after 200s is
shown in Fig. 4 (right), were a regular pattern emerges, due
the controller’s effort to maximize the rigidity eigenvalues.

Fig. 5: Evolution of the min, mean, max of the n rigidity
eigenvalues, the corresponding to the whole framework, and
the communication load.

VII. CONCLUSIONS AND FUTURE WORK

We presented a subframework definition that enables to
state a novel necessary and sufficient condition for infinites-
imal rigidity of a connected framework. This has the power
of translating a global property into multiple localized ones,
which demonstrated to be useful for decentralized control.
However, it tends to augment the network’s communication
burden unless extents are restricted to one hop. Nevertheless,
by including a load function in the control scheme, it was
able to reduce the communication load while maintaining
rigidity, which is promising. Finally, we showed that the
information exchange is completed in a finite number of
iterations, and provided a measure that allows to compare
our strategy with those based on consensus protocols.

As future work, we plan to validate the proposed scheme
in a more realistic setup, as well as study the impact of
the delay associated with the multi-hop communications in
the overall performance. Moreover, we intent to enhance the
control scheme with the ability to dynamically modify the
subframework extents to adapt to changing scenarios and
help reduce the communication load and delay.
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