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Abstract— In this paper, we present a new trajectory opti-
mization algorithm for stochastic linear systems which com-
bines Model Predictive Path Integral (MPPI) control with
Constrained Covariance Steering (CSS) to achieve high per-
formance with safety guarantees (robustness). Although MPPI
can be used to solve complex nonlinear trajectory optimization
problems, it may not always handle constraints effectively and
its performance may degrade in the presence of unmodeled dis-
turbances. By contrast, CCS can handle probabilistic state and
/ or input constraints (e.g., chance constraints) by controlling
uncertainty which implies that CCS can provide robustness
against stochastic disturbances. CCS, however, suffers from
scalability issues and cannot handle complex cost functions in
general. We argue that the combination of the two methods
yields a class of trajectory optimization algorithms that can
achieve high performance while ensuring safety with high
probability. The efficacy of our algorithm is demonstrated in
an obstacle avoidance problem and a path generation problem
with a circular track.

I. INTRODUCTION

Many real-world tasks for autonomous systems can be
cast as finite horizon stochastic trajectory optimization prob-
lems in the presence of model uncertainties, and random
exogenous inputs from the environment. The main goal of
these problems is to find control policies that minimize the
expected value of a given cost function while satisfying state
and input constraints with a given confidence level.

In this work, we present a novel algorithm for constrained
stochastic trajectory optimization problems subject to safety
constraints. Our proposed algorithm combines Constrained
Covariance Steering (CCS) theory for discrete-time stochas-
tic linear systems with Model Predictive Path Integral (MPPI)
to achieve robustness to uncertainties and variations of the
different parameters of the proposed controllers as well as
improved performance, and scalability.
Literature Review: Optimization-based methods treat the
stochastic trajectory optimization problem as a nonlinear
program (NLP) which can be solved by specialized NLP
solvers. However, these NLP based approaches rely on a
good initial guess to achieve high performance and may
suffer from the lack of convergence guarantees [1]. Suc-
cessive convexification-based methods provide convergence
guarantees, but they may still suffer from scalability issues,
if the underlying system dynamics are stochastic [2], [3], [4].

Dynamic programming-based algorithms have been pro-
posed for unconstrained stochastic trajectory optimization
problems to alleviate the scalability issue in [5], [6] and for
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constrained problems in [7], [8]. These methods, however,
lack safety guarantees and their applicability is limited to
smooth objective functions. On the other hand, sampling-
based stochastic optimization algorithms deal with non-
smooth objective functions but they often cannot handle
unmodeled disturbances and model mismatch [9], [10].

The two methods that are most closely related to our
approach are discussed in [11], [12]. In [11], the authors
use Covariance Steering for path planning for linear systems
with chance constraints for obstacle avoidance. However, the
approach in [11] does not scale well due to the fact that the
number of decision variables increases quadratically with
the problem horizon because of the feedback terms. Fur-
thermore, integer variables that are used to encode obstacle
avoidance constraints add to computational complexity. In
[12], the authors use unconstrained covariance steering to
take sample trajectories from the low cost regions of the
state space to enhance the performance and to avoid local
minima. However, this method requires the terminal mean
and covariance as design parameters, which can be hard to
tune, and the safety constraints are not explicitly enforced.

Main Contributions: This paper presents a novel trajectory
optimization algorithm for stochastic linear systems with
a non-convex safe state space (CCSMPPI). The proposed
algorithm achieves high performance with safety guarantees
by combining the standard MPPI with the CCS. In particular,
MPPI is used to generate a reference trajectory, which is
then used to generate a convex safe region, by solving
an unconstrained stochastic trajectory optimization problem
whereas CCS generates a control policy which minimizes
the divergence from the reference trajectory while satisfying
the safety constraints. In this way, CCSMPPI endows the
MPPI algorithm with robustness to stochastic disturbances
by leveraging the framework of CCS.

The other improvement of the CCSMPPI over the standard
MPPI is the robustness and the safety guarantees against
poorly designed cost functions and incorrect tuning of al-
gorithm parameters. The CCS procedure of the proposed
algorithm filters the unsafe inputs that are computed by
MPPI and corrects them by means of a feedback control law.
This technique makes the cost function design and parameter
tuning tasks less time-consuming.

Finally, the practicality of CCSMPPI is demonstrated in
two different trajectory optimization problems in which we
compare our results with those obtained by using the standard
MPPI [9] and tube-MPPI [10]. It is shown in numerical
experiments that our approach is superior to standard MPPI
and tube-MPPI in terms of providing safety against both
stochastic disturbances and poorly designed cost functions.
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II. PROBLEM STATEMENT AND PRELIMINARIES

A. Notation

We denote by Rn the set of n-dimensional real vectors. We
use E [·] and P(E) to denote the expectation functional and
the probability of the random event E, respectively. Given a
vector x, its 2-norm is denoted by ‖x‖2 and given a matrix
A ∈ Rn×m, we denote its Frobenius norm by ‖A‖F and
its trace by tr(A). We use 0 and In to denote the zero
matrix and the n × n identity matrix, respectively. We will
denote the convex cone of n × n symmetric positive semi-
definite (symmetric positive definite) matrices by S+

n (S++
n ).

We write bdiag(A1, . . . , A`) to denote the block diagonal
matrix formed by the matrices Ai, i ∈ {1, . . . , `}. ∪Ni=1Oi
to denote the union of sets Oi indexed by i ∈ {1, . . . , N}.
We denote by µz and varz the mean and the variance of
a random vector z, respectively. We write x ∼ N (µ,Σ) to
represent the random variable x is normally distributed with
mean µ covariance Σ.

B. Problem Statement

The motion of the agent is described by a discrete-time
stochastic linear system:

xk+1 = Akxk +Bkuk + wk, (1)

where Ak ∈ R4×4, Bk ∈ R4×2, xk ∈ X ⊆ R4 is the state
of the agent which is decomposed as xk = [pT

k , v
T
k ]T, where

pk = [pxk, p
y
k]T ∈ R2 is the position and vk = [vxk , v

y
k ]T ∈ R2

is the velocity, uk = [uxk, u
y
k]T ∈ R2 is the control input

and wk ∈ R4 is the disturbance. We assume that wk ∼
N (0,Wk) and E[wkw

T
l ] = 0 for all k 6= l.

The choice of the objective function will be determined
by the particular application. However, in this paper, we
use the objective function utilized in the formulation of the
information-theoretic MPPI [9], which is defined as follows:

L(XN , UN−1) = Φ(xN ) +

N−1∑
k=0

(
q(xk) + λuT

kRkuk

)
, (2)

where XN = {x0, x1, . . . , xN} is the state sequence,
UN−1 = {u0, u1, . . . , uN−1} is the control input sequence,
q : Rn → R is the state-dependent term of the running
cost function, Φ : R2n → R is the terminal cost function,
Rk ∈ S+

n and λ ≥ 0. While the term λuT
kRkuk penalizes

the control input, q(xk) and Φ(xN ) are task dependent and
each of them can either be a smooth function as in [9] or a
sum of indicator functions for obstacle avoidance as in [10].

We assume that the position space is populated by Nobs

obstacles. The i-th obstacle is parametrized by its position,
si ∈ Rn, and its radius, ri ≥ 0, and the region it occupies
is denoted as Oi := {p ∈ Rn|‖x− si‖2 ≤ ri}. The position
space is defined as X ⊆ Rn and the safe region is defined
as Xsafe := X\O where O = ∪Nobs

j=1 Oj . Then, the safe
trajectory optimization problem can be formally stated as
follows:

minimize
XN , UN−1

E[L(XN , UN−1)] (3a)

subject to x0 = x̄0, (1)

P(xk ∈ Xsafe) ≥ 1− Pfail, ∀k ∈ IN (3b)

where IN = {0, 1, . . . , N}, x̄0 ∈ R2n and Pfail ∈ (0, 0.5] is
the acceptable level of the probability of the failure.
Since the system dynamics in (1) includes the random noise
term wk, the state sequence Xk is a random process thus the
problem in 3 is a stochastic trajectory optimization problem.

III. BRIEF REVIEW OF MPPI AND TUBE-MPPI
MPPI is a sampling-based stochastic Model Predictive

Control (MPC) algorithm [9]. It works by taking K sam-
ples of control sequences from a Gaussian distribution, and
finding the corresponding state trajectories and costs. Each
sequence is then weighted by an exponential transform of its
cost and the optimal control sequence is found as as weighted
sum: uMPPI = 1

η

∑K
i=1 ωiu

(i), where η =
∑K
i=1 ωi ,

ωi = exp− 1
λ (Ci − β), β = mini=1,...,K Ci, u(i) = v+ ε(i)

and ε(i) = [ε
(i)
0 , . . . , ε

(i)
TMPPI

], ε(i)k ∼ N (0, νI) and Ci is
defined as follows:

Ci = Φ(x
(i)
TMPPI

) +

TMPPI∑
k=0

(
q(x

(i)
k ) +

1

2
vT
k Rkvk

+
1

2

(
vT
k Rkε

(i)
k + (1− ν−1)ε

(i)T
k Rkε

(i)
k

))
, (4)

Ci is the total path cost induced by ith sample trajectory, v =
[v0, . . . , vTMPPI−1]T is the optimal control sequence obtained
by the previous iteration of the MPPI, ε(i) is the control
sampling noise, u(i) is the ith control sequence sample and
ν ≥ 0 is the control sampling covariance parameter. At
the next iteration, the previous optimal control sequence
is shifted in time and used as the mean of the Gaussian
distribution to sample controls from.

MPPI may not perform well when the system has a
disturbance that causes the control sampling distribution to
only sample high cost trajectories. Tube-MPPI [10] addresses
this by running MPPI from two starting states, a nominal
and a real state. The real state is taken from the state
of the real system as before whereas the nominal state
is found by propagating the previous nominal state and
control through the noise-free dynamics model without the
disturbance term, wk. Once the MPPI optimization step is
done, the optimal trajectory of the real system is pushed to
follow the optimal trajectory of the nominal system through
the use of a feedback controller. This procedure makes the
trajectory of the real system converge to the trajectory of the
nominal system which has a lower cost.

IV. LINEAR COVARIANCE STEERING THEORY

The main objective of the constrained covariance steering
(CCS) problem is to steer the mean and the covariance of a
stochastic linear system to desired values while minimizing
the expected value of an objective function subject to state
and/or input constraints [13], [14]. The general form of the
discrete-time CCS problem can be formally stated as follows:

minimize
π∈Π

J(x,u) = E

[
N−1∑
k=0

xT
kQkxk + uT

kRkuk

]
(5a)

subject to xk+1 = Akxk +Bkuk + wk, (5b)
P[xk ∈ X ] ≥ 1− εx, P[uk ∈ U ] ≥ 1− εu (5c)
x0 ∼ N (µ0,Σ0), xN ∼ N (µd,Σd) (5d)



where Π denotes the set of causal policies, X ⊆ Rnx and
U ⊆ Rnu are arbitrary sets corresponding to state and input
constraints. The constraints in (5d) represents the initial and
the desired state distributions. The terminal covariance con-
straint in (5d) which can be dropped in our CCS formulation
since it is not useful to specify a desired covariance for safety
as long as constraints in (5c) are satisfied.

Discrete-time formulations of the CCS problems can be
cast as finite-dimensional deterministic optimization prob-
lems by restricting the class of admissible policies to those
which admit the affine state history feedback [15] or the
disturbance feedback parametrization [16]. In this work, we
will be utilizing the latter according to which the control
input at each discrete stage can be expressed as follows:

vk =

{
v̄0 +H0(x0 − µ0) k = 0,

v̄k +Hk(x0 − µ0) +Kk−1wk−1 k > 0,
(6)

where Hk,Kk ∈ Rn×n and v̄k ∈ Rn for all k ∈
{0, 1, . . . , N − 1}. This parametrization allows us to cast
the covariance steering problem as a finite-dimensional
(deterministic) optimization problem in terms of the fol-
lowing decision variables: {v̄k, Hk,Kk}N−1

k=0 . In order to
do that, the decision variables are represented in a more
compact form as follows: H := [HT

0 , H
T
1 , . . . ,H

T
N−1]T,

K = bdiag(K0,K1, . . . ,KN−2,0
n×n), K := [ 0 0

K 0 ] and
v̄ = [v̄T

0 , v̄
T
1 , . . . , v̄

T
N−1]T.

Now, let x, v and w be concatenated state, input and noise
vectors. Then, it follows from (1) that

x := Γx0 + Guv + Gww, (7a)
v := v̄ + Hx̃0 + Kw, (7b)

where x̃0 := x0 − µ0. Equations (7a)-(7b) are derived from
(1) and (6) respectively. The reader can refer to [15], [16]
for the details of the previous derivations.

We can compute the mean of the vectors x and u by taking
the expectation of both sides of (7a) and (7b). Then, we
compute the deviation of concatenated vectors x̃ = x− µx

and ṽ := v−µv . Finally, we compute the variances varx :=
E[x̃x̃T] and varv := E[ṽṽT] as follows:

µx = Γµ0 + Guū, (8a)

varx = (Γ + GuH)Σ0(Γ + GuH)T

+ (Gw + GuK)W(Gw + GuK)T, (8b)
µv = v̄, (8c)

varv = HΣ0HT + KWKT, (8d)

where µ0 = E[x0], Σ0 = E[x̃0x̃
T
0 ] and W =

bdiag(W0, . . . ,WN−1). Furthermore, the state and the
control at the discrete stage k can be recovered from the
concatenated state and input vectors as xk = F xk x and vk =
F vk v, where F xk and F vk denote the block matrices whose
kth block is equal to the identity matrix and the other blocks
are equal to zero. Thus, the mean and the covariance of xk
and vk are given by µxk

= F xk µx, varxk
= F xk varxF

xT
k ,

µvk = F vk µv , varvk = F vk varvF
uT
k .

So, it follows from (8) that the mean of xk and vk can
be expressed as affine functions of the decision variable
v̄ whereas the covariance matrices of xk and vk can be

expressed as convex quadratic functions of the decision
variables H and K. This allows us to cast various forms
of the (constrained) covariance steering problem as convex
optimization problems which can be solved with highly
efficient solvers. The reader can refer to [15], [16], [17],
[18] for more details.

V. MAIN ALGORITHM

The main components of the algorithm are the MPPI
controller, the half-space generator, and the Constrained
Covariance Steering module. The MPPI controller solves the
unconstrained stochastic trajectory optimization problem and
returns a state and an input sequence of length TMPPI. The
state sequence generated by the MPPI module is used to
generate the half-space constraints. The state and the input
sequences and half-space constraints are used in the CCS
module to solve for a policy that is guaranteed to be safe
with high probability.

Algorithm 1: CCSMPPI
Require: Tmax, TCS, TMPPI,

Mobs, {Ak, Bk,Wk}k=0,...,Tmax
, σmax

1 x̄0 ← x0;
2 Σk ← 0;
3 for k ∈ {0, 1, . . . , Tmax} do
4 XTMPPI , UTMPPI ← MPPI(x̄k);
5 Sobs

k ← HSGen(XTMPPI ,Mobs) ;
6 µ0 ← x̄k; Σ0 ← Σk ;
7 v̄,H,K← CCS(µ0,Σ0, X

TMPPI , UTMPPI ,Sobs
k );

8 ūk ← v̄0, Lk ← H0 ;
9 uk ← ūk + Lk(xk − x̄k) ;

10 SendToActuators(uk);
11 x̄k+1 ← Akx̄k +Bkūk ;
12 Σk+1 ← (Ak +BkLk)Σk(Ak +BkLk)T + Wk ;
13 if λmax(Σ) > σmax then
14 x̄k+1 ← xk; Σk+1 ← 0;

A. MPPI

In this paper, we follow the procedures described in
[9] to use MPPI algorithm. The MPPI module requires
system dynamics and initial state x0 to sample trajectories.
The MPPI horizon TMPPI, the input sampling covariance
parameter ν, and the number of trajectory samples K are
required as algorithm parameters.

B. Half-space Generation

Safe half-spaces are generated by the “HSGen” procedure.
It takes the first TCS states of the sequence XTMPPI and
projects the position vectors p` onto each obstacle Oj .
Then, it computes the supporting hyperplane H`,j := {p ∈
R2 | aT

`,jp − b`,j = 0}, at the point of projection such that
aT
`,jp`−b`,j ≥ 0⇒ p` /∈ Oj . The projection of position p` at

time ` onto the obstacle Oj is denoted as z`,j and is defined
as z`,j := sj + h`,jrj , where h`,j := (p` − sj)/‖p` − sj‖2
is the unit normal vector to obstacle Oj at the point z`,j



towards p`. We set a`,j = h`,j and, b`,j = aT
`,jz`,j . So, we

can express a`,j and b`,j in terms of pl, sj and rj as follows:

a`,j =
(p` − sj)
‖p` − sj‖2

, b`,j =
(p` − sj)Tsj
‖p` − sj‖2

+ rj . (9)

The halfspace generation process is repeated for each obsta-
cle Oj and every time step `. The halfspace parameters are
gathered in the set of tuples Sobs

k = {(a`,j , b`,j)}j=1,...,Nobs

`=0,...,TMC

to be used in Constrained Covariance Steering. The condition
p` /∈ Oj is not necessary for the half-space generation proce-
dure. Even if p` ∈ Oj , the procedure described by equations
in (9) generates a half-space H`,j such that aT

`,jp− b`,j ≤ 0
holds for all p ∈ Oj .
C. Constrained Covariance Steering

The goal of the Constrained Covariance Steering module
is to minimize the deviation of the actual state and control
sequence from the reference state and control sequences
which are computed by the MPPI algorithm while satisfying
the safety constraints. This problem can be formally stated
as the following stochastic optimal control problem:

minimize
π∈Π

J(π) := E
[ TCS−1∑

`=0

δxT
` Q`δx` + δuT

` R`δu`

+ δxT
TCS

QTCS
δxTCS

]
(10a)

subject to x`+1 = A`x` +B`u` + w`, ∀` ∈ It (10b)
u` = π(x0, . . . , x`), ∀` ∈ It (10c)

P
[
aT
`,jp` − b`,j ≥ 0

]
≥ 1− Pfail,

∀{`, j} ∈ I (10d)

where Π denotes the set of all admissible control policies,
δx` = x`− xMPPI

` , δu` = u`− uMPPI
` , It := {0, . . . , TCS},

Io := {1, . . . , Nobs}, I = It × Io. The stochastic optimal
control problem defined in (10) can be cast as a deterministic
optimization problem by fixing the policy as in (6) as
explained in Section IV. The resulting finite-dimensional
deterministic optimization problem is given by:

minimize
ū,H,K

J (ū,H,K) := δx̄TQδx̄+ δūTRδū

+ tr(Qvarx) + tr(Rvaru) (11a)

subject to aT
`,jP`µx − b`,j ≥

α‖ζTPT
` a`,j‖2, ∀{`, j} ∈ I (11b)

ζ = [(G0 + GuH) (Gw + GwK)] R (11c)

where RRT = bdiag(Σ0,W), x and u are defined as in
Section IV, δx̄ = µx − xMPPI, δū = µu − uMPPI, Q =
bdiag(Q0, . . . , QTCS

), R = bdiag(R0, . . . , RTCS−1). P` is
defined such that p` = P`x and α = ϕ−1(1−Pfail) where ϕ
is the cumulative density function of normal random variable
with zero mean and unit variance. Finally, µx, µu, varx and
varu are defined as in (8a)-(8d). In addition, we observe that
varx = ζζT where ζ is given by (11c).

To see the equivalence of optimization problems in (11)
and (10), first, observe that the objective function in (10)
can be written as E[δxTQδx+ δuTRδu] where δx = x−
xMPPI, δu = u − uMPPI. Using the cyclic permutation

property of trace operator, the linearity of expectation and
the equalities varδx = varx and varδu = varu, it follows
that the objective functions in (10a) and (11a) are equivalent.
Proposition 1 along with the expressions µp` = P`µx and
varp` = P`ζζ

TPT
` show that (11b), (11c) ⇔ (10d).

Proposition 1. Let p ∼ N (µp,Σp), where a, µp ∈ Rn,
b ∈ R, Σp ∈ S+

n , and P ∈ (0, 1/2]. Then, P[aTp − b ≥
0] ≥ 1− P if and only if aTµp − b ≥ ϕ−1(1− P )‖RTa‖2
where ϕ : R → (0, 1) is the cumulative density function of
normally distributed random variable with zero mean and
unit variance and, finally R is such that RRT = Σp.

The problem in (11) has a convex quadratic objective
function and the constraint in (11c) is affine. Also, the con-
straint in (11b) corresponds to a second-order cone constraint
since α = ϕ−1(1 − Pfail) ≥ 0 for all Pfail ∈ (0, 0.5] [19].
Thus, problem 11 can be solved for global optimal solution
(v̄?,H?,K?) using off-the-shelf solvers such as [20].

D. Discussion

First, the algorithm is initialized by setting x̄0 = x0 and
Σ0 = 0 where x̄0 and Σ0 represent the initial nominal
state and initial covariance respectively. Then, using x̄k as
the initial state, MPPI generates a pair of reference state
and input sequences (XTMPPI , UTMPPI). The state sequence
is used to generate a safe convex region over which the
constraints (10d) are satisfied based on the technique that
will be described in Section V-B. Then, we formulate a
corresponding CCS problem that seeks for a control policy in
the form of (6) that will guarantee the satisfaction of chance
constraints while minimizing the deviation from reference
state and control sequences. If the largest eigenvalue of
the computed covariance Σk+1 exceeds a predetermined
threshold σmax, then the nominal state x̄k is set equal to the
real state xk and covariance Σk is set to 0. Next, the nominal
state x̄k+1 and covariance matrix Σk+1 will be updated as
described in lines 9-10 in Algorithm 1.

It is worth mentioning that the CCS module uses the
disturbance noise covariance in its formulation. However, this
information is usually unknown in real-world scenarios. But,
this can easily be handled by over-approximating the noise
covariance, that is, by taking Wk � Wreal

k , where Wreal
k

is the actual noise covariance that is acting on the system.
This allows the CCS module to find a policy that satisfies
the safety constraints. Furthermore, this condition implies
that the state will stay in the safe region with probability
greater than 1− Pfail. Although this approach may generate
overly conservative policies, system identification techniques
can be used to learn the actual noise covariance [21] and
hence reduce conservativeness.

The final component of our algorithm is the use of
nominal dynamics, which is the noise-free version of the
real dynamics. Since the CCS module assures that chance
constraints are satisfied and it uses the nominal state as the
initial mean state in its formulation, the safety margins of
the nominal state will be greater than the real state. Also,
by computing the covariance in line 10 in Algorithm 1, we
compute the high probability region where the real state lies.
Then, this covariance value is used as initial covariance in the



CCS procedure in the next step to guarantee the satisfaction
of the chance constraints.

VI. NUMERICAL EXPERIMENTS

In our numerical experiments, we consider a double in-
tegrator dynamics described by (1) with euler discretization
scheme with dt = 0.05, and {wk} is taken to be a white noise
process with wk ∼ N (0,Wk) where the noise covariance
matrix Wk varies depending on different problem instances.
We show the efficacy of our approach in two trajectory
optimization problems: an obstacle avoidance problem and
a path generation problem in a circular track.
Obstacle Avoidance: In the obstacle avoidance case, we
compare the performances of CCSMPPI with tube-MPPI
[10] under high noise that is acting upon the system to
show the robustness of our approach. In the tube-MPPI
formulation, an LQG tracking controller is used to track
nominal state and input sequences. In our experiments, the
LQG cost function parameters QLQG

k , RLQG
k are chosen to

be equal to the cost function parameters used in the CCS
formulation given in (10a). Also, the failure parameter Pfail

that is shown in (10d) is taken to be 0.01.
We consider the running cost function qhard(pk) = ‖pk −

pdes‖22 + 5000
∑Nobs

j=1 IOj (pk) and Φhard(xT ) = 0 where
IOj

: R2 → {0, 1} is the indicator function of set Oj .
The parameters of the MPPI algorithm used in these

experiments are TMPPI = 40, K = 100, λ = 0.1, ν = 0.1
and εk ∼ N (0, 0.001I). In addition, the problem horizon pa-
rameter Tmax = 200 and the noise covariance matrix Wk =
bdiag(0.0, 0.0, 5.0, 5.0). The state-dependent term of the
running cost function was taken to be q(xk) = 10 qhard(xk)
and the desired final position pdes = [2.0, 10.0]T.
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Figure 1a illustrates 10 randomly sampled trajectories
induced by the CCSMPPI algorithm. Although the intensity
of the noise that is acting upon the system is quite high
compared to the sampling distribution parameter ν, the CC-
SMPPI is successfully avoiding obstacles. Figure 1b shows
10 randomly sampled trajectories of the system running
under the tube-MPPI algorithm. It can be seen that the agent
reaches the goal position but fails to avoid obstacles even
though the trajectories that lead to collisions are heavily
penalized. In this case, tube-MPPI fails to handle uncertain
disturbances and generate safe control inputs.
Circular Track: In this scenario, the goal is to keep the
position of the system in a circular track with inner and
outer radius Rin, Rout = Rc ∓ 0.125 where Rc = 2
while maintaining a desired speed vdes in counter-clockwise
direction. In the numerical experiments, this goal is encoded
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Fig. 2: CCSMPPI, Tube-MPPI and standard MPPI in differ-
ent scenarios

as 2 different running cost functions qt,s(xk) and qt,h(xk):

qt,s(xk) := (‖vk‖2 − vdes)
2 + ‖(pxkvyk − vxkp

y
k)−Rcvdes‖

+ 100

(√
px2
k + py2

k −Rc

)2

(12a)

qt,h(xk) := (‖vk‖2 − vdes)
2 + ‖(pxkvyk − vxkp

y
k)−Rcvdes‖

+ 5000I¬C(pk) (12b)

where C := {p ∈ R2 |Rc − 0.125 ≤ ‖p‖2 ≤ Rc + 0.125},
I¬C : R2 → {0, 1} is the indicator function such that
I¬C(p) = 1 if p /∈ C and I¬C(p) = 0 if p ∈ C.

The safety criterion in this example is to stay within
the circular track which is formally defined by set C. This
condition is encoded in qt,s(xk) in (12a) by penalizing the
deviation of the position pk from the mid radius Rc. This
choice makes qt,s(xk) a smooth function. On the other hand,
the safety criterion is encoded by using indicator functions
in (12b) which is a more clear encoding of the safety
constrained however non-smoothness of qt,h(xk) makes this
problem harder to solve.

In Figure 2, trajectories generated by CCSMPPI, Tube-
MPPI and standard MPPI are shown from the top to the
bottom. Figures 2a, 2c, 2e show the results with running
cost q(xk) = 100 qt,s(xk) and Figures 2b, 2d, 2f show the
results with q(xk) = 100 qt,h(xk). The parameters of the
MPPI are TMPPI = 20, K = 200, λ = 0.1, ν = 1.0, and
ε ∼ N (0, 0.001I). In addition, the problem horizon Tmax =
300, Wk = bdiag(0.001, 0.001, 1.0, 1.0) and vdes = 6.0.

When qt,s(xk) is used as a running cost function, the
trajectories induced by tube-MPPI and standard MPPI fail



to meet the safety criterion (shown in Figures 2c, 2e) due to
the poor design of the cost function. On the other hand, it is
shown in Figure 2a that the CCSMPPI manages to keep the
position within the track. When the running cost is switched
to qt,h(xk), the non-smoothness of the cost function causes
standard MPPI to fail as shown in Figure 2f. Even though
tube-MPPI seems to keep the position within the circular
track in Figure 2d, there are more violations of the safety
constraints than CCSMPPI as is shown in Figure 2b.

In Table I, we compare the performance of CCSMPPI,
tube-MPPI and standard MPPI by sampling Nsim = 15
trajectories for both experiments #1 and #2. The running
cost function is taken as 100qt,s(xk) and 100qt,h(xk) in
experiments #1 and #2, respectively. Also, Tmax is taken
as 200 and 300 in experiments #1 and #2, respectively.
In both experiments, Wk are chosen to be equal to
bdiag(0.005, 0.005, 0.5, 0.5) and vdes = 6.0. Prfail repre-
sents the probability of failure and it is computed by dividing
the number of trajectories that leave the circular track at least
once (Nfail) by the total number of trajectories Nsim.

It can be seen from the results of experiment #1 in Table
I that standard MPPI performs better in terms of minimizing
the cost than both tube-MPPI and CCSMPPI and reaches
higher speeds. However, this is due to the poor design of
the cost function, and the fact that the control inputs that
are corrected by CCS module to guarantee safety are not
optimal with respect to the used cost function. When qt,h(xk)
is used as the running cost in experiment #2, standard MPPI
performs worse than both tube-MPPI and CCSMPPI due to
the presence of random noise wk. In these experiments, the
safety of the trajectory is the first priority, as encoded in the
running cost qt,h(xk). Although tube-MPPI reaches higher
speeds, it fails to reach the safety levels of CCSMPPI.

It should be highlighted that the probability of violating the
constraint in (10d) at every time step k is less than Pfail =
0.01 but still greater than 0. This means that as Tmax →
∞, the failure probability approaches 1. This is the reason
why Prfail is non-zero for CCSMPPI in both experiments.
Prfail can be reduced by lowering the safety threshold Pfail,
however it is not possible to make it 0 since wk is assumed
to be normally distributed and thus unbounded.

Exp. #1 Av. Speed Max Speed Prfail Cost
MPPI 2.46 ± 0.31 3.42 ± 0.35 1.0 44.1 ± 7.0

Tube-MPPI 2.37 ± 0.32 2.95 ± 0.36 0.87 47.9 ± 8.2
CCSMPPI 2.33 ± 0.31 3.03 ± 0.37 0.13 58.6 ± 8.5
Exp. #2 Av. Speed Max Speed Prfail Cost

MPPI 1.66 ± 0.24 3.53 ± 0.32 1.0 259.6 ± 73.8
Tube-MPPI 1.77 ± 0.26 2.85 ± 0.35 0.67 95.6 ± 20.9
CCSMPPI 1.65 ± 0.27 2.67 ± 0.29 0.07 66.1 ± 8.3

TABLE I: Performance Comparision Statistics
VII. CONCLUSION

In this paper, we presented a novel framework for safe
trajectory optimization for stochastic linear systems. We used
Model Predictive Path Integral (MPPI) control for stochastic
optimization and a projection-based linearization method for
the generation of safe convex regions. In addition, we used
a Constrained Covariance Steering algorithm to safeguard
against unmodeled noise disturbances that the MPPI algo-
rithm may not always handle. Our numerical simulations

have demonstrated that our approach can guarantee safety
against unmodeled noise uncertainties as well as unsafe out-
puts generated by the stochastic optimization algorithm. In
our future work, we plan to extend our proposed framework
to trajectory generation problems for uncertain nonlinear sys-
tems based on model-free trajectory optimization algorithms
while guaranteeing safety.
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