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Abstract— In this paper we consider a Target-guarding
differential game where the Defender must protect a linearly
moving line segment by intercepting the Attacker who tries
to reach it. In contrast to common Target-guarding problems,
we assume that the Defender is attached to the Target and
moves along with it. This assumption affects the Defender’s
maximum speed depending on its heading direction. A zero-sum
differential game of degree for the Attacker-winning scenario is
studied, where the payoff is defined to be the distance between
the two agents at the time of reaching the Target. We derive the
equilibrium strategies and the Value function by leveraging the
solution for the infinite-length Target scenario. The zero-level
set of this Value function provides the barrier surface that
divides the state space into Defender-winning and Attacker-
winning regions. We present simulation results at the end to
demonstrate the theoretical results.

I. INTRODUCTION
Pursuit-evasion games (PEG) have been studied in dif-

ferent areas in robotics and controls community for various
applications including missile guidance [1], aircraft defense
[2], [3], robot navigation [4], self-driving vehicles [5], just
to name a few. This paper is interested in a particular class
of PEG that involves a Target that must be guarded. Such
a scenario has high relevance to both civilian and military
defense applications.

Target-Attacker-Defender (TAD) games study situations
where the Attacker seeks to reach the Target without being
intercepted by the Defender. The Target is modeled as a
point/agent that is stationary [6], or cooperates with the
Defender by actively evading the Attacker or by rendezvous-
ing with the Defender [7]–[9]. Defender can win either by
intercepting the Attacker [1], [10]–[12], or by rendezvousing
with the Target [13].

A related class of PEG is called the Target Guarding
problem, which was first introduced by Isaacs [14]. The main
difference with the TAD game is that the Target is now a
region instead of a point, which makes the rendezvous-type
strategy to be invalid for the Defender. There are many differ-
ent variants of the Target Guarding problem including reach-
avoid game [15]–[17] and coastline guarding or border-
defense problems [18]–[20]. These works extend the problem
to multi-agent scenarios and consider different geometric
settings, however, it is generally assumed that the agents have
simple motion and can freely move on a planar region.
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We are interested in a Target Guarding scenario where
the Defender is constrained to move along the perimeter of
the Target. Closely related works are previously studied as
perimeter-defense games [21]–[23]. Unlike the standard Tar-
get Guarding problems, it is assumed that the Defender can-
not pass through the Target region. Therefore, the Defender
must move around the perimeter to reach the Attacker, which
affects the dynamics and thus the capturability. Different
variants have been studied with differential game technique
[21] and with geometric approach [22], [23]. However, these
works all considered stationary Target region. In this paper,
we consider a Defender that is constrained to move on the
perimeter of a Target that moves in the space, which is
relevant to convoy protection. The Attacker moves freely
and tries to reach the Target while avoiding the Defender.
Note that, in the global frame, the Defender is dragged to
the direction of Target’s motion, but the Attacker is not
affected by the motion of the Target. In this context, there is
a connection to the work presented in [24], [25], where PEG
is played in a flow field. However, the result does not extend
naturally to our problem since we consider Target Guarding.
Moreover, in our problem, the flow field affects only one of
the two agents.

The main contributions of the paper are: (i) the formula-
tion of a new type of Target Guarding problem where the
Defender must protect the perimeter of a moving Target;
(ii) the characterization of the Barrier surface that separates
the state space into Defender winning and Attacker winning
regions; and (iii) the equilibrium strategies and the Value
function for the Attacker-winning scenario. By considering
the Target to be a line segment that translates in one direction,
this paper serves as an initial step towards studying strategies
to defend Targets with more complex shapes and motions.

II. PROBLEM FORMULATION

This section formulates the moving-Target Guarding prob-
lem with Defender attached on the Target. Figure 1 shows
the local frame that is attached to the Target with (x̂, ŷ)-
coordinate system, as well as the inertial frame with (x, y)-
coordinate system. The Target, T , is a line segment aligned
with the x-axis with length L, and it is moving at a constant
speed, vT , in the positive x direction:[

ẋT
ẏT

]
=

[
vT
0

]
. (1)

The Defender, D, is constrained to move on T , and it has
first-order dynamics relative to T . We use [xD, yD] and
[x̂D, ŷD] to denote the position of the Defender in the inertial
frame and moving frame, respectively. Note that we have
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Fig. 1. Illustration of guarding a translating linear Target with one Defender.

x̂D = xD − xT and ŷD = 0. The Defender is able to move
along τ : i.e., [

˙̂xD
˙̂yD

]
=

[
wD
0

]
, (2)

where wD ∈ [−1, 1] is the Defender’s control input. Note
that the Defender’s speed is constrained in the moving frame:
i.e., the maximum speed is specified relative to the Target.
This assumption is motivated by defense mechanisms that
are attached to the moving Target. Therefore, the Defender’s
maximum speed in the inertial frame will either increase or
decrease when the Defender is moving in either the same or
opposite direction of the Target respectively.

The Attacker, A, can move freely in R2 with speed vA:[
ẋA
ẏA

]
=

[
vA cosφA
vA sinφA

]
, (3)

where φA ∈ [−π, π] is the Attacker’s heading angle in the
inertial frame, measured counterclockwise w.r.t. the positive
x-axis.

Defining
[
x̂A
ŷA

]
=

[
xA
yA

]
−
[
xT
yT

]
, we have[

˙̂xA
˙̂yA

]
=

[
v̂A cos φ̂A
v̂A sin φ̂A

]
=

[
vA cosφA − vT
vA sinφA

]
, (4)

where, v̂A and φ̂A are the Attacker’s speed and heading angle
in moving frame respectively. Note that v̂A is dependent on
the heading angle φA, and therefore, it is not a parameter.
Both the Attacker and the Defender are agile, i.e. they can
move and change directions instantaneously. The overall
system dynamics in moving frame is as follows:

˙̂x = f(x̂) =

 ˙̂xD
˙̂xA
˙̂yA

 =

 wD
vA cosφA − vT
vA sinφA

 . (5)

In addition to |wD| ≤ 1, we make the following assump-
tions on the agents’ speeds:

A1) The Attacker is faster than the Target: vA > vT .
A2) The players’ speeds are such that: 1− vT > vA.

The first assumption (A1) ensures that the Attacker can reach
the Target starting from x̂A(0) < 0. Secondly, noting that
ẋD = wD + vT ∈ [−1 + vT , 1 + vT ], the second assumption
(A2) ensures that the Defender can outrun the Attacker in
the x direction. This implies that the game is over (with

Defender’s win) if x̂D = x̂A is achieved at some point
in time, since the Defender has sufficient control authority
to maintain x̂A = x̂D regardless of the Attacker’s control.
Therefore, we consider x̂A = x̂D to be part of the terminal
condition: i.e., the Defender has successfully intercepted the
Attacker and thwarted the attack.

Finally, due to the symmetry, we make the following
assumption on the initial condition:

A3) The initial Attacker position is such that ŷA(0) < 0.
We define the Game of Kind as the question of whether

the Attacker can reach the Target with a non-zero distance
from the Defender, or the Defender can prevent that by
capturing (matching its x coordinate with) the Attacker. In
the following sections, the Barrier surface that separates these
two cases is derived by solving a related Game of Degree.

A. Game of Degree

To find the Barrier surface, we define a Game of Degree
which takes place when the Attacker reaches the Target
before being intercepted by the Defender (i.e. x̂A(tf ) 6=
x̂D(tf )). In this case, the initial condition of the system lies
in RA, which is the region of win for the Attacker. The
game terminates when the Attacker reaches the Target, T .
The terminal condition is

ψ(x̂f , tf ) = ŷA(tf ) = 0, ∀x̂A(tf ) ∈ [0, L], (6)

where tf is the terminal time.
We consider a zero-sum differential game with the follow-

ing payoff that describes the miss distance:

J = Φ(x̂f , tf )

= |x̂A(tf )− x̂D(tf )|.
(7)

Here, the Defender is the minimizing player, and the Attacker
is the maximizing player. The Attacker tries to reach the
Target while maximizing the distance from the Defender
at final time. On the other hand, the Defender wants to
minimize J , i.e., it seeks to get as close as possible to the
Attacker at final time. If an equilibrium exists, the Value
function is defined as

V (x̂) = min
wD

max
φA

J = max
φA

min
wD

J. (8)

where, x̂ = [x̂D, x̂A, ŷA].
The equilibrium strategies w∗D and φ∗A satisfy the follow-

ing saddle-point condition:

J(w∗D, φA) ≤ J(w∗D, φ
∗
A) ≤ J(wD, φ

∗
A). (9)

Here, we can consider the value function, V , to measure
the level of performance for the Attacker and the Defender
for a given initial condition. If V > 0, it means that the
Attacker can ensure a positive miss distance at the time of
breaching regardless of the Defender strategy: x̂ ∈ RA.
In the critical case where V = 0, the Defender has a
strategy, w∗D, to achieve zero distance (i.e., capture) at the
time Attacker reaches the target. Beyond this critical case,
the Defender has a strategy to win the game, and the states
are in the Defender winning region: x̂ ∈ RD. Note that the



payoff, J , is invalid for the Defender-winning scenario, but
it does not affect the critical case where V = 0.

Based on the above properties, we will find the barrier
surface, B, as the zero level set of the Value function:

B = {x̂ | V (x̂) = 0}. (10)

We will derive V and the corresponding equilibrium strate-
gies in the following sections.

III. INFINITE LENGTH TARGET

As a building block towards the complete solution, we first
assume the length of the Target to be infinite. The motion of
the Target still affects the game through the speed that the
Defender can achieve in the inertial frame (or equivalently,
the relative speed that the Attacker can achieve in the moving
frame).

For this alternate version of the problem, the Attacker can
win the game by reaching the following terminal surface,
ST , which is the x̂-axis of the moving frame:

ST = {x̂ | ŷA(tf ) = 0}. (11)

Therefore, the terminal constraint is given by

ψ(x̂f , tf ) = ŷA(tf ) = 0. (12)

The assumptions (A1)-(A3) are retained.

A. First Order Necessary Conditions for Optimality

The Hamiltonian for the differential game is defined as,

H = σx̂D
wD + σx̂A

vA cosφA − σx̂A
vT + σŷAvA sinφA,

(13)
where σ = [σx̂D

σx̂A
σŷA ]> is the adjoint vector. The

Hamiltonian is a separable function of the controls wD and
φA, and thus Isaacs’ condition [14] , [26] holds:

min
wD(t)

max
φA(t)

H = max
φA(t)

min
wD(t)

H. (14)

The equilibrium adjoint dynamics are given by

σ̇x̂D
=

∂H
∂x̂D

= 0, (15)

σ̇x̂A
=

∂H
∂x̂A

= 0, (16)

σ̇ŷA =
∂H
∂ŷA

= 0. (17)

The terminal adjoint values are obtained from the transver-
sality condition [27]:

σ>(tf ) =
[
σx̂D

(tf ) σx̂A
(tf ) σŷA(tf )

]
=

∂Φ

∂x̂f
+ η

∂ψ

∂x̂f
=
[
x̂D−x̂A

|x̂A−x̂D|
x̂A−x̂D

|x̂A−x̂D| 0
]

+ η
[
0 0 1

]
=
[
−λ λ η

]
,

(18)

where
λ := sign(x̂A − x̂D). (19)

Therefore, with (15)-(18) we have the following:

σx̂D
(t) = −λ, ∀t ∈ [t0, tf ]

σx̂A
(t) = λ, ∀t ∈ [t0, tf ]

σŷA(t) = η, ∀t ∈ [t0, tf ].

(20)

The terminal Hamiltonian satisfies,

H(tf ) = − ∂Φ

∂tf
− η ∂ψ

∂tf
= 0, (21)

and dH
dt = 0. Therefore, H(t) = 0 for all t ∈ [t0, tf ].

The equilibrium control actions of the Attacker and De-
fender maximize and minimize (13) respectively: H∗ =
maxφA

minwD
H. For the saddle-point solution of the prob-

lem, we have

w∗D = argmin
wD

H

= argmin
wD

(σx̂D
wD) = −sign(σx̂D

) = λ,
(22)

φ∗A = argmax
φA

H

= argmax
φA

(σx̂A
vA cosφA + σŷAvA sinφA).

(23)

Solving (23), we obtain

cosφ∗A =
σx̂A√

σ2
x̂A

+ σ2
ŷA

=
λ√
η2 + 1

, (24)

sinφ∗A =
σŷA√

σ2
x̂A

+ σ2
ŷA

=
η√
η2 + 1

. (25)

Recalling assumption (A3), we consider the case where the
Attacker approaches the Target from below. Since there is
no incentive for the Attacker to increase its distance from
the Target, we know that φA ∈ [0, π]. However, if η < 0,
this implies sinφ∗A < 0 due to (25). Therefore, it must be
the case that η > 0.

Substituting the equilibrium controls, (22), (24) and (25),
into the Hamiltonian, (13), and evaluating at terminal time
with adjoints gives

H∗(tf ) = 0 =− λ2 + λvA

(
λ√
η2 + 1

)
− λvT + ηvA

(
η√
η2 + 1

)
.

(26)

Since η > 0, solving (26) gives

η =

√
(1 + λvT )2 − v2A

vA
. (27)

B. Solution Characteristics

The retrograde equilibrium kinematics can be obtained by
substituting the equilibrium controls, (22), (24) and (25),
along with the adjoints into (4) which yields

˚̂xA = −vT +
λv2A

1 + λvT
, (28)

˚̂yA = vA

√
1−

(
vA

1 + λvT

)2

, (29)



with the boundary condition

ŷA(tf ) = 0. (30)

Now, let [X,Y ] denote the relative position of the Attacker
with respect to the Defender: i.e.,

[X,Y ] = [xA − xD, yA − yD] = [x̂A − x̂D, ŷA]. (31)

From (28), (29) and (31), we have

dY

dX
= m1 :=

vA
√
ρ2 − v2A

λv2A − ρ(λ+ vT )
, (32)

where ρ := 1 + λvT . This implies that the equilibrium
trajectories of the system in the XY -plane is given by
straight lines:

Y = m1X + C. (33)

Note that, the value of m1 depends on λ = sign(X).
Furthermore, notice that the assumption (A2) ensures that
m1 is well-defined. Specifically, (A2) ensures that: (i) the
term inside the square root, ρ2− v2A, is always positive, and
(ii) the denominator does not become zero.

The red solid lines in Fig. 2 presents the equilibrium
trajectories for initial conditions satisfying (A3) and the
boundary condition (30). The black solid line shows the
critical case in which Attacker reaches the Target at the time
of capture. When the two agents use the same equilibrium
strategies beyond this critical case, we obtain the set of
trajectories shown in blue dashed lines. Recalling that X = 0
is part of the terminal surface corresponding to Defender’s
win, the trajectories terminate when they hit the Y -axis.

Fig. 2. Full equilibrium flow-field with vA = 0.7 and vT = 0.2.

It can be seen that the terminal payoff in (7) is determined
by the X intercept of the state trajectory in the XY -plane,
which we denote by Xf . The Attacker tries to maximize
|Xf |, while the Defender tries to minimize it (or possibly
make the trajectory intersect the Y -axis). The result of these
two conflicting intentions is the equilibrium trajectories in
Fig. 2.

Theorem 1 (Infinite-Length Target). Consider the Game of
Degree with payoff given in (7), and suppose the Target
is infinitely long: i.e., spans the entire x̂-axis. Then the

equilibrium state feedback control strategies are

[
cosφ∗A, sinφ

∗
A

]
=


1

α

[
vA,
√
α2 − v2A

]
, if X > 0;

1

β

[
− vA,

√
β2 − v2A

]
, if X < 0;

(34)
and

w∗D =

{
1, if X > 0;
−1, if X < 0;

(35)

where α := 1 + vT and β := 1− vT . Moreover, the Value of
the game is

V =


X − Y

m
, if X > 0;

−X +
Y

m
, if X < 0;

(36)

where

m(φ∗A, w
∗
D) :=

vA sinφ∗A
vA cosφ∗A − w∗D − vT

. (37)

Proof. The expressions for the Attacker’s equilibrium strat-
egy, cosφ∗A and sinφ∗A, are obtained by substituting (27) into
(24) and (25). The Defender strategy, w∗D, is given from
(22), which satisfies the first-order necessary condition for
optimality.

Given the strategies, the relative position takes a straight
line path in the XY -plane, Y = mX + C, with the slope
given in (37).1 As discussed with Fig. 2, the Value is
given by the X intercept of the equilibrium trajectory. More
specifically, the miss distance is Xf > 0 if the game starts
in the positive X region, whereas it is −Xf > 0 if the game
starts in the negative region (and thus the X intercept is
negative).

For a given initial condition [X0, Y0], we have

C = Y0 −mX0. (38)

Substituting C back into the equation and solving for the X
intercept gives:

Xf = X0 −
Y0
m
. (39)

This completes the proof that (36) provides the Value of the
game.

IV. FINITE LENGTH TARGET

Now, consider the original problem where the length of
the Target is L. The Defender, D, can travel only upto the
end point of the Target which we denote by E(x̂E , 0), where
x̂E is defined as follows:

x̂E = (1 + λ)
L

2
. (40)

The Defender will follow the same strategy irrespective
of the Target length since it only depends on the sign of X .
However, the strategy (34) for the Attacker may not be valid,

1This is a generic expression of the slope for any given φA and wD .
One can verify that m in (37) matches m1 in (32), when the agents use
the equilibrium strategies.



since it may not intersect the Target with finite length. If the
optimal strategy given by Theorem 1 does not intersect the
Target, the Attacker must choose an alternate heading.

Now, let B(x̂B , 0) denote the point on the x̂-axis that the
Attacker reaches following (34):

x̂B := x̂A −
ŷA
mB

, (41)

where

mB :=
sinφ∗A
cosφ∗A

=

√
ρ2 − v2A
λvA

. (42)

Note that the optimal headings are given in (34). The strategy
in (34) is still valid for finite-length Target case if and only
if the following condition holds:

x̂B ∈ [0, L]. (43)

If (43) does not hold, then the Attacker must sacrifice
the separation with the Defender and pick an aim point that
actually intercepts the Target.2 The aim point that achieves
the least deviation from (34) is the end point E.

Fig. 3. Attacker optimal heading for the end point of the Target in inertial
and moving frame.

When the Attacker aims for the end point, E, the desired
heading angle in the moving frame can be obtained as
follows

cos φ̂?A =
x̂E − x̂A
dEA

, (44)

sin φ̂?A =
−ŷA
dEA

, (45)

where dEA :=
√

(x̂E − x̂A)2 + ŷ2A is the distance from the
Attacker’s position, A, to Target’s endpoint, E. Note that we
use the superscript ? to denote the optimal strategies for the
finite-length case.

Using the law of cosines for the triangle 4ABE in Fig. 3,
we obtain

v2A = v2T + v̂2A − 2vT v̂A cos(π − φ̂?A). (46)

2Note that there is no incentive for the Attacker to go around the end
point and approach the Target from the positive side: i.e., enter ŷA > 0
region.

Solving for v̂A yields

v̂?A = −vT cos φ̂?A +

√
v2A − v2T sin2 φ̂?A

=
1

dEA

(
− vT (x̂E − x̂A) +

√
(vAdEA)2 + (vT ŷA)2

)
.

(47)
Now we are ready to state the main theorem.

Theorem 2 (Finite-Length Target). The equilibrium state
feedback control strategy for the Defender is given by

w?D =

{
1, if X > 0;
−1, if X < 0.

(48)

The equilibrium state feedback strategy for the Attacker is
given by (34) if condition (43) holds; otherwise, it is given
by

[
cosφ?A, sinφ

?
A

]
=

1

vA

[
v̂?A cos φ̂?A + vT , v̂

?
A sin φ̂?A

]
. (49)

where cos φ̂?A, sin φ̂?A, and v̂?A are given by (44), (45) and
(47) respectively. The Value of the Game is given by the
expression in (36) and (37). Note that based on condition
(43), either (34) or (49) is used in (37) to compute m.

Proof. The Defender’s strategy is the same for both the finite
and infinite length target, as it moves towards the Attacker
as fast it can.

For the Attacker, if the heading angle given by Theorem 1
does intersect the Target, then it is the best choice for the
Attacker as they are derived from the necessary conditions
for optimalilty. If not, the Attacker has to choose the heading
angle so that it can reach the Target by deviating the least
amount possible from the equilibrium strategies given by
(34). Considering these two conditions, the endpoint of the
Target given by (40) is the optimal choice for the Attacker.
The heading in (49) is obtained by substituting (44), (45)
and (47) into (4).

From (39), we have seen that for any given initial con-
ditions and m, the expression in (36) gives the X intercept
(payoff). Furthermore, the expression in (37) provides the
slope for any given strategy. Therefore, the generic expres-
sion (36) and (37) can be used for the finite-length strategy
(49) as well.

Now, for a given set of initial states, we can calculate
the Value of the Game of Degree and plot the level set.
Figure 4 shows the winning regions and associated Value of
the game given that x̂D = [0.5, 0], vA = 0.7 and vT = 0.25.
The black line indicates the Barrier surface for the given
Defender position.



Fig. 4. Level set of the Value functions when x̂D = [0.5, 0]. The zero-level
set provides the Barrier that separates the Attacker and Defender winning
region. The Defender’s x̂ position separates the space into two regimes:
X > 0 and X < 0.

The payoff in (7) is defined by the Attacker’s distance
from the Defender once it successfully reaches the Target.
The red shaded zone shows the positive miss distance for the
Attacker and indicates the Attacker’s winning region. The
Barrier surface is shown by the black line where the Value
is zero, i.e., for these set of initial conditions the Attacker
will meet the Defender on Target with zero miss distance.
For any states given in the blue region, the Defender achieves
X = 0 (or x̂A = x̂D) before the Attacker reaches the Target.
Although we have not defined the payoff for this Defender-
wining scenario, the level set of V illustrates how close the
states are from the Barrier: i.e., the level of threat.

By deriving the Barrier surface with a zero level set of V ,
we solved the Game of Kind while establishing the winning
regions. Additionally, the blue vertical line is the Terminal
surface for the Defender winning case. This vertical line
separates the equilibrium strategies into two cases: X > 0
(or λ = 1) and X < 0 (or λ = −1).

Fig. 5. Level set of the Value functions the Attacker and Defender winning
region for static Target with vA = 0.7.

Finally, we present a degenerate case where the Target is
static. Figure 5 shows the level sets for the same parameters
as in Figure 4, except now vT = 0. In this case, the winning
regions for the Attacker and the Defender are symmetric in
both x̂ and ŷ-axis given that the Defender’s initial position
is exactly at the middle of the Target. Compare this to the
case when the Target is moving along the x-axis shown in
Figure 4. We can see how the target motion affects the size
and shape of the winning regions.

V. SIMULATIONS

We show both Attacker-winning and Defender-winning
scenarios for the following parameters: vA = 0.60, vT =
0.35 and L = 1.3

A. Attacker Winning Scenario

The initial states are [x̂D, ŷD] = [0.5, 0] and [x̂A, ŷA] =
[0, 0.15], which gives V = 0.1922. Figure 6 and Figure 7
show the initial and final state of the game respectively. The
shaded area indicates the Attacker winning region. In this
case, the Attacker starts within that region and eventually win
the game by reaching the Target without being intercepted
by the Defender.

Fig. 6. Initial position of the Defender and Attacker: [x̂D, ŷD] = [0.5, 0]
and [x̂A, ŷA] = [0, 0.15] respectively. The arrows indicate the direction of
movements for the Attacker and Defender.

Fig. 7. The Attacker reaches the Target and wins the Game. The dashed
lines indicate the trajectories of the agents (Attacker, Defender and Target).
Note that the Target also leaves a trail as it moves along the x-axis.

B. Defender Winning Scenario

Now consider [x̂D, ŷD] = [0.5, 0] and [x̂A, ŷA] =
[0.75,−0.2], which gives V = −0.1531. The Attacker is
outside of the Attacker winning region given by the shaded
area. Figure 8 and 9 show the initial and terminal states of the
game. At the final time, the Defender intercepts the Attacker
before reaching the Target and wins the game.

3The animated version of the simulations can be found online at
https://youtu.be/GW5CpHBT9oQ



Fig. 8. The Attacker starts outside of the winning region and the red arrow
indicates the direction of the Attacker’s motion heading towards the Target.
The Defender also moves to the same direction of the Attacker in the x̂-axis.

Fig. 9. The Defender has successfully intercepted the Attacker. The blue
vertical line shows that the Defender has aligned with the Attacker i.e.,
reaching the terminal condition for Defender winning Case.

VI. CONCLUSIONS

In this paper, the problem of guarding a moving Target is
considered for one Defender and one Attacker scenario. For
the Attacker-winning case, we formulated a Game of Degree
as a zero-sum differential game with a payoff defined as the
distance between the players at the time of breaching. As
a building block, we first solve the case when the Target
is infinitely long. The result is used to address the original
problem where Target has a finite length. We identify the
equilibrium strategies and the Value function, whose zero-
level set provides the Barrier surface for the Game of Kind.
Future work on this problem may include different shapes
and other possible motions of the Target. Cooperative and
active Target-defense for multiple Attackers and multiple
Defenders can be another challenging problem to investigate.
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