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Sequential decomposition of stochastic Stackelberg
games
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Abstract

In this paper, we consider a discrete-time stochastic Stackelberg game with a single leader and multiple
followers. Both the followers and the leader together have conditionally independent private types, conditioned on
action and previous state, that evolve as controlled Markov processes. The objective is to compute the stochastic
Stackelberg equilibrium of the game where the leader commits to a dynamic strategy. Each follower’s strategy
is the best response to the leader’s strategies and other followers’ strategies while the each leader’s strategy is
optimum given the followers play the best response. In general, computing such equilibrium involves solving a
fixed-point equation for the whole game. In this paper, we present a backward recursive algorithm that computes
such strategies by solving smaller fixed-point equations for each time ¢. Based on this algorithm, we compute
stochastic Stackelberg equilibrium of a security example and a dynamics information design example used in [1]
(beeps).

I. INTRODUCTION

In the past decade, Stackelberg games have been used extensively in the security of real world systems
such as to protect ports, airports and wildlife [2]-[5]. A Bayesian Stackelberg game is played between
two players: a leader and an follower. The follower has a private type that only she observes, however, the
leader knows the prior on that state. The leader commits to a strategy that is observable to the follower.
The follower then plays a best response to follower’s strategy to maximize its utility. Knowing that the
follower will play a best response, the leader commits to and plays a strategy that maximizes its utility.
Such pair of strategies is called a Stackelberg equilibrium. It is known that such strategies can provide
higher utility to the leader than obtained in a Nash equilibrium of the game. Such games have been used
in the real world by security agencies such as the US Coast Guard, the federal Air Marshals Service,
and the Los Angeles Airport Police [6]. Similar algorithms are used in wildlife protection in Uganda and
Malaysia [7].

Most of the above real world applications of Stackelberg equilibrium are based on single-shot Bayesian
game models. However, in many practical scenarios, the follower and leader interact periodically, and
also have private information, thus reducing the applicability of such models. Such games comes under
the class of dynamic games of asymmetric information, where both the leader and the follower privately
observe conditionally independent controlled Markov processes, but observe each others’ actions publicly.
The reason such games are hard is because in such games the beliefs that come up across the game at any
time ¢ are dependent on the strategies of the players before this time. Thus there is no notion of “state"
that can decompose the problem across time, and effectively there is no notion of dynamic programming.
The space of strategies grows double exponential in time making solving for equilibria for such problems
impossible for any reasonable time duration. Recently, there has been results on sequential decomposition
of certain classes of games of asymmetric information [8]-[10].

In repeated Stackelberg security games, there have been other approaches to mitigate this issue. Mareki
et.al. in [11] study a Bayesian repeated Stackelberg game where they assume leaders are myopic, thus
significantly simplifying the analysis of finding the equilibrium. Balcan et al in [12] consider a learning
theoretic approach to study a repeated Stackelberg game between follower and leader where they use regret
analysis to learn follower’s types, and show sub-linear regret for both complete and partial information
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models. Authors in [13]-[19] study a dynamic Stackelberg game where there is a sender who observes
a static state privately and has a commitment power, and with both long-term-optimizing principal and
long-term-optimizing followers. Farhadi and Teneketzis in [20] consider a model where on top of all the
assumptions in previous papers, the state is also dynamically evolving. To the best of our knowledge, [20]
is the only work that considers a special case of a truly dynamic Stackelberg game and in general finding
Stackelberg equilibria of such games is an open question.

In this paper, we show there indeed is a way to decompose general stochastic dynamic Stackelberg
games across time, where both the leader and the follower have private Markovian states that evolve
as conditionally independent Markov processes. We provide a dynamic programming like sequential
decomposition algorithm to compute equilibria with fully rational, forward looking follower and leader.
Our algorithm consists of a backward recursive step which, for each time t and a belief state on the
current state, m;, involves solving a fixed-point equation for the follower and an optimization problem
for the leader. This reduces the complexity of finding Markovian equilibria of such games from double
exponential to linear in time. Based on this algorithm, we study a security game where we numerically
find its Stackelberg equilibria. To the best of our knowledge, this is the first paper that provides a general
treatment to compute Stackelberg equilibria of Stochastic Stackelberg games with asymmetric information.
Part of the paper (without any proofs) was published in [21].

The paper is structured as follows. We present our model in Section II. We discuss background material
and solution concept in Section III. In Section IV, we present our main result of providing an algorithm
to compute Markovian equilibrium strategies. In Section V, we discuss an infinite horizon version of the
problem. We conclude in Section VII. All proofs are presented in the Appendices.

A. Notation

We use uppercase letters for random variables and lowercase for their realizations. For any variable,
subscripts represent time indices and superscripts represent player indices. We use notation A, to
represent the vector (A;, Asy1,...Ay) when t' > ¢ or an empty vector if ¢’ < . We remove superscripts
or subscripts if we want to represent the whole vector, for example A; represents (Al ..., AN). In a
similar vein, for any collection of sets (X*);cnr, we denote X;cnX* by X. For any finite set S, A(S)
represents the space of probability measures on S and |S| represents its cardinality. We denote by P9 (or
[9) the probability measure generated by (or expectation with respect to) strategy profile g. We denote the
set of real numbers by R. For a probabilistic strategy profile of players (01);enr where the probability of
action a;j conditioned on a1, 931t is given by o?(at|ay.s_1, 2% ,), we use the notation o; *(a; *|a._1, T1.L)
to represent || . 41 (at la1.4—1,x7.,). All equalities/inequalities involving random variables are to be inter-
preted in the a.s. sense. For mappings with range function sets f : A — (B — C) we use square brackets
fla] € B — C to denote the image of a € A through f and parentheses f|a](b) € C to denote the image
of b € B through f[a]. A controlled Markov process with state X;, action A;, and horizon [T is denoted
by (Xt, At)ieir)-

II. MODEL

We consider an incomplete information stochastic Stackelberg game over a time horizon [7'] 2 {1,2,...T}
with simultaneous moves and perfect recall as follows. Suppose there is one Stackelberg leader and M
(Nash) followers. The leader and the followers have private types, z. € X! for the leader, z; me xm,
for jth follower where x{ Ty ™7 evolve as a conditionally independent controlled Markov processes in
the following way, where for the Stackelberg leader, M (Nash) major followers. Let 2™ = zj""*,

_ m[1:M]
ay = Qy

Lm , !
P(ay, x)" |a1t L) =@ xt‘at 17xt 1 Hng j‘at M), ey



where Q', Q™7 are known kernels deﬁned below. The Stackelberg leader takes action al € Al at time
t on observing 7!, a major follower j takes action based on :171 77 at time t on observing alt , and
z7%. Here, allt , 1S common 1nformat10n among players, and z},, 27/ are private information of the
Stackelberg leader, major follower j, respectively. At the end of interval ¢, Stackelberg leader receives an
instantaneous reward R!(2™, al™), major follower j receives an instantaneous reward Ry™ (z}™, ab™)
The sets A, A™7 X! X™I are assumed to be finite. Let o' = (0}),cr] be a probabilistic strategy
of a player ¢ € {l,m[l : M|} where at C((AN x A™MEE X (xht — P(AY), such that the leader

plays action A! according to Al ~ ol(- lalt L, 2h.,), and the follower plays action A"/ according to

A~ g™ (b 2T, Let o 2 (0%)icq,;y be a strategy profile of all players. Suppose players
discount their rewards by a discount factor § < 1.

III. PRELIMINARIES

In this section, we first present the definition of a Stackelberg Perfect Equilibrium (SPE) which we
will use in this paper. We then discuss the common agent approach that we will utilize in deriving an
algorithm for finding an SPE.

A. Stackelberg perfect equilibrium

In this paper we will consider followers Markovian equilibrium policy that only depends on her current
states ;" and common margrnal beliefs 7!, 7, i
P"l"’m( Ty ’]|a1:t_1) i.e. w! is the common belief on the Stackelberg leader’s state given the common
information (a}7" ). Let m = {rh ™ Yok Thus, at equilibrium the Stackelberg leader’s strategy
al ~ G4(|m;, 2L) and major follower j5’s strategy A} ~ &, (:|m;, z/"’)." This specifies a minor follower’s
best response at time ¢ given the history of the mean-field state and its private type up to time ¢ and the
leader’s strategy from time ¢ on-wards. Note that this mapping specifies a complete policy for the follower

for all time . Similarly we define the best response of major follower j as

m,j l,m m,j 1 m,—j
BR; (Wtaau 17x1t70tT7UtT )

—J
—argmggi[afTUfT tT \Tt Zén tRmJ(le Alm)|7l't,a,1t 1’x1t } (2)
7 n=t
,‘ l k2 l 7-
BR™ (0", 0™ ﬂ ﬂ m BR" ] 7Tt7a1t 1T 7UtT70tT 70217;). 3)

m,j
afyl 2ty

With some abuse of notation, we will also say o,/ € BR;™ (s}/7.) if there exists ™ € BR™ (0%/}') such
that o}’ = 6. Similarly we say o}’ € BR™ (o' 1, a{”T 7 o) if there exists 6™7 € BR™I (ol 1, o7
such that o™/ = 57"/

We now define best response of Stackelberg leader as follows

BRl ﬂ ﬂ ﬂargmaX[EU o™y Zdn tRl le Alm)|7rt,a1t 1’xl1:t}’ 4)

a’lt 15‘31t

where, 6™/ € BR™I(a',6™),6™ € BR™ (d',6™) ®)

Deﬁnition 1: (6',6™) is a Stackelberg Perfect Equilibrium (SPE) if
[(@)]: 0 E BRZ(~m)
[(b)]: 6™ € BR"(6',6™)

"Note, however, that for the purpose of equilibrium, we allow for deviations in the space of all possible strategies that may depend on the
entire observation history.

,J=1...M, where Wt(l't) pohe” (z t|a1t 1), ’](xt J)

—J

7-7
y 011

)



B. Common agent approach

We recall that in general, the leader and the followers generate their actions at time ¢ as follows,

Al ~ Ut( ‘au 1v$l1t) _
A~ g™ (|ab™ 2™, An alternative way to view the problem is as follows. As is done in the
common information approach [22], at time ¢, a fictitious common agent observes the common information
a}" | and generates prescription functions v = (7},7") = ¥[a}]" ], where ¥/ = {y};_1 . The
Stackelberg leader uses her prescription function ~} to operate on her private information !, to produce
her action al, i.e. v, : (X')" — P(A") and a} ~ ~;(-|2},,). And follower j uses her prescription function
7™ to operate on her private information z7?; to produce her action a]™’, i.e. ;™7 : (X™7)t — P(A™)
and a, KN oA ( |z757). Tt is easy to see that for any o™ policy proﬁle of the players, there exists an
equivalent 1) profile of the common agent (and vice versa) that generates the same control actions for
every realization of the information of the players.

Here, we will consider Markovian common agent’s policy as follows. We call a common agent’s policy
be of “type 0" if the common agent observes common belief 7, and generates prescription functions
Y == (v, 7") = 6:[m;]. The Stackelberg leader uses her prescription function ~; to operate on her private
information z} to produce her action a}, i.e. 7} : X' — P(A") and a} ~ ~}(-|2}). Similarly, the major
follower j uses her prescrlptlon function ~,"™ to operate on her private information 2}’ to produce her
action @}/, i.e. 4™ 1 XM — P(A™) and a]*? ~ 4 (|} ’J) '

Recall that we defined common marginal beliefs 7, = {r!, 7"/, },—1. ar , where 7!, 7]’

where Wt(%) PU 7 (@ t‘alt 1)
7 () = Pl (™ |ab™ ) ie. wl is the common belief on the Stackelberg leader’s state ! given
the common information ("7’ |) and similarly 7/ is the common belief on the major follower j’s state
2™ given the common information (a}7" ,). In the following lemma, we show that the belief m can be
updated using Bayes’ rule.

Lemma 1: There exists functions ', F™J for j = 1... M, independent of the strategy # such that

i=1...M,

lym l,m
ﬂ-i—l-l:Fl( Ty a'Vt A (6)
m = F (o A (7)
Combining the above two we also say
mlh = E(m™ " ™) @®)
Proof 1: We only consider the proof of the update of 7! and the proof of the update of 7, ™7 is similar
which is skipped.
lym
7Ti+1($i+1) = P€($l1+t‘“1;t ) )
Imy Imy _Imy Im) Im Ilm _Im
Z " (@ )" (a2 )Ql(xi+1|xt vai")
ILm I,m
T,y
= (10)
ILmy Iomy _Iomy Imy Im
" (" ) (e ™)

Lmy Lmy Lmy L, Lm 1
Z (") v m(atm|xtm)Ql(1’t+1|x ™ a"™)
- l,m lm (11)

IV. ALGORITHM FOR SPE COMPUTATION

In the next section, we design an algorithm to compute SPE of the game.



A. Backward Recursion

In this section, we define an equilibrium generating function § = (6!, 6;" g )ic{1..N}jefl... M.} ee[T]> Where
0l (P(XY))x (HJ L P(X””))XP(X"” —{X - P(Al)}, and a sequence of functions (V}', V™ )icq12. 7413,
where V! : (P(X1)) x (HJ (P x X R, V™ (P(&Y)) x (Hjjvilp(Xm’j)) x X™ — R, in a
backward recursive way, as follows.

1. Initialize V., € P(X!) x [[[L, P(X™),,j=1... M al,, € X\ 2/, € Xx™I,

A
VTl+1(ET+1a xlT+1) = 0. (12)
m,j m,j A
VT+]1(ET+1= $T+J1) =0. (13)

2. Fort=T,T—1,...1, V&, € 7)()(1) % ij\/il P(X™I), %7% % i define
BR" (m, 7,7 ) as follows,

Bth (ﬂ-tufytufyt = {7 J € Xm’jv:ytm’j("xzmj)
€ arg max E £ (|5Ut ’ )'Y;l: 'an - Tt
W (ley™)
{RM (X, AY™) + SV (B v 30 30 AY™), XTD) e, 27 } ), (14)

where the expectation in (14) is with respect to random variables (Xf’m, Aim) through the measure
m (7)™ (ay™ ™). Then let for all m, 8[m,] = (3™) is a solution of the following fixed-point
equation (if it exists). For all xi

% € arg max

'Yt( ‘xt)
EClD A LRL(X™, AP™) 4+ SV (F (m, 3L, A, AV, XL )|, 2t ), (15a)
where 4" € BR;" (m,7;,4/") (15b)

where the above expectation is defined with respect to random variables
(X, Alm) through the measure Wt(xim)%(atp:t)&t (a7*|x}")

QU (T |2b™, ab™). Let (51, 3™) be a tuple of solution of the above operation. Then set Vj, x}, z;"/,
V (m,a}) £
~l,m m m ~t,m m
B {Rl Xé: vAl’ )+ 5‘/1tl—|—1( (7Tta%{, Ai’ ), th+1)}ﬂv xi} (16a)
vtmfm,xm =
LR (X AY™) 4 SV (B, A AV, X |7, 2 ) (16b)

Based on 6 defined in the backward recursion above, we now construct a set of strategies ¢ through
forward induction as follows
Fort=1,2...T,j,m,a, € (X)), a7 € (X™),aly_y € (A) afy_y € (A™)!

&7 (ay |agy g, 2 = 07 () (ay™ |y (17)
&i<ailaﬁt 1 2hy) = 04 [m] (af 2) (18)
& (ay |ayyly, ) o= 07 [m) (a7 ™) (19)

Ter = F(my, 00w, ab™) (20)



Theorem 1: A strategy profile o, as constructed through backward-forward recursion algorithm above
is an SPE of the game
Proof 2: We will prove this theorem in two parts.

In Part 1 for the major follower j, we prove that 6™7 € BR™I (5! 6™~ /) ie. VY t € [T],

i Im
m,] ) 7.7
Vo™ ary_y, x4

T
[E&i;g}@{ Z SR (X, AR ay ty} 2
n=t

T
1 myj ama—j —t iyl l L
E7rotd o m N gt R (X ALy, ab o 1)

n=t

In Part 2 for the leader, we show that V¢, o', a}7" | 2t

T
[E&i:T’&ZIT’E{ Z 5n_tRiz(X7lz’mv Aiim) |ﬂ> allizrtn—la zllzt} >

n=t
[Eat T’UtT’UtT th{ Z 5= tRl Xl m Al m)|ﬂ.t’ a’l i xl:t}’ (22)
n=t
where 6™ € BR™ (0!, 67%), 6™ € BR™(0lp, 61, 677) (23)

where ™7 € BR™J(G!,5™), as shown in Part 1.

Combining the above parts prove the above result. The proof is presented in Appendix C.

In the following, we show that every Stackelberg mean field equilibrium can be found using the above
backward recursion. This also enables us to comment on the existence of the solution of the fixed-point
equation (15a).

Theorem 2: Suppose there exists an SPE (¢!, 5™) that is a solution of the fixed point equation defined
in Definition 1. Then there exists an equilibrium generating function 6 that satisfies (15a) in backward
recursion V7, such that (6',6™) is defined through forward recursion using 6. This also implies that there
exists a solution of (15a) for each time ¢.

Proof 3: Suppose there exists an SPE (™) of the game. The proof in Appendix XV show that all
SPE can be found using backward/forward recursion. This proves that there exists a solution of (15a) for
every t.

Remark: When leader is social welfare maximizing, her utility can be given by

R = Y R o

ILm _l,m
Z‘t 7(1t

V. SPECIAL CASE 2: INFINITE HORIZON CASE

In this section we consider the case with infinite horizon. For this section we assume that the instan-
taneous rewards of the players R', R™/ are absolutely bounded and do not depend on time.
We design an algorithm to compute SPE of the infinite horizon game as follows.

A. Backward Recursion

In this section, we define an equilibrium generating function ¢ = (6%, 6m9) jefi..um,}, Where 0. (P(XY))x
(HjjvilP(XmJ)) — {X' = P(A")}, and a sequence of functions (V!, V™), where V' : (P(X')) x
(HjjvilP(Xm’j)) x Xt — R, V™I (P(XY)) x (Hjjvil??(é\?mvj)) X X™J — R, in a backward recursive
way, as follows.



1. Define Vr, € P(X!) x ]_[j [ P(X™I), AL 4™ define BR)™ (zr, 4%, 4™ ) as follows,

BR™ (z,7',4™7) := {ﬁm” A O S G

10,5 (] Mg Yoyl
carg max [ (lz™ )y
A (c|zmd)

{R™ (Xt AR 4 V™ (E (A 3™ AV, X eI} (25a)
where the expectation in (25a) is with respect to random variables (X'™, A4™) through the measure
m(zb™)ybm (ab™|zb™). Then let for all 7, O[] = (™) is a solution of the following fixed-point
equation (if it exists),

7™ e BR" (m,5',4™) (26a)

7' € arg II(12|L}§) A {RY(Xm, AP™) + SVHE (m, 4, 4™, AP, XYz, '}, (26b)

where 4™ € BR"(z,7',4™), (26¢)

where the above expectation is defined with respect to random variables
(Xtm, AY™) through the measure 7 (x byt (at|at) 3 (e g
le( lm‘xlm lm) Ande,x xmj

I,m

Vim,al) 2 BRI, AMY) 4 0V (B (x50, A, XY |z, et} (272)
Vi (g, ™) 2
£ lm{Rm](Xl m Al m) + (ﬂ/m]( ( l,m’ Al’m), Xm’j’,)‘ﬂ, :L,m,j} (27b)

Based on 6 defined in the backward recursion above, we now construct a set of strategies ¢ through
forward induction as follows
For ¢t = 17 2...00 jvﬂ-taxlt (Xl) th € (XWI)t a’llzt—l € ('Al)t_l7aylrzlt—1 € (AM)t—l

m (27™) = Q" (h, ar")

Gi(ablal, y,2t,) = 0l ](al|a}) (28)
o (a7 a2 = 07 [ (™ ) (29)
Teor = E(m, 0™ ), ap™) (30)

Theorem 3: A strategy profile 7, as constructed through backward-forward recursion algorithm above
is an SPE of the game

Proof 4: The proof is similar to the extension of finite horizon problems to infinite horizon problems
in standard stochastic control problems and for now we omit the proof.

VI. EXAMPLES
A. Security Example

In this section, we consider a repeated Stackelberg game as a security example. We assume that XY™/ =
Al = A™I = {0,1}, X' = ¢ and type of the leader is static i.e. Q(xyy 1|4, a;) = 1(x41 = ;). We assume
§ = 0.6. Let p' = ~!(1), p/* = 4™3(1|0) and p/! = 4™7(1]1) and the rewards of the players are given in
Table I below.

The equilibrium strategies and value functions are provided in igures 1-3. Interestingly, the equilibrium
strategies of the players are pure strategies that exhibit “complementary discontinuities" [23], [24].



TABLE I: Game matrix for X=0 & X=1

| Probability of follower taking action 1 when state is high

X=0 follower | follower X=1 follower | follower
Al A2 Al A2
leader D1 (2,1) (4,0) leader D1 (3,2) (2,0)
leader D2 (1,0) (3,2) leader D2 (0,1) (1,1)
Probability of follower taking action T when state is low
09 ‘ 0.9
z j ‘ 0.8
- |
2 0s ‘ = o0s
04 ‘ 0.4
. | .
01 ‘ 0.1
0 ‘ 0
(1)

(a) Low

(b) High

Fig. 1: Probability of follower taking action 1 when its state is low and high

Utility of the follower when the state is low

(1)

(a) Low

Utility of the follower when the state is high

(1)

(b) High

Fig. 2: Utility of the follower when its state is low and high

Probability of leader taking action 1

0.9

08

0.7

0.6

205

0.4

03

0.2

0.1

(1)

(a) Probability of leader taking action 1

Fig. 3

Utility of the leader

(1)

(b) Utility of leader



B. Beeps

We consider the discrete time version of Example in [1]. Let z; € {0, 1} be a Markov process privately
observed by a leader who sends a signal at each time ¢ to a follower, who upon receiving this signal
maintains a belief 7m; on the state z;. x; evolves as

T = 2 + (1 — )y (31

where m; = 1 with probability p independent across time. The process starts from 0 and 1 is an absorbing
state. At each time ¢ the leader sends a signal s; to the follower about x; such that s; = Ui(xu)- Let m;
be a common belief maintained by both the leader and the follower where for all x;

m(20) = P7 (2]514) (32)
Thus
Z P(%, Tt41, 5t+1‘31:t)
e (T = It (33)
t+1( t+1) Z:Et,lBtJrl P(xt, Tia1, St+1|51;t)
th T (24) QT4 |ft)7i+1(3t+1 |T41)
I (34)
D veanes Te(@)Q(Ter|Te) Ve (Se41[Te41)
(35)
T4l = F(WtﬁiH’ St41) (36)
The leader’s payoff is
l . 1 lf Tt S p*
R(m) = { 0if m > p* 7)

Since the follower does not influence the state, she is myopic and her best response is built in the above
payoff of the leader. The leader wants to find the policy that it can commit to such that it maximizes her
infinite horizon cumulative discounted payoff

From Section V, one needs to solve

% € arg max E"{R!(7) + oV (E(z. 7, 8), X")|z, «'} (38)
Yz
Vi(r,a') £ BV {R(x) + V! (E(x, 7, S), X"')|z, '} 39

In the following, we show the plot of the utility of the leader in Figure 4. Note that it is different from
the utility of the leader obtained in [1] since they average out the private state of the player and poses the
problem in common belief, which can then be posed as an optimization problem. However, in our case,
we condition on the private state and thus rather get a fixed-point equation shown above.

VII. CONCLUSION

In this paper, we study a general stochastic Stackelberg game with single leader where both the followers
and the leader have private types that evolves as conditionally independent controlled Markov process,
conditioned on action history. We present a novel dynamic programming like methodology to sequentially
decompose the problem of computing stochastic Stackelberg equilibrium for these games. Based on this
algorithm we study a repeated security game where we numerically compute the equilibrium policies. In
general, this algorithm can further increase the applicability of Stackelberg security games in dynamic
security settings and in dynamic mechanism design where a leader commits to a policy and the follower
best responds to it.
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05 Utility of the leader when the state is low and high

2} \
\
15} 3
|
o
S
1r Y
|
|
|
|
|
0.5 F \‘
|
|
|
|
0 . . . | .
0 0.2 0.4 0.6 0.8 1

(1)

Fig. 4: Utility of the leader for both cases when the state is low and high (Example beeps)

VIII.
Claim 1: For any policy profile g and V¢,

P7 (b ars-1) = P7 (2 Jare1) P (27 are—1) (40)

Proof 5:

P7 (1.4, @1:4-1)

P (z1.¢|ar.c—1) = 41
(Il.t|a1-t 1) Z;@M [Pa(flzt,al:t—l) (41a)
Here, we will take numerator and the denominator separately.
N’r: (Qll( CL1|ZIZ'1 HQl n|a’n 15 Ly 1)0 ( n|a’1n 17xl1n)> (41b)
(Qm(fl oy (ay"|z7") HQm m|an 1 Tne1)oy (@ m|a1n 1a5’51n)> (410
and
DT:Z: (Qll( a1|a?1 HQZ n|an 1y Lp— 1))0n( n|a1n laxlln)> (41d)
xlltt
X Z <QT($71”)01 Tl27") HQm m|an 1 Tn1)oy (a m|a'1n 17I1n)> (41e)
zTy
Thus
P (), 2y lani—1) = P7 (2 glare) P (a7l are) (419)
IX.

For any player ¢ (leader or follower), we use the notation g to denote a general policy of the form
Al ~ gi(-|ay.4—1,x}.,), notation s to denote a policy of the form A! ~ si(-|ay.;_1,z%), and notation m to
denote a policy of the form Al ~ mi(-|m;, x¢). It should be noted that since 7; is a function of random
variables ay.;_1, m policy is a special type of s policy, which in turn is a special type of g policy.

Using the agent-by-agent approach [25], we show in Lemma 2 that any expected reward profile of the

players that can be achieved by any general strategy profile g can also be achieved by a strategy profile
s.
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Lemma 2: Given a fixed strategy ¢—* of all players other than player i and for any strategy ¢° of player
i, there exists a strategy s* of player ¢ such that Vt € T, 2, € X, a, € A,

Psigfi(xt, ag) = Pgigﬂ'(xt, az) (42)

which implies J$'9" = Jb9'9",

Proof 6: The proof is on the similar lines as the proof of Lemma 1 in [26]
Since any s’ policy is also a g° type policy, the above lemma can be iterated over all players which
implies that for any g policy profile there exists an s policy profile that achieves the same reward profile
ie., (J*)ien = (J%)ien. In the following lemma, we show that the space of profiles of type s is
outcome-equivalent to the space of profiles of type m.

Lemma 3: For any given strategy profile s of all players, there exists a strategy profile m such that

Pm(xt,at) = PS(LUt,CLt) vVt € T, Ty € X,at S A, (43)

which implies (J*"™);cn = (J°%)ien-
Proof 7: The proof is on the similar lines as the proof of Lemma 2 in [26]

X. PART 1: FOLLOWERS

Proof 8: We prove Theorem 3 using induction and the results in
Lemma 4, and 5 proved in Appendix XI. Let ¢ be the strategies computed by the methodology in
Section III. For the base case at t = T, a}/7_,, 27", o™i

~m,j ~m,—j
bl

E7ror o m Ry (Xg™, AP | me, aip_y @l } = Vi (mp, ) (442)
~1 m,j ~m,—j ; ]
s R R (X AL o ), (@av)

where (44a) follows from Lemma 5 and (44b) follows from Lemma 4 in Appendix XI.
Let the induction hypothesis be that for ¢ + 1. Then Vt, a}7", 27, € (X™7)F g™,

T
~l,m ; )
) —t— l
EovrTes { E ot 1R:?’](Xf{m>Aiim)‘ﬂtﬂaal’zl»fﬁil} (452)
n=t+1
T
Gl omd | gme—d i1 n—t—1 pm,j Iom  pAlm lm _ m,j
> B+ Tt 1 Tt Tt ) Rn (Xn ,An )7Tt+17a1:t7x1:t+1 . (45b)

n=t+1
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I,m mJ _m,j
Then Va7, ,,z7.;,0™7, we have

T
~1l,m 1 m
G, Tt n—t—1 pm,j l,m lm L
E7ermef E 5 R™M(X™ Ay )‘Wtaalzt—bxlt i

n=t
= V™ (g, ™) (46a)
> Eoor T R R (X AP+
I,m m,' I,m
SV (E(m, 3™, AP™), X10) \m,altl,xlﬁ} (46b)

= [Eo-t’o-t vj,&m, ,Wt{R 2J le Al m> +5[Eot+1 T7F(7Tt7“/t ,m Al m)

{ Z 5= t— 1Rm,](le Alm ‘F ﬂ‘t’ Alm) th, t+1}‘7rt7a1t l’xltd} (46C)
n=t+1
J

> [E&,lg7cr?'j7c~r:n'7 ,E{R ,](le Alm> 4 5[Eot+1 T7F(7Tt,’ythl ™)
(3 5 R (X, A Bl 3, A, a0 X Ml o) a60)
n=t+1

J

— [E&é,&;n’ ’U?ﬁj’ﬂ{RmJ Xl,m Al,m> + 5[[_:&2?,@

{ Z St lRm,j(le Alm ‘F 7Tt7 Al m) xgnt,J’Xtri’f}‘E’ all’:rtn_l,xg?t’j} (46e)
n=t+1
- [Eg,i;:;;rt Z5n CRyMI(X)T AL™Y ‘Wtaau 1 Ty } (461)
n=t

where (46a) follows from Lemma 5, (46b) follows from Lemma 4, (46¢) follows from Lemma 5, (46d)
follows from induction hypothesis in (45b) and (46¢) follows from Lemma 6.

XI.
Lemma 4: Let & be the strategies computed by the methodology in Section III. Then V¢ € [T, a"" |, 757 o™
Vlm’j(ﬂtax;n’j) 2
ot o R (X AL OV (B, A A X Ty @)

Proof 9: We prove this lemma by contradiction. Suppose the claim is not true for ¢. This implies
3677 ak™ |, &7 such that

v,J

EoLOT T f R (X hm ALY GV (B (g, A0 AR, X, b, 8}

> V™ (g, 377, (48)
We will show that this leads to a contradiction. Construct
/\TI’LJ 7] bl m?] Amv]
amug e o myg mgy ) Oy (at |a1t 1>I1t ) Ty = =T
a, |z = ) 49
) { arbitrary otherwise. “49)
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Then for Gy, 47 and r(x lm) = P”(xi’m|élzt, a14-1), we have

5L G ™ (g . 1
V() = max BT CEIDAL R (o] g, g, A
W (|a7)

OV (E (e, A0, AV™), X7 70y, 277} (50a)

[EO’ AL J(‘It’ ﬂt{RmJ zt’ m ] Amv] Alm)

m, ~lm Ilm m,j ,
OV (E (i, 7™ AY™), X034 | e, ) ”} (50b)
m,j m,—j o I,m m,j
= Z {Rt Mg, w7 @ )+5V;t (F (7Tt>% cag"), xt+{)}
zh ™ —J aim xzr{
~ L,m m, m, AT (ML | aM,g
(g )%(at‘m’t) ](at ]|x j)% M@ 3) (50¢)

= > {RI (2, a0 a7 ap™) + SV (B (7 3™ ay™), 2)]) )

ohay ey w
o T ]| 7
T (xtm)%(at|xt)’7t Hag " o) o (at ]|a1t 1?x1t ) (50d)

— [6175m7ﬂ{R?’7j Zlfi,l’;n’_j A, g Al,m)

OV (E (e, ™, A7), X0 ) e, iy, 27} (50€)

>V;€ (ﬂ-taxt )a (SOf)
where (50a) follows from definition of V™ in (27), (50d) follows from definition of 4, and (50f)

follows from (48). However this leads to a contradiction.
Lemma 5: Let & be the strategies computed by the methodology in Section IIL. Then V¢ € [T], a7 |, 2747,

T
V™ (g af) = B Y 8 R (G A | a2 ) (51)

n=t

Proof 10: We prove the lemma by induction. For ¢t =T,

Glem,m m, l,m lm
Eoot e { R (X", AP |y, iy, o

= Z Ry (2™, ay™ )y (b, 2l =)™ (@ g, ) (52a)
2o ma} glm
= Vi (my, ), (52b)

where (52b) follows from the definition of V;m’j in (27). Suppose the claim is true for t + 1, i.e., Vt €
[T), dyy, =, T

T
5 STl n—t—1 pm,j Im lm lm
Vi (7Tt+1>517t+1) = E7¢rme E Y Ry (X" AY™) | T, agly' o (53)
n=t+1



Then Vt € [T],ab7 |, 2737, we have

&b ,7rt 2 n—t pm,j I,m lm m,
[E t:T 5 R (X A ‘ﬂ-t’alt 1,$1t }
n=t

— [E‘}ilzﬁvﬂ{ R (Xbm, ALY 4 SETuT T

{ Z §P IR (X, ALY ‘F 7Tt>~lm AP, 2 +1}‘7rt’a1t 1’x1£]}

n=t+1
~ ~1l, i,
_ [EJtTth{R ,] XtaAt) _|_5[E‘7t+1T’ ;11 TvF(Wt,'y mA m)

Z gn—t— 1Rm,](le Alm ‘F 7Tt>~lm Alm) R m,j Xgl}‘ﬂ’allyzl_l’x??ij}

n=t+1

L,

= [E””L”“{R X AT 4 OV (B, ™A™, XD | m a2 )
= 7T R (X, AP + VT (B (me, Nlm AP, X |, a2
= ‘/tm7 (ﬂ-tvxt 7])7
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(54a)

(54b)

(54c¢)
(54d)
(54e)

where (54b) follows from Lemma 6, (54c¢) follows from the induction hypothesis in (53) and (54e) follows

from the definition of V" in (27).
Lemma 6: ¥t € T, (ay)',27%,) and o,

5l o™ 70 377& m,j Im lm m,J
[EtT tT T { E R X A }ﬂ-taalt?xlt—l—l -

n=t+1

[E&i+1‘T’O-ZZJ{T7&:1;%7E(7rt7ﬁ/7l§7m7Ai7m Rmy.] Xl m Al m
' ' ‘ - 7Tt+1>alt axl t—l—l

n=t+1
Proof 11: Since the above expectations involve random variables Xt Am i) At 1T
xbm , we consider the probabilit
t+2:T
Gl ™I g™ p o 1 {m,—j} Lm Im Nr
Pour Ot Out TR (g at+1 7 T o | e, A7 5 T, t+1) Dr
where Nr =
-1 m,j ~m,—j 1,{m,—5} I,{m,—j} I,m lym m,j
O 4.y O35 0. T , , 2]
E Pt Our Our T Tt (g, at s Tiyq a’t—i—l T It+2zT}ﬂ> aji 1, Tyq)
xi,{mﬁj}
al m
t
0’ ’o_'m j’a_’ﬂl ,—J T l {m ]} 1 ,m l ,m
E pourour Cur *( ‘ﬂ-tvat-i-l T7x1t )Ut ( |7Tt7 )
:ci{m’ J}7
Im

t

1 Am,—j5}LAm,—3} L, l, 5l l l,m
Q {m ]}($t+71n ’ 2™, ;" )PoeT m(a’t—lr-niT>It+2T|alt LIy 1a1'tt+1)

,{m,—j ~lm m, l,{m, mlm
= Y ma " T)e (0 m, o™ QM @ T ™ 0™

U,{m,—j}
Ty

”Déiﬁ.T77rt+1 lm m,j lm
' (at+1T7xt+2T|7Tt7alt 1> L= 17Itt+1)

(55)

(56a)

(56b)

(56¢)
(56d)

(56¢)
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where (56e) follows from the conditional independence of ty?es given common 1nf0rmat10n as shown in
Claim 1 in Appendix VIII, and the fact that probability on (a,};.7, " L) given b oahm "1, T depends on

allT 1 xllT, :ci 'v1, Te4+1 through o at .- Similarly, the denominator in (56a) is given by

1 M. ~m,—j » . _ ;
D’r’ — Z [PUt:Tth:TJ’Jt:T J7ﬂ(l.i7{mv ]}’ aiv{mv j} xt.l,_l}ﬂ-t? al 4_1s :L‘;né‘]) (56f)
U {m,—j}
o ~l,{m,—j} m,j J Lm
= Z ﬂ(ﬁt o (ay" ‘alt 1 TTy)
gl m=a) gl {m—3)
~lv 7_' lv 7_' ~l7 7_' lv 7' )
5! {m J}(a {m J}|ﬂ’$t{m J})Q {mJ}( {"”}|x at ") (56g)

By canceling the terms ¢} (-) and Q™7(-) in the numerator and the denominator, (56a) is given by

l,{m,— ~l{m,—j l,{m,—j l{m,—j l,{m,—j l ,
le{m, i} ﬂ(l't{m j})Ut{m j}(at{m ]}|ﬂaxt{m j}) tiT ]}( tj—n{m ]}| zltm aim)

D gl m (& e @ 3

~l,m m,j 1 l 1
g .70 s TTt+1 m l.m ,m 7.7 m
X Poerimfer (at+1 s Lo | Ty arly g, 2y 1) (56h)
L{m,—5}/ L{m—jt\pord , ghim =i} gm.J . I,m ,m I,m m,j _lm .
=T (xt+1 )P AL O T (A xt+2:T‘ﬂ7 ayy 1, T1g s Tl (561)
ot o G m,—J i L{m,—ji} _lm _Ilm l,m m,j :
=[P%t+1:T 1O 1 T ([EH_I , A7y xt+2 T|7Tt, A1p_15 xl-t—i—l)a (56])

where (56i) follows from using the definition of 7"} (2™ =71y in (11).

XII. PART 2: LEADER

In the following, we will show that, V¢ alt L, ot

[EO_ Um’ﬂ—t{Z(sn tRl le Alm)|7'(‘t,af1t 17xl1:t}

n=t

[Eo G ,m{Zén tRl le Alm)‘ﬂ'taalt 171,!1:1‘/}7 (57)
n=t
where 6™ € BR™(dt,6™).
Proof 12: We prove the above result using induction and from results in Lemma 7 and 8 proved in
Appendix XIII.
For the base case at t = T, Va\7_ | 2! ;. 0

[E&%&%’ﬂ{RT(X%mu Aliz‘m> ‘W_Tv allf;—h xllzT}

l

= Vi(rp, 2) (58a)
Z [Eaéw(.‘xT)ﬁqn}ﬂT {R£F<Xélm7 Alfm) ‘W_Tv all’:?“—lv xll:T}v
where 6 € BRY (mr, ai |, ok, 62%) (58b)

where (58a) follows from Lemma 8 and (58b) follows from Lemma 7 in Appendix XIII. Let the induction
hypothesis be that for ¢ + 1, Va}', 247, o',

T
AT E L(xlm plm bm ol
FCt+1:7:%T { Rn(Xn ,An )‘Wt+1aa1:t>x1:t+l}
n=t+1
T

1 s~m
> ot Ol men Z RL(XE™, ALY mg, a2t ) (59a)
n=t+1
Lm i
where 67} ,.0 € BRY, (Ter1, a1l 0410, 6/ 07) (59b)
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lm l !
Then Va7, ,, 2}, 0", we have

T
~l,m
E°uT 7ﬂ{ Z R;(X,ll’m, Alr;m) }ﬂ-ta alf:T—l? lﬁ:t}

n=t
= V/(me, 1) (59¢)
L am Tt m ,m ~l ~m ,m ,m
> B ’_{Rzlt(th >Ai )+Vzel+1(F(7Tt’7i"7t aAzlt )>X£+1)‘7Tt’al1:t—1>37l1:t (594d)
— [Eai,&gn,ﬂ{Rl Xl,m Al,m)
Eo i Emdbai A Z Ry (X5m, A }xltaX1f+l}}Wt>a1t 1>$1t} (59¢)
n=t+1
> EoHT I RUXG™, AY™) + B S g A (596)
T
m m ~l ~m I,m
{ Z Rln(Xii 7A£{ )‘F<ﬂ7%=% )7$l1:tath+1H7Ttval:t—lvxllzt} (59g)
n=t+1

= B RY(X™, AT+

T
! Py A~
Ertr N R (X0 AR (e 7 A @ X | a2} (59h)
n=t+1
T
= E7erfErne N © R (X, AL |m, aby, b (59i)
n=t

where 67" € BR}"(m, allt 1, 0% 6, (59¢) follows from Lemma 8, (59d) follows from Lemma 7, (59¢)

follows from Lemma 8 and (59g) follows from induction hypothesis in (59a), (59h) follows from the fact

[ lym I,m . Im _Im Im _Im ~l,m
that probability on (a;,.,, 5\ y.p) given my, ay, x7,, depends on w1, ay)y, ., through G, ..

XIII.
Lemma 7: ¥t € [T], 7, a7, ab, Vol

Vl(wt,xi) >

[Egt’oznm{Ri(X?maA?m) +th+1( (ﬂa%a% vAl m) Xzf+1 ‘ﬂ-tvalt 1 L1 t} (60)
where
vJ, @mﬁ € arg max ﬂ BR™ (Wtaai:tn 1T ?Uzlf>0t 200 A ULZT) (61)
ety

Y =0y (|a1t 1) (62)
% = Ut( ‘au lvxllt 1) (63)
/' € BR/" (e, ’Yt»% ;) (64)

where we assume that 0™ are of type m (Since if they are not, one can find an equivalent policies of
type m that achieve same reward profile, as shown in Appendix 1X).

Proof 13:

We prove this by contradiction. Suppose the claim is not true for #. This implies 3 &, dll’;n_l, 2., such

N ~l,m N N
that Ty = Polzt ( CLfT 15 xi:t_l, ') al'ld,

51

[Eot’ot 7ﬁ—t{‘Rllf()(]f’m?141l€7m) + ‘/tl—l—l( (7Tt7;%7f%n7f4l m) Xt+1) T élm’dll’;n_l’i‘l:t} =
V(e 2, “
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where ¥(-) = 5i(-]ab™ ol ,,-), 6 € BRm(fr_ ol 6, 6l 1) and 47 satisfies
~m ~lom ~m
Yot =00 (layh, By, ) (66)
Then for a"" |, &%, we have
Vl(ﬂ-tvxft)
max Ee00 T REXE™, AP™) + Vi (B, 3137 AC™), X ) [, a3 (67a)
'Yt xt
AT I,m I,m ~l ~ I,m ~l,m
= > pi 7_t{R1lt(Xt Ay )—l—V;lJrl(F(m,’yi,’yt AT, Xt+1) ary 1axllt (67b)
&l om Tt l,m l,m ~ ~m lm ~ Alm A
= 707 {Ri(Xt , Ay )"‘V;elJrl(F(Wta%a% Ay )7X15+1) Ty Ay 175Cl1t (67¢)

> V7, 2) (67d)
where (67a) follows from the definition of th in (27), (67¢c) follows from definition of ﬁé, A" and (67d)

follows from (65). However this leads to a contradiction.

Lemma 8: ¥t € [T],adb7 | 2t

Vl(ﬁtvxt = l ZRI XfimaAgm)‘ﬂtaallﬁn—laxll:t}- (68)

Proof 14: We prove the lemma by 1nduct10n. Fort =T,

~l,m
G T l Im l,m ‘ I,m l
Eor _{RT X7 A 7TTvalT_prl:T}

= Z 7TT(SCT)RT(mev ale)U%m(alT’m‘ETv xle) (69a)
z, ale
= Vi (g, 2k (69b)
where (69b) follows from the definition of Vl in (27).

Im |1

Suppose the claim is true for ¢ + 1, i.e., Vt € [T’ ] arly s T

! ! gom 1 /v, 1 I, l
Vipr (Tug, ay) = Eenr e Z Rn(Xnm7Anm>‘ﬂt+17a1:rtn7xl:t+l}' (70)

n=t+1

Then V¢ € [T],a\ |, 2., we have
B {3 R (X, ALl )
= BT R(XG", AP+

T
[E&i;?@{ Z R;(Xf{maAiim) au 1aAlm 5171taXzf+1H7Tt>a1t 1>5171t} (71a)

n=t+1

T
— [E&ii?&{ RY(XEm Abmy 4+ [Ef?iﬂ:TvE(ﬂﬂi’m,Ai’m){ S RL(xbm, AL

n=t+1
ayy g, AP why, X a2l ) (71b)
- [Eot ’E{Rzlt(Xéivai’m) +V;5l+1(F(7Tt7%m Alm) XZ+1 alt 17371 t} (71c)
=V} (m, x}), (71d)

where (71b) follows from Lemma 9, (71c) follows from the induction hypothesis in (70), and (71d) follows
from the definition of th in (27).
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Lemma 9: Nt € T, Ut, (alt axll t+1)

T
ol 1,6 E ! Lm - Alm bm ol =
[E T 6T —{ Rn(Xn y An )‘E7 al:t 9 xlt-f-l} -

n=t+1

L, m
bt B S (X A |l (72)
n=t+1
~Im
where 7,7 = Ut (s ). Lm
Proof 15: Since the above expectations involve random variables t s A7, we consider the proba-
bility

PN l l Lm 1 Nr
pPour Tt (xt—i—lv xt-:; T at-:nl | T al RS t+1) E (733)
where
Nr = [Pawls-Tv&?-LTvm Ilm _m I,m L,m L,m 1 73b
r= ORI (T ay xt+l>at+1:T’xt+2:T‘ﬂ’ a1 T1yp) (73b)
Im
zi",ay
I,m I, L,m
= Z ()" )oy ( |a1t 1>371t +)Q m(xt+1|x ya;") (73¢)
l,m
zy",ay
[IDJt+1‘T7&ZZLrl~T7Et lm Lm Lm 1 Lm 73d
' ' (xt+2 T?at+1T|7Tt>a1:t ’xl:taxt—l-l) (73d)

lym

where (73d) follows from the fact that probablhty on (2" a1 a;\y.p) given
T, all:t ,xllzt, x;!; depends on 7, all:t ,xllzt, z,}) through o7, ., 67 ,.p. Similarly, the denominator in (73a)
is given by

1 =7
Dr = Z Potr Ot I (g ’aim xllt+1 ‘ﬂa alf:tn—la 1) (73e)

77L

—Zm )G (@™ | 2™ Q (k[ al™) (73)

By canceling the terms Q'(-) in the numerator and the denominator, (73a) is given by

l l
> lﬂ-t(xt Jort(ai® |, 27 ) QY (7 |2y " a™)

Zfi;n m (27")o1" (af | m, T7)

[Pa'lynfTJTtJfl lm 1
X et (a1 $t+2 T|a1t 1 xl 4 Teg1) (732)
BTN ! !
=y (2 ) Pernr Ot T (at—ﬁ T $t+2 T‘% 15 T Teg1) (73h)
L Im 1 .
=P O T (gl g at—l—l T|a1 1 Tlas)s (731)

where (73h) follows from using the definition of =, +1(:cif{) in (11).

XIV. EXTRA LEMMAS
Lemma 10: Let ol be any strategy of the leader. Let
6™ € BR™ (611,01, G117, 6™) (74)

where we assume that 6™ are of type m (Since if they are not, one can find an equivalent policies of
type m that achieve same reward profile, as shown in Appendix IX). Let

Y€ B_R;n(ﬂ-ta%"??) (75)
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I Sl | bm ! m,j m,j l ; s
where v, = oy(-|ayy 1, 27,41, ). Then Yay.,—q, 27 |, 277, 25,,_,, and for every that satisfy (75) 3(5}")

that satisfy (74) such that

A = 67 (la ., ) (76)
where,
m,j Im m,J
BRt J(ﬂ-balt lﬁxltjao-zltT>UtT j)
o ~I 6™ n—t pm, m m
_argg%mww b L {Zé LR (XL ALY Ty a2 ) (77)
BRmJ(O-lvO-m’_ij- ’] : ﬂ ﬂ m BR Trt?alt lvxléjvaiT7o-:nT ])‘ (78)
ayly 2y
where
~l,m
7Tt(') — P‘fl;tfl(.|a1:t_1). (79)
BR (7Tt>'7t>% 7 ] = {7 7 V) J e x™ 3 7]( |$17tn’j)
€ arg max [ J(‘ww)%’w e
7 (|
{R J le Alm)‘i‘év; ( (ﬂ'ta%a% ‘a’Vt - Alm t:nff ‘W“xt J}}’ (80)
and
() = Po-10T1 (Jage_y). (81)
Proof 16:

2,1

e T Ry (X, AY™) 4 VIS (E (e, 11, A7 AL™), X0 [, 2} } (82a)



20

1 AT (0T 2 —] ; 1 1
— max Fren Clzy") Ay Wt{R;an (Xtvm’Atvm)_l_

¥ (a7
VAl (F(7r Alm m.J }7r x ]}}
t+1 ta%a% ) t+1 ty Ly

n 5 5 1,
—  max WD m{Rm’j le Alm) + Eoti L@t A Ar™)

W (e )

T
—t b L, 1, I A I 7
{30 R, AL o A0, AV a1 X Y ) (52b)
n=t+1
= max [E%’Vznyj('m’ W 7rt{Rm,J le Alm)
¥ (g™
~m, F(Trt:')/t:'ym Al m)

max [EUt+1 T’Ut+1 7011 N

m,j
t+1 T

{ Z 6n_tRzm7j(ka>Aerm)|(ﬂ>%€a’?t ) alt I?Alm zlt >Xt+1}‘7rt’xt } (82C)
n=t+1
7LJ(|

AR R (X AT+

— max [
I ()

ol gm 5l oI oI
max [E %t T4 1: 7% 4+1:17%¢+1: 7%t

O’:l{:T
T
7‘ l7 l, l 2 l
{ Z R:?](Xnvanm)‘(ﬂa%a% ) au AT xgnt ) +1H7Ttaa1t 1v$1t]} (82d)
n=t+1
_ma,Xl]':Jf’J JUm nt{Rm,] le AlM)
[ m,j

ol gm Gl Um,j O.m’*j -
max [E %t 044 1: 7% 4+1:17%¢+1: 78t

O’Zt{:T
T
§ m,j Iom  Alm I » Ilm _m,j m,j} ‘ l,m mvj}
Rn (Xn 7An )‘F(E7 Vs Vi ) alt 17A y L1t s t+1 Ty Q115 L1y (826)
n=t+1
_ T
m,J Aam,—j m,Jj =m,—j — 1 l ]
= max [EUMT Oy Ny T 170141 Tth E ot "RZL’] (Xi’m, Ai;m) ‘ﬂ't, al’:rtn_l, :L{nf} (82f1)
m,j
Py n=t

where (82b) follows from Lemma 5 in Appendix XI, (82d) follows from Lemma 6, (82e) follows from
the fact that 5;" are of type m and definition of 4;". This proves the theorem.

XV. LEMMAS FOR CONVERSE
Proof 17: We prove this by contradiction. This implies there exists m; such that either (a) (26a) doesn’t
have a solution, or (b) (15a) doesn’t have a solution. o
(a) If (26a) doesn’t have a solution (concerning follower): Suppose for any equilibrium generating
function @ that generates (', 5™) through forward recursion, there exists t € [T, a’7" | such that for
() = P77 (| lftn 1), (26a) is not satisfied for 4 i.e. for 5! = 0'[m] = &}(:|m, ), 3" = 0™ [m) =
&7 (-|m, +), 3g, 77 such that

G Cfel) @ arg max | BT

7 (™)

{R"" ”(X“” AP 4 SV (B, 3™, AY™), X7 ) |, (83a)

vﬂ



Let ¢ be the first instance in the backward recursion when this happens. This implies 3 4,

that
it (el Jm{RW XA+
oV J(F (ﬁa%m Alm) W1 ‘Wt’xt J}
S FAA Cla ) AT Lo f g xtm oAby
m, ~lm lm m,j m,J
5‘/;+1]( (7Tt=7t , Ay )vXt+f)‘ﬂvxt J}

7] lvm mv] . Am?j
This implies for 6;™(-|ay;_y, @1:21,-) =%,

~l,m

[EcrtTth{E Rm,j le Alm ‘ﬂ-tualt 17$1t]}

n=t

- [E[Ti’m,ﬁ{RmJ lem Ahm) 4 [552?@

m,j Iom gl m Lm _m,j m,j ‘ l,m m,j
E R (X, AL ‘Wualt AT T Xt+1} Tty A1ip—15 L1y }
n= t+1
_ [Eot , Tt {Rm,j Xl m Al m) + [I_:crt+1 E (Wt,’yt m Al ™

{ Z an’j(Xrl{maAﬁém) ays— 17Alm Ty Xﬁl}‘ﬂtaalt 17$1t]}

n=t+1
— [E:Yiﬁtm’]('ﬂt A Wt{Rm,j le Al m>
m?] ~1 ,m lm m,)
‘/;—i-l (F(Trta 7t A ) Xt+1 ‘7Tt, Zlﬁ't }
[E(}i’%r”( g™ 7),64" m{Rva Xl m Al m)
mv] ~1 ,m lm mJ 7]
t+1 (F(Trta 7t A ) Xt+1 }7Tt, Xy }
g G ~l,m ~l,m 4lm
= [Eo-t’o-t ]7O—t 7E{R;n’] thﬂn, Ai’m) + [Eo-tﬁ*l:TE(ﬂ?’Yt 7At )
T
mvj lvm l7m lm , m,j
{ Z Rn (Xn ’A’ﬂ )a'lt I?A xltht+1}‘Wt,&1t 1’x1t}

n=t+1

T
sl smj o =m,—j : .
— [F9:7:%¢ =0 VTt E m,j X'l,m l,m lm m,j
= Lot ' _{ Rn ( n >An )}ﬂ-t? Ay1:4—1) L1:g }>

n=t
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™J such

(83b)

(83¢)

(83d)

(83e)

(831f)

(83g)

(83h)

where (83d) follows from Lemma 6, (83¢e) follows from the definitions of 4;" 7 and m; and Lemma 5,
(83f) follows from (83b) and the definition of 5,", (83g) follows from Lemma 4, (83h) follows from

Lemma 6. However, this leads to a contradiction since (6'™) is a SPE of the game.

(b) (15a) doesn’t have a solution (concerning leader)

Suppose for any equilibrium generating function ¢ that generates (5%™) through forward recursion,
there exists ¢t € [T] i’ | such that for m() = P7" (-Jab™ 1), (15a) is not satisfied for 6 i.e. for

%m _ Hlmv,[ ] — Ut ( |7Tt7 ) Elxi such that

Ao ¢

arg max E7 L RUXP™, AY™) + VL (E(my, 3L A AV™), XL ) | me, 2L}

'Yt( ‘xt)
where 3" € BR}" (7,7}, ),

(84a)

(84b)



(1]
(2]

(3]

(4]

(5]

(6]
(7]
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Let ¢ be the first instance in the backward recursion when this happens. This implies Ji ! such that
Y ,m{Rl (XD, A™) + SVE L (F (e, AL AT, A™) |, 2k}
> B RU(XE™ AV 4§V (F(m, AP, AV, XL ) s o) (84c)

where 4" € BR,"(m,4;,41") (84d)

l _xl
This implies for (- ‘alt 1 Tao15 ) = Voo

T
[E&i;?’ﬂ{ Z RL(XiL’m, Ai;m> }E’ all’:rtn—lv xllzt}

n=t
— [E[Ti’m,ﬂ{Rl Xl,m Al,m)_'_

~l,m

G l Im lm Lm 1 i lm l
Eour t{ E R, (X", AL ‘ﬂ-tvalt 1A axlztaXtJrl}‘Etval:t—laxl:t} (84e)

n=t+1

- [E‘}i’m’ﬂ{Rl Xhm ALY 4 E AT

{ Z Rl le Alm ‘thau 1=Alm xlltv t+1}‘ﬂt’a1t l’xlt} (84f)
n=t+1
~l,m m m ~L,m m
=T RUXP™, AY™) 4 VA (F(m, 3™ AP™), Xy | e ot} (84g)

gL am o Iom  4lm ~1 ~m Alm
< [E%’% 7*t{‘[:)'ﬁlt()(t 7At )_'_ V;tl-i—l(F(ﬁtvfygvfyt 7A ) Xt+1)
_ [E&g,&;n@ {RY( xbm Abmy o Eoirs P (medh A, Ay™)

T, b} (84h)

Lyl ! Lm ! l, ! :
Z R, (X", A7) ‘alt 1>Atmaxl:taXt+1}‘ﬂtaa1$—1a$1:t} (841)
n=t+1
— OO0 07k, T’”t{ZRl le Alm ‘Wtaalt 1axll:t}’ (84j)
n=t

where (84f) follows from Lemma 9, (84g) follows Lemma 8, (84h) follows from (84c), (84i) follows
from Lemma 7, (84j) again follows from
Lemma 9. However, this leads to a contradiction since (5%™) is an SPE of the game.
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