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Inverse optimal control for angle stabilization in
converter-based generation

Taouba Jouini, Anders Rantzer and Emma Tegling

Abstract—In inverse optimal control, the optimality of a given
feedback stabilizing controller is a byproduct of the choice of a
meaningful, a posteriori defined, cost functional. This allows for
a simple tuning comparable to linear quadratic control, also for
nonlinear controllers. Our work illustrates the usefulness of this
approach in the control of converter-based power systems and
networked systems in general, and thereby in finding controllers
with topological structure and known optimality properties. In
particular, we design an inverse optimal feedback controller that
stabilizes the phase angles of voltage-source controlled DC/AC
converters at an induced steady state with zero frequency error.
The distributed angular droop controller yields active power to
angle droop behavior at steady state. Moreover, we suggest a
practical implementation of the controller and corroborate our
results through simulations on a three-converter system and a
numerical comparison with standard frequency droop control.

I. INTRODUCTION

A diagnosis of the event of September 28, 2016 in Australia
shows anomalous power systems dynamics caused by a series
of voltage dips [1f]. This was originated by the growing angle
difference between the voltage phase angles of two areas
in South Australia prior to the separation of South Australia
from the remainder of the electrical grid. Following separation,
sudden phase angle changes accompanied by a rapid change in
the load have resulted in inaccuracies in short-term frequency
measurements [2]. A lesson that can be drawn from the event
in Australia is the importance of phase angles in monitoring
the stability of converter-based generation and, in particular,
in providing useful information that can be exploited for a
better design of control schemes for converters [2]. Recently,
different DC/AC converter control strategies have been pro-
posed to stabilize the output voltage angles at a desired steady
state, for example, based on gradient systems and Kuramoto-
like oscillator dynamics [3], [4]]. Similarly, our work aims to
control the angles of DC/AC converters.

Optimization remains an important theoretical tool for sta-
bility and control in power systems [5]] and is the backbone
of a plethora of strategies for an improved operation of the
electrical grid. In [6], dynamic online feedback optimization is
used to synthesize controllers, while accounting for input and
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output constraints and allowing for non-smooth feasible sets
based on projected gradient descent algorithms. Furthermore,
the online feedback optimization discussed in [7] enables the
study of time-varying convex optimization problems, while
allowing for disturbance rejection and exact tracking, and is
showcased for power transmission systems to compress the
time scales between secondary and tertiary control. Feedback
optimization based on dynamic programming is deployed
in [8] for power scheduling of converters and the associated
operational cost in a data-driven stochastic framework.

In optimal control, it is well-known that every meaningful
value function is a Lyapunov function. This constitutes an
important link between stability and optimality and allows
for the systematic analysis of optimal feedback controllers.
In inverse optimal control, the converse link is established.
Namely, it is shown that every Lyapunov function is a mean-
ingful value function. This allows for a systematic design of
feedback controllers associated with control Lyapunov func-
tions, that are optimal with respect to an a posteriori specified
cost functional, satisfying the Hamilton-Jacobi-Bellman (HJB)
equation. This was first spotted by R.E. Kalman [9] for linear
systems with quadratic cost and later extended to nonlinear
systems by Moylan and Anderson in [10]], Casti et al. [11]
for a class of cost functionals that are, e.g., strictly convex
in the input for a fixed state, subject to general nonlinear
systems. Afterwards, Freeman and Kokotovic incremented the
system dynamics with disturbances and incorporated the
constraints in [[12] to study the inverse robust stabilization
problem leading to the analysis of the Hamilton-Jacobi-Isaacs
(HJT) equation. Our previous work in [[13]] exploits the same
theory to design a distributed controller in coupled second-
order oscillators.

In this work, we consider a network of voltage-source
controlled converters, each of which is equipped with the
capability of actuating the voltage phase angle, using syn-
chrophasors. Synchrophasors are time-synchronized electrical
measurements that represent both the magnitude and phase
angle of the electrical sinusoids, measured by fast time-
stamped devices, or phasor measurement units (PMUs), and
constitute the basis of real-time monitoring and control actions
in the electric grid [14]. In particular, we formulate an inverse
optimal control problem, where a distributed solution to the
HIB equation can be found without expensive computations.
From a theoretical point of view, the proposed controller
demonstrates the usefulness of inverse optimal control theory
in networked settings via synthesis of the angular droop
control, a feat that is otherwise challenging.

The angular droop controller, designed for the multi-
converter system, coincides with that proposed in [15], [[16]. In
these works, only a linear stability analysis is conducted and



optimality is not established. Here, we prove local asymptotic
stability of the induced steady state angle with respect to
nonlinear system dynamics. The angular droop controller turns
out to be the inverse optimal locally stabilizing control law for
the multi-converter system with respect to a meaningful cost
functional. As such, our control design bridges a gap between
control theorists and power system experts , by demonstrating
optimality for the intuitively appealing controller of power
converters. The optimal controller has desired gradient descent
form and possesses grid-forming capabilities contributing to
angle stabilization and thus achieves both primary and sec-
ondary frequency control, i.e., zero frequency error. Finally,
we validate our results on a high-order model of three DC/AC
converter system in closed-loop with the angular droop control,
give nuts and bolts on how a practical implementation can be
achieved and provide a numerical comparison to standard
frequency droop control [17] demonstrating, in particular,
improved scalability properties to large networks.

Notation: For a matrix P € R™", P=PT >0 and a vector
v e R, let |[v]|p = Vv Pv. Let diag(v) be the diagonal matrix
with elements v;,i = 1,...,n, ||v|]|e = sup,_; ,|vi| be the
maximum norm of v, and sin(v) and cos(v) be the vector-
valued sine and cosine functions. Given a twice continuously
differentiable function V (x), let V,V = ‘9—‘; be the the gradient
of V with respect to x and V2V = ‘3;7‘; its Hessian matrix.
For p € IN, let I, be the p x p identity matrix and 1, be
the p x 1 vector of all ones. Given a dynamical system,
x(t) = f(x(t)), x(0) = xo, we consider the system to be time-
invariant throughout and mostly drop the time-dependence of
the state variables in the notation.

Furthermore, consider a network described by a connected
graph G = (V, €, E), consisting of |V| = n nodes representing
DC/AC converter buses and |£| = m edges modeling purely
inductive transmission lines (i.e., with zero conductances)
with susceptance by; > 0, (k, j) € £ collected in the diagonal
matrix E = diag(by;), (k,j) € £. The topology of the graph G
is described by the incidence matrix B € R™™. Let N} be the
neighbor set of converter k. We denote by £ =BEB' the bus
admittance matrix of G, which is a weighted Laplacian with
eigenvalues 0 =A4; <A <--- < A,

II. PROBLEM FORMULATION

In this section, we start by presenting the multi-converter
model following [18]], [19] and then formulate the correspond-
ing optimal control problem. This underlies the analysis of the
angular feedback control that is at the core of our main result.

A. Modeling and setup

Consider a network of DC/AC power converters (e.g.,
islanded microgrid), each represented by a voltage phasor and
interconnected via inductive transmission lines. We make the
common assumption that the system is in quasi-stationary
state, i.e., around a nominal steady state frequency ®*,
see [18]], [[19], meaning that all phasors are modeled with
constant magnitude (1 per unit), and assume that the angle

dynamics are controllable. For this, the converter dynamics
are reduced to the following integrator dynamics,

0=u(0)+wl,, 6(0)=86. (1)

Here, u(8) = [u1(0),...,u,(8)]" € R" is the control input,
6 =[01,...,6,]" €R" is the vector of phase angles of the
DC/AC converters and 6y € R” is the initial angle vector.
While the modeling choice in this section ignores the internal
dynamics of the converter, it enables the design of the optimal
controller in a concise, closed-form due to its simplicity
and mathematical tractability. Later, Section considers a
network of detailed internal converter dynamics, with lossy
transmission lines, descendent from first-order principles as
in [20], and discusses a practical implementation of the control
scheme.

For the control design in , we consider a scenario where
synchrophasor measurements with respect to a global frame of
reference are available to each converter. This is a reasonable
scenario for a future power grid, as PMU installation is
becoming increasingly widespread [14]. We define the set of
nominal phase angles, rotating at a synchronous frequency @*,
as 0*(t) = 0*1,¢ + 6; € R", where 6] = [6],,...,6;,]" €R"
is the nominal initial angle vector. Let Gljj = 6 — 0] define the
nominal phase angle difference between neighboring convert-
ers (k,j) € £. Assuming inductive (i.e. lossless) transmission
lines, the active power deviation from the nominal is given by,

Poi(0) =P =Y by (sin(6;) —sin(6;;)) ,
JEN;
where P, x(0) is the electrical power injected into the network
at the k—th converter and P, is the nominal power drawn
from a DC source behind the k—th converter.

Remark 1. Recall that the control law,
ur(0) = —1/dy (Por(0)—Pyy), d>0, k=1,....n, (2)

results in the first-order frequency-droop control, that repre-
sents a prevalent approach for primary control in islanded mi-
crogrids. This, however, results in stationary frequency errors,
which requires to be augmented with a secondary control
architecture, namely the automated generation control [19].

Following Remark [I] our goal in this work is to use
measurements obtained from PMUs to synthesize a feedback
controller with optimality guarantees. This will be shown to
coincide with the angular droop control proposed in [15], [[16].
This controller stabilizes the phase angle error (with respect
to a nominal steady state angle) and is characterized by zero
frequency deviation at stationarity.

B. Optimal control problem formulation

Consider the following optimization problem,
ouup (0 3
521115/0 k;( i (0)+ 3)
1 . L\ 2
7(Yk(9k*9k)+1’e.k(9)*Pe,k) dt,
4oy

st. 0 =u(8)+w*l,, 6(0)=86.



In (3)), the first term in the running cost (the integrand) penal-
izes the control effort through the positive gains o > 0, k =
1,...,n, by minimizing the scaled total power generation. The
second term is designed to accommodate a desired steady
state behavior: power to angle droop, or P — 6 droop, where
Y«>0, k=1,...,n, is a droop gain. This droop behavior leads
to zero stationary frequency error and can be seen as follows:
under the optimal control u*(6) that solves (3), the running
cost goes asymptotically to zero and it holds that,

Tim (1(6k(1) — 6 (1)) + Pes(0) -

More precisely, let 6 := lim; . 6;(¢) be an induced steady
state angle at the k—th converter. Then,

W6 — 6) =Pl —Py(6°), k=1,...,n. )

Equation (@) describes the steady state as a power balance
between the active power and angle deviation from the nominal
value , where 6° = {6;}}_, given by (@) is the induced steady
state angle vector. By taking the time derivative of @), we
arrive at 95 o*. Tt is evident that the steady state frequency
error is zero. Intuitively, @) is able to guarantee primary
and secondary frequency control at once, i.e., resulting in a
power system steady state with zero frequency error. In what
follows, we synthesize an angle feedback control law u*(0)
that uniquely solves (3).

III. INVERSE OPTIMAL CONTROL DESIGN

An innovative approach to optimal control synthesis was
introduced in [9), [12], [13[], [21], [22]] and relies on the
following idea: a feedback stabilizing control law associated
with a control Lyapunov function for a dynamical system is
first determined and then a suitably chosen cost functional
is found that satisfies the HIB equation. This constitutes the
so-called inverse optimal control problem, where the running
cost and the control parameters, representing a tuning knob,
are determined a posteriori. This circumvents the need for
an extensive search for a good cost functional and gives a
value function from a suggested control Lyapunov function
for free (without analytically and computationally expensive
calculations). It also allows an easy control tuning with sta-
bility guarantees and is applicable to a wide range of optimal
control problems.

For our power network application, inverse optimal control
allows us to design a distributed controller with feasible
implementation. In this section, we show that the optimization
problem obeys the systematic optimal control synthesis
presented in [[12f], [13[, [21], [22]. For convenience, we cite
the following Theorem from our previous work [[13]]. The same
results are also found in [12, Theorem 8.1], [22, Section 3.5].

Theorem II1.1. Consider the optimal control problem,

min [ u(s) -+ g(x(s)) s

st. i=H'(x)u, x(0)=xo,

(5a)
(5b)

where x, xo €R", u € R*, R = R >0 q(x) is a function
satisfying q(x) > 0,q(0) = 0 and H(x) € R™*" is the input

matrix. Furthermore, let V : R" — R~o, be a continuously
differentiable function associated with a feedback stabilizing
control law,

W (x) = %R*H(x) V.V, (6)

where, V.V H" (x)u*(x) < —||u*(x)|\% Define

q(x) = =VaV THT (x)u" (x) = [|u* (%) |7 )

Then, the following statements hold:
1) The unique optimal control is given by u*(x) in (6).
2) The optimal control problem () has the optimal value
Vo) = inf 5 u(s) 3+ g(x(s) ds with g(x) in @,

We make the following assumption.

Assumption 1. The induced steady state angle vector 0° =
{05}1_, satisfies, BT 0% € (—%,Z)", where B € R™™ is the
incidence matrix of the underlying graph G.

Assumption |1] states that the difference in steady state volt-
age angles between neighboring nodes is not larger than 7 /2.
This is commonly referred to as a security constraint [23]]. For

ease of presentation, we introduce,
R =diag{a,... Yt

Let the induced steady state angle 6° be given by (4)) and define
the following function, that is used in deriving our main result,

V(0) =

+ Z Zj\:[ by (cos Okj) — cos(@,fj) — (6 — B,fj)sin(e,‘jj)) )
=1 jeN;

, 0.}, I'=diag{y,...

1
516 -6 (8)

Our main result is summarized in the following proposition.

Proposition IIL.2. Consider the optimal control problem ()
under Assumption [I| Then, the following statements hold:

i) The optimal solution of (@) at the k—th converter in
a neighborhood of 0° = {6;}]_, is the angular droop
control defined as,

1

i (0) =~ 54 (% (6 — 60) + Pes(0) —Pyy) . (9)

ii) The steady state angle 0° = {6} }}_, is locally asymptot-
ically stable for the closed-loop system (i.e., (1)) together

with ©)).

Proof. The proof relies on the observation that the optimal
control problem satisfies the conditions of Theorem
locally, i.e., in the vicinity of the induced steady state angle 6°.

First, we establish the positive definiteness of the function V
around 6°. That is, we establish that V(6*) =0 and V(6) >0
for 6 # 6° with 8 being in a neighborhood of 6°. For this, we
follow a similar approach to [23] and define V;(6) = 1|6 —
6%||2 and V»(0) = W1 (0) —W>(6°) — (6 — 6°) T VoW, (6°) with,

Wh(6) = —1,) Zcos(B'0),

to rewrite the function V(0) in @) as, V(0) =V;(0) +V2(6).
Note that V; is clearly positive definite around 0°. V, is
positive definite around 6° if W, is strictly convex around 6°.



To show that W, is strictly convex around 6°, we introduce
the coordinate change n := B'6 and calculate V%Wg(n) =
= cos(n). Under Assumption |1} it holds that n* := B'6°% €
(=%,5)™ and hence V%Wz(n) > 0, for 1 in the neighborhood
of n*. This shows that W>(n) is strictly convex around 1°.
Since strict convexity is invariant under affine maps, W>(0) is
strictly convex around 6°. From the argumentation above, we
deduce that V, and therefore V is positive definite around 6°.
Second, we seek to apply Theorem The gradient of
V(0) can be equivalently expressed as,
VoV =T(0 —6°)+P.(0) — P.(6%), (10)
=0

=I(0—0")+P.(0)— P, +I(6"—6°)+ P, — P.(6"),
=I(6—6")+P.(0)—P;,

where P,(0) =[P, 1(0),...,P.,(0)], P} = Py ;)" and
the last term in the second step is zero by the induced steady
state equation (@). This means that the control law () takes
the form, u*(0) = 7%R_1V6V. By left-multiplying with the
gradient of V, it can be deduced that,

: 1
V(0)=VoVu'(0) = fEVQVR_l VgV.

Denote by Q a neighborhood of 6°. Note that V is positive
definite on Q and V(0) <0 for all 6 € Q. Let S = {0 €
Q,V(0) =0}. The only trajectory that can stay in S is where
the gradient of V given in (T0) vanishes, that is, only at 6 = 6°.
By the Barbashin-Krasovskii theorem [24, Corollary 4.1], the
steady state angle 0° is locally asymptotically stable. Now, we

write,
* 1 —
lu(6) [z = 4 VoV R VgV.
Hence, for all 8 € Q, ViVu*(0) < —||u*(0)|/3. The cost
functional can be compactly expressed as, [;[|u(6)% -+
q(0)ds, with

4(0) = VoV u’(0) ~ [ (O)]/} = 5 VoV TR VgV,
as given in (7) and explicitly written in (3).

All in all, the control problem satisfies the conditions
of Theorem locally, in a neighborhood of 6°. It follows
that (9) is an inverse optimal locally stabilizing control law
for the system dynamics in (3) and V(6p) in (8) is the value
function of (3). O

The angular droop control () is distributed, i.e., it requires
only knowledge of the neighboring angles 6;,j € Ny, k € V.
Nonetheless, it can be implemented in a fully decentralized
fashion by measuring the active power P, ; using PMUs. It
is grid-forming according to definitions in [25] and its tuning
is easily understood: If the control gain ¢ is smaller, more
control effort is allowed at the k—th converter, and the rate
of convergence towards an induced steady state angle 6° is
faster. In this sense, the input matrix R > 0 is a tuning knob
that allows us to study combinations of the input penalty, while
keeping the same value function.

Remark 2 (LQR control). Ler T = diag{y,..., "}, R=
diag{ay,...,a,}. By linearizing the cost functional (3) around
0 = 0%, it can be written as,

/Ooou(s)TRu(s) 4 (0(s)—0%)T0(8(s)— 6%)ds,  (11)

where Q= 2(T'+ L) "RV T+ L) and L =BEB'. Hence, the
optimal control problem becomes an LOR problem [24].
As delineated in [13|], after linearization around 6 = 6%, the
control law @]) becomes,

1
uigr(0) = =R H(T+ L) (6 - 67), (12)

and represents the Hy—optimal controller of (TI).

IV. DISTURBANCE REJECTION AND SCALABILITY: THE
LINEAR CASE

In this section, we follow the analysis in [26], [27] to com-
pare the linearized angular droop controller (I2) to standard
frequency droop control from a transient performance perspec-
tive, that is, how well random disturbances are attenuated.
In particular, we use the analysis framework from [26], [27]]
to demonstrate that the angle-based control (I3) can funda-
mentally improve the controller’s performance with respect to
network size, and thereby its scalability to large networks.

A. Disturbance attenuation and scalability: The linear case

For this analysis, the closed-loop system dynamics are
linearized around the desired steady state given by 6%, and
the nominal frequency w*. To simplify notation throughout
this section, let the state vectors 6 and ® represent deviations
from nominal steady state.

We assume that the system dynamics are subject to a
disturbance 1 = [n1,...,M,] ", which captures variations in
generation and loads, and into which we have also absorbed
the constant power injections P*. The disturbance 1 is mod-
eled as a persistent stochastic variable, uncorrelated across
converters. More precisely, we let 11 be zero-mean white noise,
such that E{n(t)n'(¢)} = 8(t — t)I,, where § is the Dirac
delta function. We refer the reader to [26], [[28] for more
details on the disturbance model, as well as alternative input
scenarios.

Consider the linearized version of the angular droop con-
troller (O) with,

6= —%R*(F+L)(9—9*)+n, (13)
where L = BEBT. On the other hand, the frequency droop
control is given by,

-t ][22

where M and D are diagonal matrices collecting all the inertia
m; > 0 and damping coefficients d; > 0, respectively, with
i=1,...,n. Here, we have assumed both linearized power
systems (13) and (T4) are subject to a disturbance input 7.

(14)



a) Performance metric: We evaluate the performance of
the systems and in terms of the following metric,
given as H» norm of an input-output system from the input n
to a suitably defined performance output.

Definition 1 (Angle coherence [26]). The angle coherence
metric captures the steady-state variance of the converters’
angle deviation from the network average, normalized by the
network size n and given by,

2 g 1 ) by 2
81w =Jim 2 Y E{ (80 -0()°}. a13)

where 0(t) = 1

5 ¥ 6,(t) is the average angle error.

Tra=

1

The performance metric in Definition |I| is given as the
squared #, norms of the systems (I3) and (14) with the
performance output,

1 1 T
=—\(L—--1,1, | 6.
Ycoh \/171 ( n >

b) Comparison of angle and frequency droop: We first
make the following assumption for tractability purposes:

Assumption 2. Let the controller gains and parameters be
uniform across all converters, i.e., 0; = @, ¥, =7, m; =m, and
di=d forallicV.

Consider the following result:

Result IV.1. Consider the linearized closed-loop dynamics
first with the angular (13) and second with the frequency
droop under Assumption |2\ A comparative system per-
formance is given in Table

TABLE I
COMPARISON OF LINEARIZED ANGLE VS. FREQUENCY DROOP

Angular droop

n
2 1
11 =% X 7

Frequency droop

2 _ 1y
15 1on = zam X %

Angle coherence

The proof follows that of [26, Lemma 1], [29] and is omitted
here. From Table |I, we make the following observations:

1) With angular droop, it is possible to state a uniform
upper bound on the angle coherence. In particular,
||S||2;, < @/7, which holds for any network size n € N
and independently of the graph topology. On the other
hand, the performance for frequency droop, is propor-
tional to %Z?:Z /li, This expression is well-studied in the
coherence literature, see e.g., [30]], [31]. In general, it
cannot be uniformly bounded in n. Instead, it grows with
n for sparse network graphs, including, for example,
tree graphs and graphs that can be embedded in two-
dimensional lattices (e.g., planar graphs) [30]]. This leads
to a performance degradation for large-scale networks.
In summary, angular droop has fundamentally better
scaling properties than frequency droop, leading to a
better disturbance rejection for large, sparse graphs. This
is illustrated later through test case 2 in Section [V]

2) We observe that for the angular droop (13), a small pos-
itive gain ¢ minimizes the angle coherence. Similarly,
increasing the damping gain y improves our performance
metric. The droop gain 7y plays the same role for the
angular droop as the gain d for the frequency droop
control. Thus, based on this H, performance analysis
we can select the control gains for an improved transient
performance of the underlying power system model.

Remark 3. The assumption on uniform controller parameters
is only for mathematical tractability. It is, however, not impor-
tant for the conclusion that the angle coherence is uniformly
bounded for the angular droop (13) only. For heterogeneous
parameters, bounds can simply be stated in terms of the
smallest and the largest gains.

V. IMPLEMENTATION AND NUMERICAL SIMULATIONS

Even though our previous analysis neglects the internal dy-
namics of each converter in the optimal control synthesis, we
propose a practical design of the angular droop control (9] for
a network of high-order DC/AC converters. We numerically
demonstrate in the next section that high-order converter
models can be accounted for.

Fig. 1. Three high-order DC/AC converter system described by the dynam-
ics (I6) in closed-loop with angular droop (T7).

A. Test case 1: Angular droop control

For this, we consider the following three-phase averaged
and balanced DC/AC converter dynamics in o3 —frame [18]],
adapted from [20],

) I +. .
CicViae = *Kp (VdC - chﬂn) - EUT[ + ZZC’

; o1
Li=—-Ri+ EUVdC_Vv (16)

Cv=—-Gv+i—Biy,
Liy = —Ry i[-i-BTv,

where the system parameters are summarized in Table [lI} Note

that the modulation signal % € R2, collected in the matrix U,

represents the main input to the k—th DC/AC converter.
After introducing i, = Bi, and defining the active power

~

P = v;— inet k> as Well as the nominal steady state active power



TABLE II
PARAMETERS OF THE MULTI CONVERTER SYSTEM IN FIG.[IlanD 2]

Symbol Definition Range Value
g, modulation signal R? -

A modulation amplitude [0,1] 0.33
U = diag(uy,...,u,) matrix of input signals R2xn -
Vi nominal DC voltage R-o 1000
i, nominal DC current source ~ R" 500- 13
Cye DC capacitance Rso 1073
K, DC side control gain Ryo 0.5
R AC filter resistance R-o 0.2
L AC filter inductance R-o 5.107*
C AC filter capacitance R 1079
G AC filter conductance R-o 0.1
Ly line inductance R-o 5-107°
g =a,k=1...n control gain R-o 0.5
YN=7Yk=1...n droop gain Rso 106
B=L®B extended incidence matrix R2nx2m -
Vac = Vde1s--->Vaen] . DC capacitor voltage R” -
v=[v],...,v]] AC capacitor voltage R2" -
i=[i,...,i]" AC inductance current R2" -
ig=[if,... ,izm]T AC line current R2n

13:7 P = vZTi:‘l o t the k—th converter, we propose to implement
the angular droop controller as follows,

0= 50 (WO 00 + (Pus—Pp) +o', (D)
_ |cos(6y)
i =A [sin(ek)] )

where 0 < A < 1 is the amplitude of the control input. In
Figure [2] we depict a summarizing block diagram of a single
DC/AC converter whose system dynamics are given by (16),
set in closed loop with the angular droop control (T7). Note
that in this setup, the angular droop control (I7) increments
the converter internal dynamics with a virtual angle dynamics
6y that represents the phase angle of the modulation signal 7.

Next, we consider three DC/AC converters with open-loop
dynamics described in (T6) in closed-loop with the angular
droop control (T7) as depicted in Figure[I] The desired steady
state angles are given (in rad) by 6;(0) = 0.951,6;(0) =
0.92,65(0) =0.967, and thus satisfy Assumption [I| We select
the control gains uniformly for all three converters with
parameter values in Table [[]

We demonstrate the effectiveness of the proposed optimal
controller both for angle stability and frequency synchoniza-
tion via time-domain simulations before (under nominal con-
ditions) and after an event corresponding to an increase in the
load consumption at one of the converters. Fig. [3] illustrates
angle stability for the initial angle values 6;(0) =0.92,6,(0) =
0.90,65(0) = 0.93. We observe in simulations that a decrease
in the gain o improves the angle transients, i.e., it results in
faster convergence of the angles towards the induced steady
state angle. Notice the first-order behavior of the phase angle
trajectories dictated by (T7), while converging to their respec-
tive steady state values. Similarly, the frequencies synchronize
at the nominal steady value ®* =27 50rad/s. Fig. []illustrates
the droop behavior in the phase angle after a sudden change
in the load consumption and the corresponding effect on the
frequency at the affected converter (Cj). Note that the gain

———a 2
e fol el | |

. Uk [
D e
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Fig. 2. Block diagram of the interconnection of a single three-phase balanced
and averaged DC/AC converter with (T6) and (7). The green arrows represent
PMUs measurements. Ty g_,qp is the inverse of the Clark transformation [[13].
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Fig. 3. Time evolution of the converters’ angle errors (in rad) with respect
to the steady state 6 initialized at 6;(0) = 0.92,6,(0) = 0.90,65(0) = 0.93
and frequency synchronization at @* = 2750rad/s, for the setup in Fig.

v > 0 defines the droop behavior between a sudden power
change and the angle deviation at steady state. The angle drops
correspond to peaks in the frequency time evolution, while the
frequency error remains zero, also during the event.

Finally, we note that angular droop (9) has been numerically
tested in [[15]], [[16] on different setups involving radial and
loopy distribution systems.

B. Test case 2: Comparison with frequency droop control

For the second test case, we compare qualitatively the
transient performance (see Definition 1 in [32]) of angu-
lar and frequency droop after linearization, in a scalability
analysis that is analogous to [27|]. For this, consider the
angular control (I2)) and frequency droop given by [27] with
the same droop coefficients. We model two example path
graph networks, first with 10 nodes and later with 100 nodes
interconnected via inductive lines of unit susceptance (in
p-u). Then, we subject the closed-loop dynamics to arbitrary
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Fig. 4. P — 0 droop illustrated at the converter 1 (C1) angle and frequency
after a sudden increase in the load consumption from ¢ = 0.3s to t = 0.7s.
The converter angle converges to the induced steady state angle 6" during the
load disturbance.

a) angular droop n=10 c) frequency droop, n=10

10 15 2 0 5 10 15 2
b) angular droop, n=100
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Fig. 5. A comparison of the transient performance between the linearized
angular droop (I2) displayed in a) and b) and the frequency droop [27] in ¢)
and d) for a path network, where the network size increases from n = 10 in
a) and c¢) to n =100 nodes in b) and d).

initial angular perturbations. The deviation of the angle error
trajectories 0 — 0* is depicted in Figure [5| We observe that
the convergence to a steady state is faster with the angular
droop for both networks, i.e., a better transient performance
(compare a) to ¢) and b) to d)). More importantly, however,
we note that, as the network size grows from 10 to 100 nodes,
the frequency droop shows a significantly degraded transient
performance (compare d) to c)), while the angular droop shows
similar transient performance for the larger network (in b)) as
for the smaller one (in a)), and thus a better scalability.

VI. CONCLUSION

In this work, we proposed novel insights into the design
of the angular droop control, that establishes its optimality,
while accounting for phase angle stability with zero stationary
frequency error. The angular droop control is distributed and
showcases the utility of inverse optimal control theory in
networked settings, and is numerically tested on power system
simulations. It is of our future interest to study the stability
of the angular droop control, while including internal DC/AC
converter dynamics.
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