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Abstract— Critical energy infrastructures are increasingly
relying on advanced sensing and control technologies for
efficient and optimal utilization of flexible energy resources.
Algorithmic procedures are needed to ensure that such systems
are designed to be resilient to a wide range of cyber-physical
adversarial events. This paper provides a robust optimization
framework to quantify the range of adversarial perturba-
tions that a system can accommodate without violating pre-
specified resiliency metrics. An inner-approximation of the set
of adversarial events which can be mitigated by the availabe
flexibility is constructed using an optimization based approach.
The proposed algorithm is illustrated on an islanded microgrid
example: a modified IEEE 123-node feeder with distributed
energy resources. Simulations are carried out to validate that
the resiliency metrics are met for any event sampled from
the constructed adversarial set for varying levels of available
flexibility (energy reserves).

I. INTRODUCTION

Decarbonization, digitalization, and decentralization are
driving the evolution of the energy infrastructures worldwide
in the 21st century [1]. There are incentives towards low
carbon solutions (including, but not limited to, renewable
energy resources), most of which are located at the customer
sites (e.g., rooftop solar panels). On the other hand, advanced
sensing and control technologies, coupled with ubiquitous
communication infrastructure, are creating a digital platform
for efficient and optimal utilization of distributed energy re-
sources. Fueled by these and other drivers, microgrids are fast
emerging as viable energy infrastructure. Microgrids are a
group of flexible energy resources operating together locally
as a single controllable entity, satisfying certain reliability,
power quality, and adequacy standards [2]. Safe and reliable
operation of microgrids via optimal coordination of the
flexible energy resources has drawn much attention in recent
works [3]. Several works, including [4], have shown how
microgrids with multiple energy sources can minimize the
cost of energy and increase the resilience of energy supply to
critical loads. In [5], data-driven methods have been used to
study the impact of uncertainties in the renewable generation
on microgrid resiliency, whereas in [6], resiliency metrics
are incorporated into the microgrid planning problem. A
robust optimization framework for microgrid operation is
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presented in [7], which calculates the reserves required to
ensure robustness under modeled uncertainties.

The resiliency of energy systems, e.g., microgrids, against
various cyber and physical adversarial events, including
malicious attacks, have been studied in the literature [8]–
[11]. One type of such attacks includes injecting measure-
ment errors to renewable generation output. Such errors
can be constant offsets or potentially time-varying, and left
untreated, may eventually lead to ramp-induced attacks [12].
Another class of attacks include replay attacks [13], whereby
the measured renewable generation output is maliciously
changed to reflect the true generation at a previous time
stamp, thus impacting dispatch decisions. A third class of
attacks entails corruption of state estimation, whereby the
estimated physical quantities required for dispatch decisions
(such as load setpoints) are maliciously changed [14], [15].
Specifically, load-setpoint change attacks often cause maxi-
mal impact when affected during specific hours of the day
(for example, during 12 - 7 PM, when the load typically rises
to hit an evening peak). A final class of attacks is coordinated
attacks, whereby an attacker often has access to multiple
critical information of the system, and can maliciously pose
threats in a coordinated manner, from multiple sources (such
as malicious under-estimation of load coupled with over-
estimation of renewable capacity). Examples of such cyber-
physical attacks can be found in [12], [16], [17]. In addition
to attacks, other physical events such as generator outage,
loss of solar generation due to cloud coverage, etc., could
also lead to violations of critical operational constraints (such
as serviceability of critical loads), as considered in this work.

The main contribution of the paper is to identify the
set of cyber-physical adversarial events that the microgrid
is guaranteed to be resilient against, via optimal use of
available flexible energy resources. An optimization problem
is set up to construct an inner approximation of the tolerable
adversarial set. The rest of the paper is organized as follows.
Sec. II presents the microgrid model that will be used in
this paper and presents baseline optimization results without
considering the uncertainty due to adversarial events. Sec. III
provides the robust version of the microgrid optimization
problem that calculates optimal reserves required to manage
the adversarial events. Sec. IV provides the adversarial set
characterization technique that is used to determine an inner
approximation of the set of adversarial events that the mi-
crogrid can handle. Simulation results showing various case
studies on the baseline model, robust model and adversarial
set characterization are shown in Sec. V. Finally, Sec. VI
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provides the conclusions and the scope for future work.

II. BASELINE OPTIMIZATION

Let us begin by presenting a formulation of the optimal
dispatch problem in a microgrid with various distributed
energy resources, including solar photovoltaics (PVs), diesel
generators (DGs), and energy storage (ES) units. We intro-
duce a few notations for the following mathematical descrip-
tion. Let N denote the set of all bus indices, and L ⊆ N×N
denote the set of all branches. We use Vn,k to denote the
multi-phase voltage vector at bus n ∈ N , at time k. The net
apparent power injection at bus n, at time k, is denoted by
Snet
n,k = P net

n,k+jQnet
n,k, where P net

n,k and Qnet
n,k are the respective

active and reactive power components. Likewise, the Table I
lists the symbols denoting the apparent, active, and reactive
power associated with each of the energy resources and
loads at bus n, at time k . Let Ees

n,k be the storage state of

APPARENT, ACTIVE, REACTIVE UNIT CONVENTION

{Spv
n,k, P

pv
n,k, Q

pv
n,k} solar PV injection

{Sdg
n,k, P

dg
n,k, Q

dg
n,k} diesel generator injection

{Ses
n,k, P

es
n,k, Q

es
n,k} energy storage injection

{Sload
n,k, P

load
n,k , Q

load
n,k} load consumption

TABLE I: Notations used for nodal power exchange

charge (SoC). Furthermore, let in,m,k be the complex vector
denoting the multi-phase current flowing from bus n to bus
m (i.e., n→ m), at time k. Let Sn,m,k, Pn,m,k and Qn,m,k

denote, respectively, the apparent, active, and reactive branch
power-flow from n → m , at time k . Let Zn,m =Zm,n be
the impedance matrix of the branch (n,m)∈L. Furthermore,
we define (with (·)∗ denoting conjugate transpose):

Wn,k := Vn,k · V ∗n,k , In,m,k := in,m,k · i∗n,m,k .

The distribution network power-flow equations can be
expressed in the Branch Flow Model (BFM) [18] as:[

Wn,k Sn,m,k

S∗n,m,k In,m,k

]
=

[
Vn,k
in,m,k

] [
Vn,k
in,m,k

]∗
(1a)

Wn,k = Wm,k − (Sn,m,kZ
∗
n,m + Zn,mSn,m,k)

+Zn,mIn,m,kZ
∗
n,m (1b)

Snet
n,k + diag(Sn,m,k−Zn,mIn,m,k) =

∑
o:m→o

diag(Sm,o,k) (1c)

The nonlinearity of the power-flow equations in (1) render
the resulting optimal dispatch problem non-convex (and NP-
hard). While convex relaxations of the power-flow have
been proposed in the literature (see [19] and the references
therein), in this paper, we adopt a linearized power-flow
model which typically yields acceptable solutions [20]. In
particular, the linearized BFM model [18] is given as below:

0 = Wn,k −Wm,k + (Sn,m,kZ
∗
n,m + Zn,mSn,m,k) (2a)

0 = diag(Sn,m,k)−
∑

o:m→o

diag(Sm,o,k) + Snet
n,k (2b)

Next, based on the convention in Table I, the net active and
reactive power injections at each bus n satisfy the relations:

P net
n,k = P pv

n,k + P dg
n,k + P es

n,k − P load
n,k (3a)

Qnet
n,k = Qpv

n,k +Qdg
n,k +Qes

n,k −Qload
n,k (3b)

The power system operational reliability and safety dictate
imposing certain constraints on the bus voltages and the line
flows, as follows:

|diag(Sn,m,k)| ≤ Sn,m (4a)

V 2 ≤ diag(Wn,k) ≤ V 2
(4b)

where V and V are, respectively, the maximum and mini-
mum allowable voltage limits (e.g., specified by ANSI C84.1
Standard), while Sn,m is the maximum limit on the line-flow.

The inequality constraints that govern the solar PV and
diesel power generation is given by the following:∣∣∣Spv

n,k

∣∣∣ ≤ Spv
n ,

∣∣∣Sdg
n,k

∣∣∣ ≤ Sdg
n , (5)

where S
pv
n denotes the inverter capacity at bus n, and S

dg
n is

the rated size of the diesel generator at bus n.
Finally, the energy storage units are associated with a

state-of-charge (SoC) dynamics, as well as limits on the
charging/discharging rates, limits on the SoC (i.e., storage
size), and the inverter capacity, as follows:

Ees
n,k+1 = Ees

n,k − P es
n,k∆t (6a)

Ees
n ≤ Ees

n,k ≤ E
es
n (6b)

−P es
n ≤ P es

n,k ≤ P
es
n (6c)∣∣Ses

n,k

∣∣ =
√

(P es
n,k)2 + (Qes

n,k)2 ≤ Ses
n (6d)

where P
es
n is the maximum absolute limit on charging (and

discharging power), while E
es
n and Ees

n are the respective
maximum and minimum limits of SoC. The storage inverter
capacity is denoted by S

es
n .

The decision variables (i.e., dispatchable quantities) con-
sidered in this work are:

u :=
(
Ppv

k , Q
pv
k ,P

dg
k , Q

dg
k ,P

es
k , Q

es
k ,P

load
k , Qload

k

)
where the bold-faced Ppv

k =
[
P pv
n,k

]
denotes the vector of

the solar active power variables at all buses, at time k,
and likewise for the rest. The following additional physical
constraints are placed on the solar and load dispatch.
• Solar curtailment: In a predictive optimization setting,

we assume the availability of solar forecast P̂ pv
n,k , such

that the dispatched solar active power should satisfy

0 ≤ P pv
n,k ≤ P̂

pv
n,k . (7)

Any available solar not dispatched is henceforth referred
to as the solar curtailment:

P pv,curt
n,k := P̂ pv

n,k − P
pv
n,k . (8)



• Load curtailment: We assume that each load bus, the
desired, P load,des

n,k , and minimum (critically necessary),
P load,min
n,k , load values are specified/available. Therefore

the dispatched load value should follow certain limits:

P load,min
n,k ≤ P load

n,k ≤ P
load,des
n,k . (9)

Typically, the range of specified flexibility is narrower
for critical loads for which the specified minimum value
would be close to (or, same as) the desired value. Any
unmet load is referred to as load curtailment:

P load,curt
n,k := P load,des

n,k − P load
n,k . (10)

Remark 1: Additional constraints can also be included in
the formulation. For example, constraining the power factor
could be important to alleviate power quality concerns. As
such, we can place constraints such as:∣∣∣Qpv

n,k

∣∣∣ ≤ γ∗ ∣∣∣P pv
n,k

∣∣∣ and
∣∣Qes

n,k

∣∣ ≤ γ∗ ∣∣P es
n,k

∣∣ ,
where γ∗ > 0 is some suitably chosen values.

The objective function of the optimization problem con-
sists of costs of generating from the DG unit, and penalties
on the solar and load curtailment. In this paper, we adopt a
multi-period linear cost function defined as follows:

f(u) :=
∑
k

∑
n

(
c1P

dg
n,k + c2P

pv,curt
n,k + c3P

load,curt
n,k

)
(11)

where the parameters c1,2,3 are chosen appropriately to
reflect the cost (or, penalty) on each term. Several works
in the literature, such as [21], [22], have shown that using a
linear cost function in microgrids is a reasonable assumption.
The baseline optimization is then given as below:

(BASELINE) min f(u) , s.t. constraints (2)-(10). (12)

III. ROBUST OPTIMIZATION PROBLEM

We adapt the optimization problem (12) to robustify it
against a specified set of adversarial events. The main idea
behind robustifying the optimization dispatch is to ensure
sufficient reserves in the dispatched resources (DG, PV,
storage, and interruptible load) so that these can adjust their
output in response to adversarial events. While we omit the
detailed description of the robust formulation due to space
limitations, and refer the interested readers to [7] (and the
references therein), we present here the essential deviations
from the baseline formulation (12). The adversarial events
are grouped into the event (or, perturbation) vector w ,
which may represent various cyber-physical attacks and/or
physical disruptions. For example, an outage in DG could
be represented by an uncertainty in the parameter S

dg
n,k .

Likewise, a load-masking attack could be represented by
an uncertainty in P load,des

n,k , while a sudden loss in solar
generation could be represented by an uncertainty in P̂ pv

n,k .
In this paper, we consider a bounded set of uncertainties:

w ∈ ΩW . (13)

In the most general form, the robust optimization problem
for a system can be expressed in the following form:

min
u

max
w

f(u,w) (14a)

s.t. g(u,w) ≤ 0 ∀w ∈ ΩW (14b)

where g(u,w) are the constraints (2)-(10). The above opti-
mization problem (14) can be converted to a robust formu-
lation using the explicit maximization method (see [23]) in
the following form:

min
u
f̂(u) , s.t. ĝ(u) ≤ 0 (15)

where f̂(u)=maxw f(u,w) and ĝ(u)=maxw g(u,w). The
new model does not contain any disturbance terms and if the
functions f̂(u) and ĝ(u) are convex, then the optimization
problem is convex, which can be solved efficiently.

The additional decision variables we consider in our robust
formulation include:
• Solar reserves: These are the up (Rpv+

n,k > 0) and down
(Rpv−

n,k > 0) reserves set aside on the solar genera-
tion dispatch, so that the solar output has flexibility
to increase or decrease from the optimally dispatched
amount (P pv

n,k) in response to an adversarial event:

Rpv−
n,k ≤ P

pv
n,k ≤ P̂

pv
n,k −R

pv+
n,k (16)

• DG reserves: These are the up (Rdg+
n,k > 0) and down

(Rdg−
n,k > 0) reserves set aside on the DG dispatch:

Rdg−
n,k ≤ P

dg
n,k ≤ S

dg
n,k −R

dg+
n,k (17)

• Storage reserves: These are the up (Res+
n,k > 0) and down

(Res−
n,k > 0) reserves set aside on the storage dispatch,

allocated in such a way that there is flexibility on both
the charging/discharging rates, as well as the SoC limits
(assuming a look-ahead period of ∆t):

−P es
n,k +Res−

n,k ≤ P
es
n,k ≤ P

es
n,k −Res+

n,k (18a)

Ees
n +Res+

n,k∆t ≤ Ees
n,k ≤ E

es
n −Res−

n,k∆t . (18b)

• Load reserves: These are the up (Rload+
n,k > 0) and down

(Rload−
n,k > 0) reserves set aside on the load dispatch

(note the reverse convention on direction):

P load,min
n,k +Rload+

n,k ≤ P load
n,k ≤ P

load,des
n,k −Rload−

n,k (19)

The goal of the robust microgrid optimization is then
to minimize the cost of dispatched generation and reserves
while satisfying the device and network constraints for all the
disturbances in the selected disturbance set Ωw. Combining
the additional reserves cost and the additional constraints
(16)-(19), we develop the following robust formulation:

(ROBUST) min
u

f̂(u) + fR(Rpv
n,k,R

dg
n,k,R

es
n,k,R

load
n,k) (20a)

s.t. ĝ(u) ≤ 0 , constraints (16)-(19) (20b)



where the bold-faced Rpv
n,k = (Rpv+

n,k , R
pv−
n,k ) and likewise,

while fR is a linear cost function of the allocated reserves,
defined similarly as f .

Finally, we implement a simple measurement based con-
trol algorithm that dispatches reserves in response to dis-
turbance events. In microgrids, the amount of flexible gen-
eration is increased/decreased based on real-time frequency
measurements. In our quasi-static analysis, we consider the
supply-demand power imbalance to be the measure of fre-
quency and utilize that to dispatch the microgrid reserves in
order to meet the demand under disturbance events. While
works such as [24] has explored such feedback control
methods, in this work, we employ a simple proportional
controller that dispatches reserves in proportion to their
available capacity:

Reserve Dispatch =
Reserve Capacity

Total Reserves
∗ Imbalance .

IV. ADVERSARIAL SET CHARACTERIZATION

While the robust formulation (20) can be solved for a
given uncertainty set Ωw , it is not known a priori what all
adversarial events (as specified by the set) the system could
be resilient against. In other words, it could be possible that,
for a specified adversarial set Ωw, the problem (20) returns
infeasible. In this paper, we attempt to address this fact
directly by proposing an algorithmic method to characterize
the (maximal) adversarial set that the system can tolerate
without violation of any critical constraint.

The optimal dispatch u? obtained by solving the optimiza-
tion problem (2)-(10) are the set-points associated with the
diesel generators, dispatchable loads and solar generation.
The goal of the adversarial set characterization is to gain
an understanding of the set of adversarial events that can
be mitigated by the reserves associated with the optimal
dispatch. For brevity, we will denote the robust version of
the constraints (2)-(10) which jointly considers the decision
variables u ∈ Rn and the adversarial event w ∈ ΩW ⊂ Rm

as a convex constraint g(u,w) ≤ 0.
A polytopic inner approximation Ω̄w of Ωw that captures

the set of adversarial events which can be mitigated by the
reserves associated with the optimal dispatch u? can be
constructed by solving m optimization problems as follows:

Pi : max
wi

αi (21a)

g(u?, wi) ≤ 0 (21b)
wi ∈ Ωw (21c)
wi = wnom + αiei (21d)

where i ∈ {1, ..m}, ei ∈ Rm is the i’th basis vector and
wnom is the nominal value of the adversarial disturbance.
The nominal value is simply the best estimate of the ad-
versarial disturbance. In the absence of any information, we
can assume that wnom to correspond to the event where there
has been no adversarial interference. The optimal solution to
Pi is the vector w?

i which maximizes the magnitude of the
i’th component of the adversarial vector w. We will denote

Fig. 1: Modified IEEE-123 node system with added solar
PV, diesel generators and battery units. Note that the bus 76
has collocated diesel and solar generator, while bus 47 has
collocated diesel generator and battery.

w?
0 = wnom. Since g is convex, it follows that for any

convex combination
∑m

i=1 αiw
?
i of the optimal solutions,

g(u?,
∑m

i=0 αiw
?
i ) ≤ 0. Then, we can define:

Ω̄w = {w | w =

m∑
i=0

αiw
?
i ,

m∑
i=0

αi = 1, αi >= 0}.

The set Ω̄w represents an inner approximation of the set of
adversarial events which can be mitigated by the available
reserves given that the optimal dispatch is fixed to u?.

V. SIMULATION RESULTS

A. Baseline Optimization: Example

We illustrate the baseline optimization problem (12) on
a modified three-phase IEEE-123 node system [25], shown
in Fig. 1, which is converted into an islanded microgrid
by disconnecting the substation from the utility. The figure
shows the location of the solar PV units, diesel generator
(DG) units and battery units in the network. The peak load
value in the network is 3.5 MW (active) and 1.9 MVAR
(reactive). The cumulative maximum generation limit of the
DGs is kept at 2.5 MW, while the cumulative maximum PV
generation is 1.77 MW. The aggregated (charing/discharging)
power limit of the batteries is 1.5 MW, with an aggregated
energy capacity of 6 MWh. The network model is hosted in
GridLAB-D [26] and interacts with the baseline optimization
(implemented in Julia) via FNCS which is a co-simulation
platform [27]. To showcase the baseline optimization prob-
lem, we simulate the model under two scenarios: 1) low solar
high load, and 2) high solar low load.

1) Low solar high load case: This scenario represents
the solar and load profiles typically observed during the
morning hours, with a low but increasing amount of solar
and a high load. The generation and load dispatch for this
case is shown in Fig. 2 which shows how with increasing
solar generation over time, the DG generation is reduced in
order to reduce the cost of operation. Furthermore, Fig. 3



Fig. 2: Generation and load in the low solar high load case.

(a) (b)

Fig. 3: Low solar high load case: (a) Solar curtailment (b)
Load curtailment

shows the curtailment in solar and load, highlighting that
initially there a small amount of load curtailment which is
required due to inadequate solar PV available, but as the
solar PV generation increases, the load curtailment becomes
zero. The effect of the generation and load dispatches on the
system constraints is depicted in Fig. 4 which shows that the
voltages are within their operational limits and the state of
charge (SoC) of each battery in the system is also within the
SoC limits. In these simulation results, we assume that the
initial SoC of the batteries is randomly chosen.

2) High solar low load case: This scenario represents
the solar and load profiles typically observed during the
noon/midday hours, with high solar generation but low load.
The generation and load dispatch for this case is depicted
in Fig. 5, which shows how the battery generation reduces
and the solar generation increases (since reducing solar
curtailment is part of the objective). Also, it can be seen that
the DG output is zero as there is sufficient output available
from the solar generation and batteries to meet the load. The
effect on the system constraints of this generation dispatch
is shown in Fig. 6, which depicts that the voltages are within
their nodal limits and that the state of charge (SoC) for all
the batteries is within their respective limits (in per unit).

These case studies show that the baseline optimization
satisfies supply-demand balance and is able to satisfy the
voltage and state of charge constraints. Furthermore, the
amount of load curtailment is minimum and supply is
maintained to critical loads in the system.

B. Robust optimization simulation results

In the following set of simulation results, we will illustrate
the effectiveness of the robust formulation (in Sec. III). We
consider a disturbance event consisting of a cyber-physical

(a) (b)

Fig. 4: Low solar high load case: (a) Nodal voltages (b)
Battery state of charge evolution.

Fig. 5: Generation and load in the high solar low load case.

event as depicted in Fig. 7a, wherein the largest DG in the
microgrid (DG 65) trips at time 20 min and become offline
and soon after, at 30 min, there is a cyber attack which masks
the increase in load from the system operator. The DG is
made operational and comes back online at 40 min, whereas
the cyber attack is finally over at 50 min. We solve the
robust optimization problem to maintain sufficient reserves
in order to meet the increased demand and also maintain
system constraints under this cyber-physical event, i.e., the
robust optimization problem should have enough reserves
to dispatch in case such a cyber-physical event happens
on the microgrid. It is assumed that the disturbance can
be measured through the imbalance in supply and demand
which manifests itself in the form of frequency deviation in
the system. This frequency measurement is utilized by the
flexible resources to dispatch their reserves when an adver-
sarial event occurs. The results for the robust optimization
dispatch are shown in Fig. 7b. The results show that as the
DG trips at 20 min, the solar PV and the battery increase their
output in order meet the load. Furthermore, when the cyber-
attack at 30 min masks the increased load, the battery and PV
generation is further increased to meet this load. As the DG
unit comes back online and the cyber-attack ends, the battery
and solar PV also reduce their output. These simulation
results illustrate the effectiveness of the robust formulation
to deal with this cyber-physical event. Furthermore, Fig. 8
shows that the robust formulation allocates enough total
reserves to deal with this cyber-physical event, i.e., to counter
the loss of the largest DG and the load masking cyber-attack.
The results in Fig. 9 demonstrate the effect of this robust
dispatch on the system constraints, i.e., the SoC of all the
batteries is within their limits and the nodal voltages are



(a) (b)

Fig. 6: High solar low load case: (a) Nodal voltages (b)
Battery state of charge evolution

(a) (b)

Fig. 7: Cyber-physical event case: (a) DG-trip followed by
cyber-attack that masks the increase in load (b) Response
of the flexible generation and curtailment to deal with this
event

within the specified bounds.

C. Adversarial set simulation results

In order to showcase the adversarial set characterization
(presented in Sec. IV), we determine the set of largest
disturbances which the system can handle. In this scenario
we consider losing the largest DG unit, load increase at
certain buses, and error in the solar forecast. The baseline
optimization problem is solved for each time instant, and
given the baseline dispatch, the set Ω̄w is computed for each
time step by solving Pi for each potential adversarial event.
The maximum component-wise perturbation that can be
tolerated and a 2-dimensional projection of Ω̄w for specific
time instants in shown in Fig 10a and Fig 10b. Furthermore,
the shape of the set Ω̄w changes over time and depends on the
amount of flexibility that is available in the system (see Fig
11a and Fig 11b). Then sampling from the set Ω̄w showcases
that these disturbances can be handled by the available
flexibility. This is shown in Fig. 12 which shows the response
of the generators to the loss of DG unit and increase in load
and also shows that in this response the SoC constraints are
still satisfied. Figure 12a shows that at time T = 20 minutes
there is a loss of DG (chosen randomly between zero and
maximum DG loss calculated for the adversarial set). Based
on the above analysis, we are guaranteed to have enough
reserves available in the system to deal with this disturbance,
which can be seen from the increase in battery output and
solar PV generation. Furthermore, at T = 30 minutes, we
experience a load increase at certain buses (again chosen
randomly at each step between zero and the maximum
calculated based on the adversarial set). To deal with this load

Fig. 8: Supply demand imbalance created by the cyber-
physical event and the reserves available to deal with such
an event. The figure shows that enough reserves are available
to the system operator to effectively deal with this event.

(a) (b)

Fig. 9: Network constraint under cyber-physical event: (a)
Battery state of charge (SoC) (b) Network voltages

increase, we dispatch additional flexibility from the battery
and the DG units. These simulation results illustrate that the
maximum adversarial set calculated in the previous analysis
can be managed feasibly by the available flexibility in the
microgrid, while maintaining the supply-demand balance and
other constraints such as SoC as depicted in Fig. 12b.

VI. CONCLUSIONS

This paper presented a method to determine the adversarial
set of a three-phase microgrid system. We formulate the
robust optimization problem and from that we formulate the
adversarial set characterization problem. We illustrate the
inner approximation of the adversarial set through simula-
tion results on IEEE-123 node distribution system. Future
work will develop methods to incorporate the determined
adversarial sets in microgrid planning and operation. Future
work will also focus on probabilistic uncertainties (in the
form of chance-constrained and risk based optimization), and
compare the conservativeness of the characterized adversarial
set between the deterministic and probabilistic approaches.
Moreover, we will also investigate the applicability of this
approach to larger systems (e.g., networked microgrids).
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(a) (b)
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