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Approximate Bisimulation Relations for Neural Networks and

Application to Assured Neural Network Compression

Weiming Xiang, Senior Member, IEEE and Zhongzhu Shao

Abstract— In this paper, we propose a concept of approximate
bisimulation relation for feedforward neural networks. In the
framework of approximate bisimulation relation, a novel neural
network merging method is developed to compute the approxi-
mate bisimulation error between two neural networks based
on reachability analysis of neural networks. The developed
method is able to quantitatively measure the distance between
the outputs of two neural networks with same inputs. Then, we
apply the approximate bisimulation relation results to perform
neural networks model reduction and compute the compression
precision, i.e., assured neural networks compression. At last,
using the assured neural network compression, we accelerate
the verification processes of ACAS Xu neural networks to
illustrate the effectiveness and advantages of our proposed
approximate bisimulation approach.

I. INTRODUCTION

Deep neural networks (DNN) are now widely used in a

variety of contemporary applications, such as image pro-

cessing [1], pattern recognition [2], [3], adaptive control,

[4], [5] autonomous vehicles [6], and other fields, showing

the powerful capabilities solving complex and challenging

problems that traditional approaches fail to deal with. To

cope with complex tasks and different environments, neural

network models have been being developed with increasing

scale and complexity, which aim to provide better perfor-

mance and higher accuracy. However, the increasing scale

and complexity of the neural network models also mean

that neural networks require a large amount of resources

for real-world implementation such as higher memory, more

computational power, and higher energy consumption [7].

Therefore, neural network model compression methods were

developed to reduce the complexity of neural networks at

the least possible price of performance deterioration. For

instance, in [8], four compression methods for deep convolu-

tional neural networks are summarized, but some problems

were pointed out such as a shxarp drop in the accuracy

of the network when compressing. More neural network

compression results can be found in the recent survey [9]

and references therein. Moreover, it has been observed that

well-trained neural networks on abundant data are sometimes

sensitive to updates, and react in unexpected and incorrect

ways to even slight changes of the parameters [10]. The

neural network compression inevitably introduces changes

to the neural network. Therefore, an approach is needed to

formally characterize the changes between the original neural

network model and its compressed version.
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In this paper, we propose an approximate bisimulation

relation between two neural networks, which formally char-

acterize the maximal difference between the outputs of two

neural networks generated from same inputs. Based on the

framework of the approximate bisimulation relation, we

propose a neural network merging algorithm to calculate

the approximate bisimulation error, measuring the distance

between two neural networks. Applying this approximate

bisimulation method to neural network model compression,

we can obtain the precision of neural network model com-

pression, which is able to provide assurance to perform tasks

using compressed neural networks on behalf of original ones.

To illustrate the feasibility of the approximate bisimulation

method, we apply it to accelerate verification processes of

the ACAS Xu neural networks using the compressed neural

networks.

The remainder of the paper is organized as follows:

Preliminaries are given in Section II. The approximate

bisimulation relation and approximate bisimulation error

computation are presented in Section III. Assured neural

network compression and examples are given in Section IV.

The conclusion is presented in Section V.

Notations: For the rest of paper, 0n×m denotes denotes

a matrix of n rows and m columns with all elements zero,

In denotes the n-dimensional unit matrix. purelin(·) is linear

transfer function, i.e., x = purelin(x).

II. PRELIMINARIES

In this paper, we consider a class of feedforward neural

networks which generally consist of one input layer, multiple

hidden layers and one output layer. Each layer consists of

one or multiple neurons. The action of a neuron depends on

its activation function, which is in the description of

yi = φ(
∑n

j=1
wijxj + bi) (1)

where yi is the output of the ith neuron, xj is the jth input of

the ith neuron, wij is the weight from the jth input to the ith

neuron, bi is the bias of the ith input, φ(·) is the activation

function. Each layer ℓ (1 ≤ ℓ ≤ L) of a feedforward neural

network has n{ℓ} neurons. Layer ℓ = 0 denote the input

layer, n{0} denote the number of the input layer. For the

layer ℓ, the input vector is denoted by x{ℓ}, respectively, the

weight matrix and the bias vector are

W{ℓ} = [w
{ℓ}
1 , · · · , w

{ℓ}

n{ℓ} ]
T (2)

b{ℓ} = [b
{ℓ}
1 , · · · , b

{ℓ}

n{ℓ} ]
T (3)
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where w
{ℓ}
i is the weight vector, b

{ℓ}
i is the bias value. The

output vector of layer ℓ is y{ℓ} defined by

y{ℓ} = φ{ℓ}(W{ℓ}x{ℓ} + b{ℓ}) (4)

where φ{ℓ}(·) is the activation function of layer ℓ.

For the whole neural network, the input and output layer

are x[0] and y[L] respectively, the input of the layer ℓ is the

output of the layer ℓ−1, the mapping relation from the input

to the output is denoted by

y{L} = Φ(x{0}) (5)

where Φ(·) , φ{L} ◦ φ{L−1} · · ·φ{1}(·). The mapping

relation Φ includes not only the activation function of the

neural network, but also the weight matrix and the bias

vectors, which represent the structural information of the

neural network.

Given an input set X , the output reachable set of a neural

network is stated by the definition below.

Definition 1: Given a neural network in the form of (5)

and input set X ∈ R
n{0}

, the following set

Y =
{

y{L} ∈ R
n{L}

| y{L} = Φ(x{0}),x{0} ∈ X
}

(6)

is called the output reachable set of neural network (5).

The safety specification of a neural network is expressed

by the set defined in the output space, describing the safety

requirement.

Definition 2: Safety specification S formalizes the safety

requirement for output y{L} of neural network (5), and is a

predicate over output y{L} of neural network (5). The neural

network (5) is safe if and only if the following condition is

satisfied:

Y ∩ ¬S = ∅ (7)

where Y is the output set defined by (6), and ¬ is the symbol

for logical negation.

The above safety verification concept is reachability-based

and will be used in Section IV for safety verification of neural

networks of Airborne Collision Avoidance Systems in [11].

III. APPROXIMATION SIMULATION RELATIONS OF

NEURAL NETWORKS

A. Approximation Bisimulation Relations

In order to characterize the difference of two feedforward

neural networks in terms of outputs, we defined the following

metric which measures the distance between the outputs of

two neural networks in the framework of the reachable set

defined in Definition 1.

Definition 3: Consider two neural networks y{L} =

Φj(x
{0}), j ∈ {1, 2}, input set X ∈ R

n{0}

, and output

sets Yj ∈ R
n{L}

, j ∈ {1, 2}, we define Nj = (X ,Yj ,Φj),
j ∈ {1, 2}, and

d(Φ1(x
{0}
1 ),Φ2(x

{0}
2 )) =

{

ρ(y
{L}
1 ,y

{L}
2 ) if x

{0}
1 = x

{0}
2

+∞ otherwise

(8)

where

ρ(y
{L}
1 ,y

{L}
2 ) = sup

y
{L}
1

∈Y1,y
{L}
2

∈Y2

∥

∥

∥
y
{L}
1 − y

{L}
2

∥

∥

∥
. (9)

It is noted that d(Φ1(x
{0}
1 ),Φ2(x

{0}
2 )) defined in (8)

characterizes the maximal difference between the outputs of

two neural networks generated from a same input, which

quantifies the discrepancy between two neural networks Φ1

and Φ2 in terms of outputs. Based on Definition 3, we will

be able to establish the approximate bisimulation relation of

two neural networks.

Definition 4: Consider Nj = (X ,Yj ,Φj), j ∈ {1, 2},

and let ε ≥ 0, a relation Rε ∈ R
n{L}

× R
n{L}

is called

an approximate simulation relation between N1 and N2, of

precision ε, if for all (y
{L}
1 ,y

{L}
2 ) ∈ Rε

1) d(Φ1(x
{0}),Φ2(x

{0})) ≤ ε, ∀x{0} ∈ X ;

2) ∀x{0} ∈ X , ∀Φ1(x
{0}) ∈ Y1, ∃Φ2(x

{0}) ∈ Y2 such

that (Φ1(x
{0}),Φ2(x

{0})) ∈ Rε;

3) ∀x{0} ∈ X , ∀Φ2(x
{0}) ∈ Y2, ∃Φ1(x

{0}) ∈ Y1 such

that (Φ1(x
{0}),Φ2(x

{0})) ∈ Rε

and we say neural networks N1 and N2 are approximately

bisimilar with precision ε, denoted by N1 ∼ε N2 .

Remark 1: The meaning of approximate bisimulation be-

tween two neural networks N1 and N2 with precision ε,

which denoted by N1 ∼ε N2, is as follows: Considering

two neural networks N1 and N2 and any output of neural

network N1, we can find one output generated by the same

corresponding input out of neural network N2, and vice

versa. The two outputs of two neural networks always satisfy

that the distance between them is bounded by ε. In the case

of ε = 0, we can define that the two neural networks have

an exact simulation relation.

Then, we define metrics measuring the distance between

the observed behaviors of neural network N1 and N2. Based

on the defined notion of approximate bisimulation, we can

define the approximate bisimulation error to represent the

distance between two neural networks.

Definition 5: Given two neural networks N1 and N2, the

approximate bisimulation error of them are defined by

d(N1,N2) = sup{ε | N1 ∼ε N2} (10)

where ε ≥ 0.

The key to establish the approximation bisimulation re-

lation between two neural networks is how to efficiently

compute the approximation bisimulation error defined by

(10). In the next subsection, a reachability-based method is

proposed to compute the approximate bisimulation error.

B. Approximate Bisimulation Error Computation

In order to compute the approximate bisimulation er-

ror ε between two neural network outputs, the set-valued

reachability methods can be used. First, consider two neural

networks with same input set X , a feedforward neural

network NL with L hidden layers and n{l}, l = 1, . . . , L
neurons in each layer, and its bisimilar feedforward neural

network NS with S hidden layers and n{s}, l = 1, . . . , S
neurons in each hidden layer.



Without loss of generality, the following assumption is

given for neural networks NL and NS .

Assumption 1: The following assumptions hold for two

neural networks NL and Ns:

1) The number of inputs of two neural networks are same,

i.e., n
{0}
L = n

{0}
S ;

2) The number of outputs of two neural networks are

same, i.e., n
{L}
L = n

{S}
S ;

3) The number of hidden layers of neural network NL is

greater than or equal the number of hidden layers of

neural network NS , i.e., L ≥ S.

According to (9), (10), the approximate bisimulation error

between NL and NS can be expressed by

d(NL,NS) = sup
x{0}∈X

∥

∥

∥
ΦL(x

{0})− ΦS(x
{0})

∥

∥

∥
. (11)

To obtain the approximate bisimulation error of the two

neural networks, i.e., d(NL,NS), we propose to merge

the two neural networks in a non-fully connected structure

NM , which is able to generate the output y
{M}
M exactly

characterizing the difference of the outputs of NL and NS ,

i.e., y
{M}
M = y

{L}
L − y

{S}
S .

Merged Neural Network NM : To begin with, we consider

two neural networks NL and NS with same input x{0}. We

use W
{m}
M and b

{m}
M to denote the weight matrix and bias

vector of the mth layer of the merged neural network NM ,

x
{m}
M and y

{m}
M are input and output vectors of mth layer of

NM . The structure of the merged neural network NM with

L+ 1 layers is recursively defined as below:
{

y
{m}
M = φ

{m}
M (W

{m}
M x

{m−1}
M + b

{m}
M )

x
{m}
M = y

{m}
M

(12)

where m = 1, 2, . . . , L + 1. The input is x
{0}
M = x{0},

output is y
{L+1}
M , weight matrices W

{m}
M and bias vectors

b
{m}
M , and activation functions φ

{m}
M (·) are categorized as

the following five cases:

1) When m = 1, W
{1}
M , b

{1}
M , and φ

{1}
M (·) are

W
{1}
M =

[

W
{1}
L

W
{1}
S

]

(13)

b
{1}
M =

[

b
{1}
L

b
{1}
S

]

(14)

φ
{1}
M (·) =

[

φ
{1}
L (·)

φ
{1}
S (·)

]

. (15)

2) When 1 < m ≤ S− 1, W
{m}
M , b

{m}
M , and φ

{m}
M (·) are

W
{m}
M =





W
{m}
L 0

n
{m}
L

×n
{m−1}
S

0
n
{m}
S

×n
{m−1}
L

W
{m}
S



 (16)

b
{m}
M =

[

b
{m}
L

b
{m}
S

]

(17)

φ
{m}
M (·) =

[

φ
{m}
L (·)

φ
{m}
S (·)

]

. (18)

3) When S−1 < m ≤ L−1, W
{m}
M , b

{m}
M , and φ

{m}
M (·)

are

W
{m}
M =

[

W
{m}
L 0

n
{m}
L

×n
{S−1}
S

0
n
{S−1}
S

×n
{m}
L

I
n
{S−1}
S

]

(19)

b
{m}
M =

[

b
{m}
L

0
n
{S−1}
S

×1

]

(20)

φ
{m}
M (·) =

[

φ
{m}
L (·)

purelin(·)

]

. (21)

4) When m = L, W
{L}
M , b

{L}
M , and φ

{L}
M (·) are

W
{L}
M =





W
{L}
L 0

n
{L}
L

×n
{S−1}
S

0
n
{S}
S

×n
{L−1}
L

W
{S}
S



 (22)

b
{L}
M =

[

b
{L}
L

b
{S}
S

]

(23)

φ
{L}
M (·) =

[

φ
{L}
L (·)

φ
{S}
S (·)

]

. (24)

5) When m = L + 1, W
{L+1}
M , b

{L+1}
M , and φ

{L+1}
M (·)

are

W
{L+1}
M =

[

I
n
{L}
L

−I
n
{L}
L

]

(25)

b
{L+1}
M =

[

0
2n

{L}
L

×1

]

(26)

φ
{L+1}
M (·) = purelin(·). (27)

Remark 2: In the merging process of neural networks NL

and NS , (13)–(15) ensures that merged neural network NM

takes the one input x{0} for the subsequent calls involving

both processes of NL and NS . Then, for 1 < m ≤ S−1, NM

conducts the computation of NL and NS parallelly for the

hidden layers of 1 < m ≤ S−1. When S−1 < m ≤ L−1,

the hidden layers of neural network NS which has a less

hidden layers are expanded to match the number of layers

of neural network NL with larger number of hidden layers,

but the expanded layers are forced to be pass the information

to subsequent layers without any changes, i.e., the weight

matrices of the expanded hidden layers are identity matrices,

and the bias vector is the zero vectors. This expansion is

formalized as (19)–(21). Moreover, as m = L, this layer is a

combination of output layers of both NL and NS to generate

the same outputs of NL and NS . At last, a comparison layer

L+1 is added to compute the exact difference between two

bisimular neural networks.

With the merged neural network NM in the description of

(12)–(27), we are ready to propose the main contribution of

this work in Proposition 1.

Proposition 1: Given two neural networks NL with L

layers and NS with S layers under Assumption 1, the output

y
{L+1}
M of their merged neural network NM defined by (12)–

(27) equals the difference of the output y
{L}
L of NL and the

output y
{S}
S of NS , i.e.,

y
{L+1}
M = y

{L}
L − y

{S}
S (28)
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Fig. 1. Neural network merging process for approximate bisimulation error computation

holds for any input x{0} ∈ X , where y
{L}
L = ΦL(x

{0}) and

y
{S}
S = ΦS(x

{0}).
Proof: Considering an input x{0} ∈ X and according to

(13)–(15), the following results for output of layer m = 1 of

merged neural network NM can be obtained

y
{1}
M =

[

φ
{1}
L (W

{1}
L x{0} + b

{1}
L )

φ
{1}
S (W

{1}
S x{0} + b

{1}
S )

]

=

[

x
{1}
L

x
{1}
S .

]

(29)

Further considering layers 1 < m ≤ S − 1 of NM , and

using (16) and (17), it leads to

W
{m}
M x

{m−1}
M + b

{m}
M =

[

W
{m}
L x

{m−1}
L + b

{m}
L

W
{m}
S x

{m−1}
S + b

{m}
S

]

(30)

where 1 < m ≤ S − 1. Then based on (18), recursively we

can obtain

y
{S−1}
M =

[

φ
{S−1}
L ◦ · · · ◦ φ

{1}
L (W

{1}
L x{0} + b

{1}
L )

φ
{S−1}
S ◦ · · · ◦ φ

{1}
S (W

{1}
S x{0} + b

{1}
S )

]

(31)

=

[

x
{S−1}
L

x
{S−1}
S

]

. (32)

Moreover, considering S−1 < m ≤ L−1 and using (19)

and (20), one can obtain

W
{m}
M x

{m−1}
M + b

{m}
M =

[

W
{m}
L x

{m−1}
L + b

{m}
L

x
{m−1}
S

]

(33)

where S − 1 < m ≤ L− 1. From (21), it yields

y
{L−1}
M =

[

x
{L−1}
L

x
{S−1}
S

]

in which x
{L−1}
M is defined as

x
{L−1}
M = φ

{L−1}
L ◦ · · · ◦ φ

{S}
L (W

{S}
L x

{S−1}
L + b

{S}
L )

= φ
{L−1}
L ◦ · · · ◦ φ

{1}
L (W

{1}
L x

{0}
L + b

{1}
L ). (34)

Then, as m = L with (22) and (23) as well as x
{L−1}
M =

y
{L−1}
M , it leads to

W
{L}
M x

{L−1}
M + b

{L}
M =

[

W
{L}
L x

{L−1}
L + b

{L}
L

W
{S}
S x

{S−1}
S + b

{S}
S

]

(35)

Also due to (24), we can have

y
{L}
M =

[

φ
{L}
L (W

{L}
L x

{L−1}
L + b

{L}
L )

φ
{S}
S (W

{S}
S x

{S−1}
S + b

{S}
S )

]

=

[

y
{L}
L

y
{S}
S

]

. (36)

At last, when m = L + 1 with (25)–(27), the following

result can be obtained

y
{L+1}
M = W

{L+1}
M x

{M}
L + b

{L+1}
M

=
[

I
n
{L}
L

−I
n
{L}
L

]

[

y
{L}
L

y
{S}
S

]

= y
{L}
L − y

{S}
S . (37)

where y
{L}
L = ΦL(x

{0}) and y
{S}
S = ΦS(x

{0}). The proof

is complete. �

Proposition 1 implies that, for any individual input x{0},

we can compute the difference of the outputs between two

bisimilar neural networks via generating the output of their

merged neural network of x{0}. This lays the foundation

of computing the approximate bisimulation error in the

description of (11), i.e., the computation of the maximum

discrepancy between two bisimilar neural networks subject

to an input set X can be converted to the output reachable

set YM computation of merged neural network NM .

Proposition 2: Given an input set X , two neural networks

NL with L layers and NS with S layers under Assumption

1, their merged neural network NM can be defined by (12)–

(27). Then, the approximate bisimulation error between NL

and NS can be computed by

d(NL,NS) = sup
y
{L+1}
M

∈YM

∥

∥

∥
y
{L+1}
M

∥

∥

∥
(38)

where y
{L+1}
M = ΦM (x{0}) is the output of NM and YM is

the output reachable set of NM .

Proof: The result can be obtained straightforwardly from

the result in Proposition 1, i.e., y
{L+1}
M = y

{L}
L −y

{S}
S . The

proof is complete. �

As shown in Proposition 2, the key of computing

d(NL,NS) is to compute the output reachable set YM . For

instance, as in NNV neural network reachability analysis



tool, the reachable sets are in the form of a family of poly-

hedral sets [12], and in IGNNV tool, the output reachable

set is a family of interval sets [13], [14]. With the reachable

set YM , the approximate bisimulation error d(NL,NS) can

be easily obtained by searching for the maximal value of
∥

∥

∥
y
{L+1}
M

∥

∥

∥
in YM , e.g., testing throughout a finite number of

vertices in polyhedral sets.

IV. APPLICATION TO ASSURED NEURAL NETWORK

COMPRESSION

A. Assured Neural Network Compression

In practical applications, neural networks are usually large

in size, and it could be computationally expensive and time-

consuming to perform those tasks requiring a large amount

of computation resources. A promising method to mitigate

the computation burden is to compress large-scale neural

networks into small-scale ones and provide the approximate

bisimulation error between two neural networks. With the

approximate bisimulation error, we can infer the outputs of

the original large-scale neural network via running its corre-

sponding small-scale compressed one plus the approximate

bisimulation error. The assured neural network compression

is stated as below.

Definition 6: Given a large-scale neural network NL with

input set X , a small-scale neural network NS is called its as-

sured compressed version with precision ε if the approximate

bisimulation error of two neural networks are not greater than

ε, i.e.,

d(NL,NS) ≤ ε (39)

where ε ≥ 0.

Remark 3: There exist a number of neural network com-

pression methods [9] to obtain small-scale neural network

NS . In this paper, our focus is on how to compute the

assured neural network compression precision ε using the

framework of approximate bisimulation relations proposed

in the previous sections.

Example 1: We verify the effectiveness of the approxi-

mate bisimulation approach in neural network compression

by a numerical case. In the numerical case, we aim to

soundly simulate a neural network NL (large-scale) with 5

hidden layers and 50 neurons in each hidden layer using a

neural network NS (small-scale) with 2 hidden layers and 10

neurons in each hidden layer. To facilitate the visualization

of the simulation results, the output outputs of both neural

networks are selected one-dimensional.

First, a neural network NL is randomly generated, and

then a neural network NS is trained out of the input-output

data of NL. All activation functions are ReLU functions.

Using the merged neural network method and computing

reachable set with NNV tool, the approximate bisimulation

error ε = 26.1227 of the two neural networks can be

obtained. With the help of ε = 26.1227, the upper and

lower bounds of output y
{L}
L of NL can be obtained via the

outputs y
{S}
S of NS with a smaller size, i.e., upper bound

y
{L}
L = y

{S}
S + ε and lower bound y

{L}
L = y

{S}
S − ε.

0 0.2 0.4 0.6 0.8 1
-900

-800

-700

-600

-500

-400

-300

Original NN :1*50*50*50*50*50*1
Compressed NN :1*10*10*1

Approximate bisimulation error = 26.1227

Original NN
Compressed NN
Estimated upper bound
Estimated lower bound

Fig. 2. Assured compression for a random neural network (from 50 ×

50× 50× 50× 50 to 10× 10) by approximate bisimulation approach.

Output data of the original neural network and the com-

pressed neural network, as well as the upper and lower

bounds, are represented in Fig. 2. It can be observed that

all the outputs y
{L}
L are within the upper bound y

{L}
L and

lower bound y
{L}
L , i.e., y

{L}
L ≤ y

{L}
L ≤ y

{L}
L .

B. Application of ACAS Xu Network Verification

In this subsection, we apply the neural network model

compression method to ACAS Xu network in [11] to ac-

celerate the verification processes. ACAS Xu system has

been developed using a large lookup table that maps sensor

measurements to warning signals, see Fig. 3. It has been

shown that DNNs can significantly reduce memory (replac-

ing a 2GB lookup table with an efficient DNNs of less than

3MB). The DNN method of ACAS Xu system consists of

45 DNNs, and each neural network contains 5 inputs and

5 outputs, with 6 hidden layers and 50 neurons with ReLU

activation functions in each layer.

In practical applications, calculating the exact output

reachable set of a neural network with 6 hidden layers

and 50 neurons per layer requires huge computational effort

and computational time [15]. Therefore, we compress the

original neural networks into smaller neural networks and

compute the assured precision by the approximate bisimula-

tion method. Then, we can perform verification of properties

Fig. 3. ACAS Xu horizontal logic table illustration [15]



based on those reduced-scale neural networks and approxi-

mate bisimulation error ε, i.e., expand the unsafe region ¬S
in Definition 3 by the approximate bismulation error ε.

In this example, we use neural networks with two hidden

layers and 10 neurons in each layer as the compressed

version for the compression of the DNNs of the ACAS Xu

system. Then, we verify Property φ3 on 27 neural networks

in the ACAS Xu system using their assured compressed

versions. The verification results and computational time are

listed in Table I. In Table I, ε is the approximate bisimulation

error. TL is the verification time (seconds) using original

neural networks and TS is the verification time (seconds)

using compressed neural networks. VL is the verification

results on original neural networks, and VS is the verification

results on compressed neural networks.

As explicitly shown in Table I, the verification time can

be significantly reduced using compressed neural networks.

It is worth mentioning that since the approximate bisimula-

tion error is an over-approximation of the exact difference

between the outputs of two neural networks, the safety

conclusions based on compressed networks are only able to

derive safe conclusions for original networks in safe cases.

As to uncertain cases, we have to perform verification on

original neural networks to ascertain the safety property. It

can be found that the safety of 18 of the compressed neural

networks can be used to conclude the safety of original

neural networks. The remaining 9 unsafe verification results

based on compressed neural networks are insufficient to

derive safe or unsafe conclusions of original neural networks.

This is mainly because the approximate bisimulation error

is too large to meet the accuracy of the safety verification.

Despite the 9 uncertain cases that need to be verified through

original neural networks, the total verification time has been

significantly reduced for these 27 neural networks.

V. CONCLUSION

This work proposed approximate bisimulation relations for

feedforward neural networks. The approximate bisimulation

relation formally define the maximal difference between the

outputs of two bisimular neural networks from same inputs.

An reachability-based computation procedure is developed

to efficiently compute the approximation error via a novel

neural network merging approach. Then, the approximation

bismulation approach is applied to assured neural network

compression. With the approximate bisimulation error, the

perform tasks using the compressed network on behalf of

original one such as verification of neural networks, which

has been demonstrated by an ACAS Xu example.
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