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On Learning Discrete-Time Fractional-Order Dynamical Systems

Sarthak Chatterjee† Sérgio Pequito‡

Abstract— Discrete-time fractional-order dynamical systems
(DT-FODS) have found innumerable applications in the con-
text of modeling spatiotemporal behaviors associated with
long-term memory. Applications include neurophysiological
signals such as electroencephalogram (EEG) and electrocor-
ticogram (ECoG). Although learning the spatiotemporal pa-
rameters of DT-FODS is not a new problem, when dealing with
neurophysiological signals we need to guarantee performance
standards. Therefore, we need to understand the trade-offs
between sample complexity and estimation accuracy of the
system parameters. Simply speaking, we need to address the
question of how many measurements we need to collect to
identify the system parameters up to an uncertainty level. In
this paper, we address the problem of identifying the spatial and
temporal parameters of DT-FODS. The main result is the first
result on non-asymptotic finite-sample complexity guarantees
of identifying DT-FODS. Finally, we provide evidence of the
efficacy of our method in the context of forecasting real-life
intracranial EEG time series collected from patients undergoing
epileptic seizures.

I. INTRODUCTION

Learning a model (or system identification) is the problem
of estimating the parameters of a dynamical system given
an input-output time series of the trajectories that have been
generated by the former. In many problem settings in control
theory, time series analysis, reinforcement learning, and
econometrics, estimating the parameters of a system from
its input-output behavior is an important problem, especially
in the absence of analytical tools to find the underlying
dynamics. Extensive attention has been paid to the topic,
with [1] and [2] being comprehensive references on the same.

Lately, there has been a renewed interest in investigating
finite-sample guarantees for problems in classical system
identification and control theory from the lens of statistical
learning theory. On the one hand, significant work has been
done on developing finite-time regret guarantees for the
linear-quadratic regulator when the latter is trying to control
a system with unknown dynamics [3]–[8]. Alternatively,
finite-sample guarantees have also been derived in the con-
text of high probability bounds with respect to the norm of
the estimation error of the system’s parameters in a wide
variety of problem settings [9]–[22].

Nonetheless, most of the work focuses on cases where
there is a Markovian dependence of the current state of
a system on just the previous state, which is insufficient
in describing the long-term behavior of the aforementioned
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systems. Yet, systems that we often encounter in real-life
demonstrate phenomena such as hysteresis and long-term
memory, in which the current system state is dependent on
a combination of several past states or the entire gamut of
states seen so far in time.

In particular, fractional-order dynamical systems (FODS)
have attracted a lot of interest in recent years for being
able to successfully model a wide variety of dynamical
system behaviors, chief among them being (nonexponential)
power-law decay in the dependence of the current state on
past states, systems exhibiting long-term memory or fractal
properties, or dynamics where there are adaptations across
multiple time scales [23]–[27]. FODS have been used in
domains as disparate as biological swarms [28], chaotic
systems [29], gaseous dynamics [30], and cyber-physical
systems [31], to mention a few. In the context of this work,
we emphasize the applications to neuromodulation as well
as modeling neurophysiological signals such as electroen-
cephalogram (EEG) or electrocorticogram (ECoG) [32]–[34].

In this paper, we will investigate the problem of learn-
ing the spatial and temporal parameters of a discrete-time
fractional-order dynamical system (DT-FODS). We provide
finite-sample and iteration complexity guarantees for the
same, and we further illustrate the working of our proposed
approach on real-life intracranial EEG (iEEG) data collected
from patients undergoing epileptic seizures. In the context
of using model-based approaches for neurostimulation (such
as to perform epileptic seizure suppression [33]), robust
guarantees for the iteration and finite-sample complexities of
learning the model parameters is of paramount importance.
Additionally, using approaches such as model predictive
control (MPC) in order to develop neurostimulation strategies
often require certifications on the minimum amount of data
required in order to learn robust models.

The rest of the paper is structured as follows. Section
II introduces DT-FODS and the problem that we seek to
address in this paper. Section III outlines an approach to learn
the parameters of a DT-FODS as well as the main results in
terms of the finite-sample and iteration complexity guaran-
tees for the same. Section IV demonstrates the working of
our approach on real-life iEEG data. Section V concludes
the paper.

II. PROBLEM STATEMENT

We consider a linear discrete-time fractional-order dynam-
ical system described as follows

∆αx[k + 1] = Ax[k] + w[k]

x[0] = x0, (1)
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where x[k] ∈ Rn is the state for time step k ∈ N
and A ∈ Rn×n is the system matrix. The process noise
w[k] is assumed to be an i.i.d. additive white noise pro-
cess originating from the standard normal distribution, i.e.,
w[k] ∼ N (0, σ2In). The above system model is similar to a
classic discrete-time linear time-invariant model except for
the inclusion of the Grünwald-Letnikov fractional deriva-
tive, whose expansion and discretization for the i-th state,
1 ≤ i ≤ n, can be written as

∆αixi[k] =

k∑
j=0

ψ(αi, j)xi[k − j], (2)

where αi is the fractional order corresponding to state i (with
αi > 0 for all i) and

ψ(αi, j) =
Γ(j − αi)

Γ(−αi)Γ(j + 1)
, (3)

with Γ(·) being the gamma function defined by
Γ(z) =

∫∞
0
sz−1e−s ds for all complex numbers z

with <(z) > 0 [35].
Given the above ingredients, we seek to solve the follow-

ing problem in this paper.

Problem 1. Consider the discrete-time fractional-order dy-
namical system model given in (1) with w[k] being an
additive white Gaussian process noise. We seek to provide
non-asymptotic finite-sample as well as iteration complexity
guarantees of identifying the temporal and spatial system
parameters of (1) ({αi}ni=1 and A, respectively) using an
observed trajectory of the states.

III. LEARNING DISCRETE-TIME FRACTIONAL-ORDER
DYNAMICAL SYSTEMS

In this section, we establish in a sequential manner, a
bi-level iterative scheme to learn the spatial and temporal
components of a DT-FODS. We first start with some funda-
mentals regarding DT-FODS.

A. Preliminaries

Let us first review some essential theory for
fractional-order systems, including an approximation
of (1) as an LTI system. Using the expansion of the
Grünwald-Letnikov derivative in (2), we have

∆αx[k] =

∆α1x1[k]
...

∆αnxn[k]

 =


∑k
j=0 ψ(α1, j)x1[k − j]

...∑k
j=0 ψ(αn, j)xn[k − j]


=

k∑
j=0

α1 . . . 0
...

. . .
...

0 . . . αn


︸ ︷︷ ︸

D(α,j)

x1[k − j]
...

xn[k − j]



=

k∑
j=0

D(α, j)x[k − j]. (4)

The above formulation distinctly highlights one of the main
peculiarities of DT-FODS in that the fractional derivative

∆αx[k] is a weighted linear combination of not just the
previous state but of every single state up to the current one,
with the weights given by (3) following a power-law decay.

Plugging (4) into the DT-FODS formulation (1), we have
k+1∑
j=0

D(α, j)x[k + 1− j] = Ax[k] + w[k], (5)

or, equivalently,

D(α, 0)x[k+1] = −
k+1∑
j=1

D(α, j)x[k+1−j]+Ax[k]+w[k],

(6)
which leads to

x[k + 1] = −
k∑
j=0

D(α, j + 1)x[k − j] +Ax[k] +w[k], (7)

since D(α, 0) = In. Alternatively, (7) can be written as

x[k + 1] =

k∑
j=0

Ajx[k − j] + w[k]

x[0] = x0, (8)

where

Aj =

{
A− diag(α1, . . . , αn) if j = 0

−D(α, j + 1) if j ≥ 1
. (9)

In the subsequent discussion, we will consider a truncation
of the last p temporal components of (1). Defining

x̃[k] =


x[k]

x[k − 1]
...

x[k − p+ 1]

 (10)

as the augmented state vector and assuming that the system
is causal, i.e., the state and disturbances are all considered
to be zero before the initial time (i.e., x[k] = 0 and w[k] = 0
for all k < 0), we have

x̃[k + 1] =


A0 . . . Ap−2 Ap−1
I . . . 0 0
...

. . .
...

...
0 . . . I 0


︸ ︷︷ ︸

Ã

x̃[k] +


I
0
...
0


︸︷︷︸
B̃w

w[k]

= Ãx̃[k] + B̃ww[k], (11)

for all k ≥ 0. Note that (11) is an LTI system model, which
we refer to as the p-augmented LTI approximation of (1).

B. Two-level iterative bisection scheme to identify the pa-
rameters of a DT-FODS

Having established the p-augmented LTI approximation of
a DT-FODS in (11), we will now use a two-level iterative
bisection-like approach to identify the spatial and temporal
parameters of the DT-FODS in (1). In particular, we start by
noting the fact that for the Grünwald-Letnikov definition of
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the fractional derivative provided in (2), αi = 1 and αi = −1
can be interpreted, respectively, to be the discretized version
of the derivative and the integral for 1 ≤ i ≤ n, as defined
in the sense of ordinary calculus.

In order to proceed with a bisection-like approach to
identify {αi}ni=1 and Ã, we first fix the endpoints of the
search space for αi to be αi = −1 and αi = 1 for 1 ≤ i ≤ n.
We also calculate the value of αc,i = (αi+αi)/2. Now, given
the values of αi, αi, and αc,i, we calculate using the ordinary
least squares (OLS) technique described in Section III-C
below, the row vectors ãi, ãi, and ãc,i, respectively, that
guide the evolution of the states in the p-augmented LTI
approximation

x̃i[k + 1] = ãix̃i[k] + b̃wi wi[k], (12)

where ãi = ãi when αi = αi, ãi = ãi when αi = αi,
and ãi = ãc,i when αi = αc,i with b̃wi being obtained by
extracting the i-th row of B̃w for 1 ≤ i ≤ n.

Next, we propagate the dynamics according to the obtained
values of the parameters ãi and calculate the mean squared
error (MSE) between the states obtained as a result of the
estimated ãi’s and the observed states. If the MSE is lesser
corresponding to the αi case, then we set αi = αc,i. If
the MSE is lesser corresponding to the αi case, then we
set αi = αc,i. This approach is repeated until |αi − αi| is
lesser than a certain pre-specified tolerance ε. Algorithm 1
summarizes the procedure of determining the spatial and
temporal components of a DT-FODS using the two-level
iterative bisection-like approach we have outlined above.

Empirically, numerical and experimental evidence sug-
gests that the computation of the temporal parameters of
a DT-FODS using, e.g., a wavelet-like technique described
in [36], does not directly depend on the number of sam-
ples or observations used for the aforementioned estimation
procedure. Empirical evidence suggests that a small number
of samples (usually 30 to 100) suffice in order to compute
{αi}ni=1. Therefore, for the estimation of the temporal com-
ponents of a DT-FODS, we specify the iteration complexity
of the bisection-like process and then, in Section III-D, we
investigate the finite-sample complexity of computing the
spatial parameters using a least squares approach.

Apropos the above discussion, in the next result, we certify
the iteration complexity of the bisection method to find the
spatial and temporal parameters of a DT-FODS.

Theorem 1. The bisection-based technique detailed above
to find the temporal components of a DT-FODS is minmax
optimal and the number ν of iterations needed in order to
achieve a certain specified tolerance ε when this technique
is used is bounded above by

ν ≤
⌈

log2

(
2

ε

)⌉
. (13)

Proof. See [37] for a proof. �

Algorithm 1 Learning the parameters of a DT-FODS
1: for i = 1 to n do
2: Initialize αi = −1, αi = 1, and tolerance ε.
3: Calculate αc,i = (αi + αi)/2.
4: Given the above values of αi, αi, and αc,i, find,

using the ordinary least squares (OLS) method, the
row vectors ãi, ãi, and ãc,i, respectively, that guide
the evolution of the states in the p-augmented LTI
approximation x̃i[k + 1] = ãix̃i[k] + b̃wi wi[k].

5: Propagate the dynamics according to the obtained
OLS estimates and calculate the mean squared error
(MSE) between the propagated states and the observed
state trajectory.

6: if MSE is lesser for the αi case then
7: Set αi = αc,i.
8: else if MSE is lesser for the αi case then
9: Set αi = αc,i.

10: end if
11: Terminate if |αi − αi| < ε, else return to step 3.
12: end for

C. The ordinary least squares (OLS) method to identify the
spatial parameters of a DT-FODS

Having outlined the details of the bi-level iterative
bisection-like scheme to identify the spatial and temporal
components of a DT-FODS, we now delve into the problem
of identifying the spatial parameters using a least squares-like
approach. We start with the p-augmented LTI model of (11),
i.e.,

x̃[k + 1] = Ãx̃[k] + B̃ww[k]. (14)

The OLS method then outputs the matrix Ã[K] as the
solution of the following optimization problem

Ã[K] := argmin
Ã∈Rd×d

K∑
k=1

1

2
‖x̃[k + 1]− Ãx̃[k]‖22, (15)

by observing the state trajectory of (11), i.e.,
{x[0], x[1], . . . , x[K + 1]}, and the process noise w[k]
being i.i.d. zero-mean Gaussian.

D. Finite-sample complexity guarantees for OLS system
identification of the spatial parameters of a DT-FODS

Prior to characterizing the sample complexity of the
OLS method for the p-augmented LTI approximation of the
DT-FODS, we define a few quantities of interest.

Definition 1. The finite-time controllability Gramian of the
approximated system (11), Wt, is defined by

Wt :=

t−1∑
j=0

Ãj(Ãj)T. (16)

Intuitively, the controllability Gramian gives a quantitative
measure of how much the system is excited when induced
by the process noise w[k] acting as an input to the system.
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Definition 2. Given a symmetric matrix A ∈ Rd×d, we
define λmax(A) and λmin(A) to denote, respectively, the
maximum and minimum eigenvalues of the matrix A.

Definition 3. For any square matrix A ∈ Rd×d, the spectral
radius of the matrix A, ρ(A), is given by the largest absolute
value of its eigenvalues.

Definition 4. The operator norm of a matrix is denoted by
‖·‖op.

We then have our first result that characterizes the sample
complexity of the above OLS method for the DT-FODS
approximation.

Theorem 2 ([17]). Fix δ ∈ (0, 1/2) and consider the
p-augmented system in (11), where Ã ∈ Rd×d is a marginally
stable matrix (i.e., ρ(Ã) ≤ 1) and w[k] ∼ N (0, σ2I). Then,
there exist universal constants c, C > 0 such that,

P

[∥∥∥Ã[K]− Ã
∥∥∥
op
≤ C√

Kλmin (Wk)

×

√
d log

(
d

δ

)
+ log det

(
WKW

−1
k

)]
≥ 1− δ, (17)

for any k such that

K

k
≥ c

(
d log

(
d

δ

)
+ log det

(
WKW

−1
k

))
(18)

holds.

Proof. The proof of the theorem is a consequence of The-
orem 2.4 in [17]. In general, if we consider the time
series (X[t], Y [t])t≥1, where Y [t] = A?X[t] + η[t], with
Y [t], η[t] ∈ Rn, X[t] ∈ Rd, and A? ∈ Rn×d, the OLS
estimate is obtained by solving the optimization problem

Â(T ) := argmin
A∈Rn×d

T∑
t=1

1

2
‖Y [t]−AX[t]‖22 , (19)

where T is the observation horizon. We consider
Ft := σ(η[0], η[1], . . . , η[t], X[1], . . . , X[t]) to be a filtra-
tion generated by the states and the noise, and that
η[t]|Ft−1 to be zero-mean and σ2-sub-Gaussian (or, in
other words, sub-Gaussian with a variance proxy σ2), i.e.,
E[exp(λη[t]|Ft)] ≤ exp(λ2σ2/2) for all λ ∈ R.

If we fix ε, δ ∈ (0, 1), T ∈ N, and there exist Wsb

and W such that 0 ≺ Wsb � W (where the W ’s are the
controllability Gramians defined as in Definition 1), then
for a random sequence (X[t], Y [t])t≥1 ∈ (Rd × Rn)T that
satisfies

(a) Y [t] = A?X[t] + η[t] with η[t]|Ft being zero-mean
and σ2-sub-Gaussian,

(b) {X[1], . . . , X[T ]} satisfies the (k,Wsb, p)-martingale
small-ball condition (Definition 2.1 in [17]), and,

(c) P
[∑T

t=1X[t]X[t]T � TW
]
≤ δ,

we have that if

T ≥ 10k

p2

(
log

(
1

δ

)
+ 2d log

(
10

p

)
+ log det

(
WW−1sb

))
,

(20)
then

P

∥∥∥Â(T )−A?
∥∥∥
op

≤ 90σ

p

√
n+ d log 10

p + log detWW−1sb + log 1
δ

Tλmin(Wsb)

≥ 1−3δ.

(21)

Further, for the specific case considered in this paper, we
know that the process noise satisfies the σ2-sub-Gaussian
condition. The intuition behind this follows easily from
the fact that if a random variable X has the distribution
N (0, σ2), then E(exp(λX)) = exp(λ2σ2/2) for all λ ∈ R,
and thus X is σ2-sub-Gaussian, with a similar argument
holding for Gaussian random vectors as well. We further
note that the observed length of our state trajectory is K.
Hence, we can write

P

[
XTX �

dσ2

δ
KWK

]

=P
[
λmax

(
(KWK)

−1/2
XTX (KWK)

−1/2
)
≥ dσ2

δ

]
(4)

≤ δ

dσ2
· E
[
λmax

(
(KWK)

−1/2
XTX (KWK)

−1/2
)]

≤ δ

dσ2
· E
[
tr
(

(KWK)
−1/2

XTX (KWK)
−1/2

)]
(5)

≤ δ, (22)

where the rows of X ∈ RK×d are formed using x̃[k] for each
k. The inequality (4) is a consequence of Markov’s inequal-
ity and the inequality (5) is a consequence of E

[
XTX

]
=

σ2
∑K
j=1Wj � σ2KWK and the linearity of the trace

operator. The proof of the theorem follows from setting W =
dσ2

δ WK , the equality log det
((

d
δσ

2WK

) (
σ2Wbk/2c

)−1)
=

d log(d/δ) + log det
(
WKW

−1
bk/2c

)
, and the fact that x̃[k]

satisfies the (k, σ2Wbk/2c,
3
20 )-block martingale small-ball

condition (Proposition 3.1 of [17]). �

Remark 1. We note here that although the operator
norm parameter estimation error in (17) is stated in terms
of Ã, the operator norm errors associated with the ma-
trices A0, A1, . . . , Ap−1 are strictly lesser compared to∥∥∥Ã[K]− Ã

∥∥∥
op

, since A0, A1, . . . , Ap−1 are submatrices of

Ã, and for any operator norm, the operator norm of a
submatrix is upper bounded by one of the whole matrix (see
Lemma A.9 of [38] for a proof).

Remark 2. A finite-sample complexity bound similar to
the one presented in Theorem 2 can also be derived when
we consider the ordinary least squares identification of the
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Fig. 1. Performance of our approach on real-life intracranial EEG data.

Fig. 2. Variation of the error of the least squares prediction with respect
to the observed data, with varying window sizes in the least squares
optimization problems.

spatial parameters of a DT-FODS with inputs. In the context
of our work, an external input may correspond to an ex-
ogenous electrical stimulus or an actuation or control signal.
Therefore, within the purview of epileptic seizure mitigation
using intracranial EEG data, the objective of the former is to
suppress the overall length or duration of an epileptic seizure,
thus steering the state of the neurophysiological system in
consideration away from seizure-like activity using a control
strategy like model predictive control [33].

IV. SIMULATION RESULTS ON REAL-LIFE
INTRACRANIAL EEG DATA

We present some preliminary results regarding the per-
formance of the above approach on DT-FODS. Specifically,
we use 1000 noisy measurements taken from 4 channels of
an intracranial electroencephalographic (iEEG) signal which
records the brain activity of subjects undergoing epileptic
seizures. The signals were recorded and digitized at a
sampling rate of 512 Hz at the Hospital of the University
of Pennsylvania, Philadelphia, PA. Subdural grid and strip
electrodes were placed at specialized locations (dictated by a
multidisciplinary team of neurologists, neurosurgeons, and a
radiologist), with the electrodes themselves consisting of lin-
ear and two-dimensional arrays spanning 2.3 mm in diameter
and having a inter-contact spacing of 10 mm [39], [40]. All
of the least squares optimization problems are solved using
CVX [41], [42] with the aid of a window-based approach

using a finite subset of the entire range of measurements.
This is done because the time series under consideration is
nonlinear, and it is not possible to characterize the entire
gamut of measurements using very few parameters. Figure 1
shows the performance of our method on the above data.
Additionally, we also show in Figure 2 the variation of the
error of the least squares predictions with respect to the
observed data, with varying window sizes in the least squares
optimization problems. We see that the identified system
parameters are able to predict the system states fairly closely,
thus demonstrating that our approach can be used to learn
the system parameters of a DT-FODS.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a framework that enables us to
learn the spatial and temporal parameters of a DT-FODS.
We provide non-asymptotic finite-sample complexity guar-
antees for the identification of the spatial components of
autonomous and actuated DT-FODS using least squares as
well as iteration complexity guarantees for the identification
of the temporal components of a DT-FODS. We also show
the efficacy of our proposed approach in identifying the
system parameters of a DT-FODS that models iEEG signals
characterizing the behavior of real-life subjects undergoing
epileptic seizures.

There are a number of interesting directions which can be
taken from here. A particular case that piques our interest
is system identification using the Expectation-Maximization
(EM) algorithm. Although approaches using the EM al-
gorithm for linear [43] as well as nonlinear system iden-
tification [44] have existed in the literature for a while
now, one immediately notices that there is a long-standing
problem in characterizing theoretical robustness guarantees
for the same. We are inspired by the preliminary analyses of
finite-sample robustness guarantees for EM in [45]–[47], and,
therefore, we wish to characterize the sample complexity
in identifying LTI as well as fractional-order systems using
the EM algorithm. Furthermore, the system identification of
fractional-order systems is an extremely under-explored field
in general, with a lack of a systematic and unified theory,
with some preliminary approaches utilizing wavelets [36],
frequency-domain techniques [48], [49], or a sequential
combination of wavelets and EM [50]. Future work will
focus on chalking out a general theory of identifying certain
classes of fractional-order systems.
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