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The differential-algebraic Windkessel model with power as input

Henry Pigot1 and Kristian Soltesz1

Abstract— The lack of methods to evaluate mechanical func-
tion of donated hearts in the context of transplantation imposes
large precautionary margins, translating into a low utilization
rate of donor organs. This has spawned research into cyber-
physical models constituting artificial afterloads (arterial trees),
that can serve to evaluate the contractile capacity of the
donor heart. The Windkessel model is an established linear
time-invariant afterload model, that researchers committed to
creating a cyber-physical afterload have used as a template.
With aortic volumetric flow as input and aortic pressure as
output, it is not directly obvious how a Windkessel model will
respond to changes in heart contractility. We transform the
classic Windkessel model to relate power, rather than flow,
to pressure. This alters the model into a differential-algebraic
equation, albeit one that is straightforward to simulate. We then
propose a power signal model, that is based on pressure and
flow measurements and optimal in a Bayesian sense within the
class of C2 signals. Finally, we show how the proposed signal
model can be used to create relevant simulation scenarios, and
use this to illustrate why it is problematic to use the Windkessel
model as a basis for designing a clinically relevant artificial
afterload.

I. INTRODUCTION

Heart evaluation in isolation from the body can help ensure
that donor organs are safe prior to initiating transplanta-
tion, lowering costs and patient risk. At present, one heart
preservation and evaluation system is clinically available,
wherein the heart beats empty (unloaded) providing only
metabolic indicators of heart function [1]. Such indicators
have shown poor correlation to post-transplant outcomes
compared to functional metrics[2], [3]. Functional evaluation
of donor hearts enables direct observation of hemodynamic
performance, giving clinicians insight into how well an organ
will perform in a recipient.

Recent advances by our collaborators in nonischemic
organ preservation extend the admissable ex vivo (out-of-
body) time for heart organs from 4 h to 24 h [4], [5]. This
extended admissible time opens up for the use of extended-
criteria donors [6], [7], and enables functional donor heart
evaluation within the time constraints of the transplantation
procedure.

Functional evaluation requires a supply of perfusate to
the heart ventricles, as well as an artificial cardiac afterload
for the heart to beat against. The afterload must maintain
diastolic aortic pressure to ensure coronary flow and limit
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Fig. 1. Circuit diagram equivalent of the 4-element parallel Windkessel
model with parameters \ = ['? � '2 ! ]>, aortic flow (current) i, and
pressure (voltage) ?. The heart is modeled as a power source F , as opposed
to the flow (current) source utilized in the classic Windkessel formulation.

systolic pressure to a safe limit, while subjecting the heart to
physiological loading conditions. Afterloads are commonly
built as verbatim implementations of the common arterial
Windkessel model, combining discrete resistive and compli-
ant elements as an approximation of the arterial tree [8].
Some groups have implemented adjustable elements enabling
computer control of mean aortic pressure, as in [9], or
manual adjustment of systolic and diastolic pressure, as in
[10].

In simulation of cardiac afterloads, changes in contractility
(defining the forcefullness of heart beats) and arrhythmic
conditions (irregular heart beats) are of foremost interest for
evaluating heart function under a given loading condition.
Here we investigate how an artificial afterload model, imple-
mented as a Windkessel model, can be expected to behave
when subjected to contractile changes and arrhythmia.

Julia code that can reproduce all results herein is available
on GitHub [11].

II. DIFFERENTIAL-ALGEBRAIC WINDKESSEL MODEL

A. Flow input Windkessel

The classic “lumped-parameter” Windkessel impedance is
a low-order (at most two) LTI model that estimates aortic
pressure ?(C) by ?̂(C) based on aortic volumetric flow i(C)
[8]. Here we will consider the most general of these, the 4-
element parallel Windkessel model [12]. The circuit diagram
of its electric analogy, with electric current representing
volumetric flow and electric potential (voltage) representing
pressure, is shown in Fig. 1. A state space realization of the
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TABLE I
PARAMETERS OF THE WINDKESSEL MODEL OF FIG. 1 FROM [12].

Parameter Value Unit Name

'? 13.2 mmHg/(L/min) Peripheral
resistance

� 0.0732 L/mmHg Compliance

'2 0.933 mmHg/(L/min) Characteristic
resistance

! 0.085 mmHg ·min/(L/min) Inertance

system is provided by

¤G =

− 1
�'?

0

0 −'2
!

︸               ︷︷               ︸
�

G +


1

'2

︸︷︷︸
�

i, (1a)

? =

[
1
�
−'2
!

]
︸         ︷︷         ︸

�

G +
[
'2

]
︸︷︷︸
�

i. (1b)

(Context will decide when � refers to the compliance param-
eter or state space output matrix.) In the physiology literature,
the parameters

\ = ['? � '2 !]> � 0 (2)

are ascribed mechanistic properties as per Tab. I.
The parameters are typically identified from aortic vol-

umetric flow samples i1, . . . , i= and corresponding aor-
tic pressure samples ?1, . . . , ?= simultaneously sampled at
C1 < · · · < C=. The sampling instances are chosen so that
consecutive samples are sufficiently close in time to resolve
the dynamics to be modeled, and C=−C1 typically spans either
an integer number of cardiac cycles, or one cardiac cycle
that is periodically extended as in [13]. Identification of \ is
most commonly cast as an output-error minimization, with
quadratic cost on ?: − ?̂(C: ), see e.g. [14].

B. Power input Windkessel

The Windkessel model provides a dynamic relation be-
tween aortic volumetric flow and aortic pressure, that
matches observations well [14]. It is therefore not surpris-
ing that research prototypes of artificial dynamic afterloads
(adjustable arterial tree models) to be used in functional ex
vivo evaluation of donor hearts [9], [10], [15]–[17], have
been constructed to emulate the dynamics of the Windkessel
model.

While the Windkessel model employs a volumetric flow
source model of the heart, a power source model is much
more relevant to our investigations of contractile function
variations and arrhythmia. The work exerted by the left
ventricle on the blood being ejected in one cardiac cycle
is the area of a Carnot cycle, referred to in the literature
as a pressure-volume loop, or just a PV-loop. The work F

associated with transitioning from ventricular volume E1 to
E2 along this cycle is

F(E1, 22) = −
∫ E2

E1

?(E) 3E. (3)

To be accurate, (3) provides an upper bound for this work,
and that bound is tight for lossless systems. Letting C1 and
C2 be the times corresponding to E1 and E2, such that E(C1) =
E1), the work of (3) can be expressed as

F(C1, C2) = −
∫ C2

C1

?(C) 3E
3C
3C = −

∫ C2

C1

i(C)?(C) 3C. (4)

In the PV-loop context, flow into the left ventricle (from the
left atrium) is considered. Here, we are instead considering
flow out of the left ventricle (through the aorta). We therefore
employ (4) with a sign change of its right-hand-side, and
conclude that the instantaneous power is

F = i?. (5)

Assuming for now that ?̂ = ?, i.e., that the Windkessel
model captures the afterload dynamics perfectly, we can use
(1b) together with (5) to algebraically relate the instantaneous
power F to the flow i through

F = (�G + �i)i = �Gi + �i2. (6)

Combining (6) with (1) results in the nonlinear differential-
algebraic equation (DAE)

¤G = �G + �i (7a)

F = �Gi + �i2. (7b)

The DAE (7) has index one (since there is no differentiation
of its input, F), and is therefore readily solvable by numerical
DAE integrators. The algebraic equation (7b) has solutions

i =
−�G ±

√
(�G)2 + 4�F
2�

, (8)

meaning that any initial condition G(C0) fulfilling (�G(C0))2+
4�F(C0) ≥ 0 is feasible (while others are not). In particular
G(C0) = 0 is feasible.

III. POWER SIGNAL MODEL

In this section we formulate a statistical signal estimation
problem that is solved by employing cubic spline smooth-
ing. To be notationally coherent and reproducible, we have
chosen to explicitly include a small review of related topics.

A. Smoothing cubic splines

We consider modeling of the heart power input signal F
from sampled flow i and pressure ? time series. The zero-
order-hold (ZOH) interpolation is the default choice when
sampled signals are considered in the context of control
systems. Indeed it makes sense if the signal source is a
digital controller, that maintains steady output levels between
invocations. However, physiological signals seldom exhibit
ZOH behavior. Instead, they are (with some exceptions such
as neuronal signalling) smooth. We therefore assume that
our samples are observations of some unknown C2 (twice



differentiable, with continuous second derivative) signal, that
we aim to estimate.

Based on observations H = [H1 . . . H=]> of an unknown
signal G(C), sampled at times g = [C1 . . . , C=]>, we hence
want to obtain a C2 signal model Ĝ of G on (C1, C=) with
j = [Ĝ(C1) . . . Ĝ(C=)]>.Since we have no information about
G between samples, we choose as objective to minimize the
roughness

d(Ĝ(C)) =
∫
g

¥̂G(C) 3C. (9)

One can note that this is similar, but generally not identical
to, minimizing total curvature, that is defined as the integral
of ¥̂G along the curve, integrating 3; rather than 3C.

If our observations have not been corrupted by noise, we
are searching for the least rough C2 curve G that passes
through the knots defined by g and j = H. That curve is the
natural cubic spline generated by (g, j) [18]. It is a piece-
wise cubic polynomial Ĝ(C) = Ĝ: (C), where

Ĝ: (C) = U: + V: (C − C: ) + W: (C − C: )2 + X: (C − C: )3,
C: ≤ C < C:+1, : = 1, . . . , = − 1,

(10)

uniquely defined by the parameter \ = [U> V> W> X>]>, with
column vectors on the form U = [U1 . . . U=−1]>. Particularly,
the spline polynomials defined through (10) are linear in \.

The spline is defined to pass through the knots, where its
first and second derivatives are continuous. This corresponds
to the constraints

Ĝ: (C:+1) = Ĝ:+1 (C: ) = j: , (11a)
¤̂G: (C:+1) = ¤̂G:+1 (C: ), (11b)
¥̂G: (C:+1) = ¥̂G:+1 (C: ), (11c)

holding for : = 1, . . . , = − 1. The constraints (11) uniquely
define the always existing cubic spline down to boundary
conditions. The two types of boundary conditions we will
consider are natural (a.k.a. normal or ordinary) and periodic.
The natural spline has zero second derivatives at its end-
points

¥̂G(C1) = ¥̂G(C=) = 0. (12)

It is called natural because originally, when flexible rulers
constrained by nails at the knot, were used to draw splines,
leaving the ruler unconstrained beyond the end-points would
correspond to the condition (12).

Many physiological signals, including cardiac cycles, are
periodic to their nature, and it can therefore be desirable to
extrapolate periodically using data covering (at least) one
period.

The natural spline is not necessarily C2 across the period
boundary. However, replacing (12) with explicit C2 con-
straints on the end-points

Ĝ(C1) = Ĝ(C=), (13a)
¤̂G(C1) = ¤̂G(C=), (13b)
¥̂G(C1) = ¥̂G(C=), (13c)

equivalently results in an existing and uniquely defined
spline.

It is reasonable to assume that our measurements H of G
are corrupted by noise n , so that H = G+n . In our formulation
we will use the relevant case where n is a realization of a
zero-mean processes with covariance Σ. We note that it is
sufficient to consider predictive performance at the instances
defined by g, since the cubic spline (normal or periodic) is
uniquely defined by the knot abscissas j at these ordinates.
We could choose j so the knots end up on a straight line.
This results in a cubic spline of zero roughness. However,
since En = 0, any choice but j = H is associated with an
estimation bias. In estimating G: , this bias is simply H: − j: .
On the other end of the scale we have j = H, which provides
an unbiased estimator at the cost of higher variance.

As we will shortly see j is linear in \ and minimizing the
smoothing cubic spline cost

� (\;_) = _ (H − j(\))>Σ̂−1 (H − j(\))︸                              ︷︷                              ︸
�1

+(1 − _) d(j(\))︸   ︷︷   ︸
�2

(14)

balances between reducing bias (second term) and variance
(first term) through the parameter _ ∈ (0, 1). If n ∼ N(0,Σ)
and Σ̂ = Σ, the minimizer j of �1 is the maximum likeli-
hood estimator (MLE) of H. By parametrizing � as convex
combination of �1 and �2, we are left with determining _

within the closed interval (0, 1), as opposed to the interval
(0,∞) associated with the common formulation � = �1 +_�2
(where _ is now another parameter with the same role).

Returning to the spline fitting problem, the C2 conditions
can be encoded into a linear equation system

(W = 3+U (15)

in the knot values U: = j: and knot second derivatives ¥j: =
2W: , each defined for : = 1, . . . , = − 1 [18]. The matrices (
and + are constructed from C. Introducing ℎ: = G:+1−G: and
@: = 1/ℎ: where : = 1, . . . , =−1, the matrices corresponding
to the periodic case are

( =


2Δℎ=−1 ℎ1
ℎ1 2Δℎ1 ℎ2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ℎ=−3 2Δℎ=−3 ℎ=−2
ℎ=−1 ℎ=−2 2Δℎ=−2


, (16a)

+ =


−Δ@=−1 @1 @=−1
@1 −Δ@1 @2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

@=−3 −Δ@=−3 @=−2
@=−1 @=−2 −Δ@=−2


, (16b)

where Δ(·): = (·): + (·) 9 with 9 = (max((: + 1)%=), 1).
The natural counterparts are obtained by setting

(1,=−1 = (=−1,1 = (1,2 = (=−1,=−2 = 0, (17a)
+1,=−1 = +=−1,1 = +1,1 = +1,2 = 0, (17b)

in (16a) and (16b), respectively. Using that U: = j: we can
express the first term of (14) as

�1 = (H − U)>Σ̂−1 (H − U), (18)



and as mentioned in e.g. [18], the roughness of the cubic
spline on (C1, C=) can be expressed

�2 =
2
3
W>(W. (19)

The objective (14) is therefore a quadratic form in U:

� = _(H − U)> (H − U) + (1 − _)6U>+>(−>+U, (20)

that can be written on the standard form

� =
1
2
0>*U − E>U + A, (21)

with

* = 2_Σ̂−1 + 12(1 − _)+>(−>+, (22a)

E = 2_Σ̂−1H, (22b)

A = _H>Σ̂−1H. (22c)

Minimizing (21) with respect to U (i.e. also with respect
to \) is an ordinary least squares problem, and the unique
minimizer is the solution to *U = E. Having obtained U, it
is then possible to obtain the remaining parameters from the
end-point constraints through the following equations that
(after some manipulation) follow from the definition of the
smoothing cubic spline:

W = 3(−1+U, (23a)

X =
1
3
�−1�W, (23b)

V = �−1�U − �W − �2X, (23c)

where � = diag(ℎ) and

� =



−1 1

−1 1
...

...
...

...
...

...

1 −1


(24)

B. Choice of smoothing parameter

The remaining question is how to choose the smoothing
parameter _ ∈ (0, 1), that constitutes a bias–variance trade-
off. Using all available data for training, there is no way
to determine whether one candidate is favorable to another
(except for subjectively by looking at the resulting fit). A
frequently used way to determine _ is therefor through
leave-one-out cross validation. The predictive performance
is measured as the mean square error over : = 1, . . . , = in
predicting H: with a predictor that has been trained on all
data except (C: , H: ):

�_ =
1
=

=∑
:=1

(
H: − Ĝ (−:) (C: )

)2
. (25)

Here, Ĝ (−:) denotes a cubic spline fitted to all data but
(C: , H: ), and since the spline is a function of the smoothing

parameter _, we can minimize �_ over _. A celebrated result
[19] enables cheap evaluation through

�_ =

=−1∑
:=1

(
H: − Ĝ(C: )
1 −,::

)2
, (26)

where j = ,H defines the smoothing matrix

, =


F>1
...

F>=


=


2_*−1

F>=

 . (27)

The last row F>= of the right-hand-side of (27) corresponds
to H=. For the periodic case we therefore have F= = F1.
For the natural case, F= is instead obtained through (23).
Alternatively, one could introduce W= as an explicit variable
in the natural counterpart to (16), in which case the right-
hand-side would be simply 2_*−1.

It is also worth noting that the effective degree of freedom
resulting from the regularization is Tr, , making it mono-
tonic in _. That does not imply that �_ lacks local minima,
but for practical purposes it often suffices to determine _

through bisection search over (0, 1), which is what we do in
the upcoming examples.

C. Modeling heart power

We realistically assume that our i and ? measurement
time series are time-aligned and corrupted by additive inde-
pendent Gaussian noise drawn from N(0, f2

i) and N(0, f2
?),

respectively. Even if the time series are synchronized (which
they do not need to be), we fit individual smoothing cubic
splines î and ?̂, and use F̂ = î ?̂ to model F in (7), to
preserve the MLE property of the fitted curves.

For any time C where both splines î and ?̂ are defined,
their product F̂ is the product of two third-order polynomials
that we can explicitly compute. As a direct consequence,
F̂ will also be C2 and we can compute ¤̂F(C) and ¥̂F(C)
analytically from the underlying splines. Particularly, if î
and ?̂ have a coinciding end-point with a natural end-point
condition, then F̂ will have have a coinciding end-point with
natural end-point condition.

It also follows directly from the definition that if î is
periodic with )i and ?̂ is periodic with )? , then F̂ will
be periodic unless )i/)? is irrational, with period at least
max()i , )?) and at most lcm()i , )?). If ) = )i = )? , then F̂
will be periodic with period (evenly dividing) ) . The noise
variance f2 just shifts the balance between �1 and �2 in
(14), in a way that can be compensated for using _. We
therefore fix f2

? = f
2
i = f

2 = 1 and leave it up to the cross
validation to suggest a _ that minimizes its approximation
of the expected prediction error.

IV. SIMULATION EXAMPLES

Implementing the DAE (7) within the Julia
DifferentialEquations.jl suite and providing
its right-hand-side with F = F̂, modeled as described in
Sec. III, we simulate the Windkessel with power input

https://julialang.org
https://diffeq.sciml.ai
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Fig. 2. Windkessel DAE simulation with periodically extended power input
F . Top panes show the resulting pressure ? and flow i.

using the Sundials.jl DAE integrator. Our simulations
are based on digitized waveforms from [12], representing
homeostatic human aortic volumetric flow and aortic
pressure, respectively, as further explained in [13].

A. Periodic input

As a first example, we simulate a train of cardiac cycles,
by evaluating the periodic extension of the i and ? splines,
and forming F = i? pointwise from these. Fig. 2 shows
F, and the resulting i and ? from simulating with the
DAE Windkessel model. The initial state of the DAE has
been selected for transient elimination by solving a two-
point boundary value problem, enforcing the DAE states
at the beginning and end of one cardiac cycle to match.
Another possibility is to set G(0) = 0 (or other feasible
value), simulate sufficiently long for any transient to fade,
and then truncate. The system matrix � of (1) has eigenvalues
−1/(�'?) and −'2/! corresponding to poles with time
constants )1 = �'? =1 min and !/'2 =5.5 s. If the cardiac
cycle duration is )2 , each state component has therefore
reached within 1004−C % of its “transient free” value within
; dC/)2e cardiac cycles.

1) Varying contractility: Fig. 3 illustrates the flow and
pressure response to a beat with increased contractile
strength. The input was generated by adding an offset spline
to the F spline of Fig. 2 to double the amplitude of the 3rd
beat.

2) Arrhythmic event: Fig. 4 illustrates the response to an
arrhythmic event. The input was generated by shifting the F
spline abscissas of Fig. 2 back 0.7 cycle periods after beat 3.
(This does not exactly correspond to a physiologically correct
PVC, but serves to illustrate that we can alter a nominal
power input by arbitrary offsets in magnitude and time.)

V. DISCUSSION

We have proposed expressing the Windkessel model as
a DAE, to use instantaneous power, rather than volumetric
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Fig. 3. Windkessel DAE simulation with double contractile strength (power
F) in beat 3. Top panes show the resulting pressure ? and flow i.
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Fig. 4. Windkessel DAE simulation with an early contraction in beat 4 of
the input power F . Top panes show the resulting pressure ? and flow i.

flow, as its input. This has enabled us to investigate how the
dynamics react to changes in contractility and arrhythmia.

To handle flow and pressure measurements only being
available at time-aligned, but not necessarily synchronized
nor evenly spaced sampling instances, a continuous time
signal model was employed. This signal model constitutes
the MLE estimator under the assumption that the underlying
singnals are C2 and corrupted with additive identically
independently distributed Gaussian noise. Regularization was
added to avoid possible overfitting, and its extent determined
through cross validation.

Our simulation examples show how the considered Wind-
kessel model responds to changes in heart contractility and
double-beat arrhythmia. These events notably affect the re-
sulting pressure profile. As a consequence of the Windkessel
dynamics, there is no simple relation between the model pa-
rameters (2) and the resulting diastolic and systolic pressure.

https://github.com/SciML/Sundials.jl


Compensating through feedback control of the Windkessel
model parameters to maintain prescribed safe upper systolic
pressure and lower diastolic pressure bounds as proposed in
[10] is therefore non-trivial, and motivates investigation of
artificial afterloads based on other principles than a verbatim
implementation of Windkessel dynamics.

VI. CONCLUSION

• Its volumetric flow input makes the classic lumped-
parameter Windkessel model ill-suited for investigating
how changes in contractility affect aortic pressure. For
this purpose, a DAE representation with instantaneous
power as input is more adequate.

• Smoothing cubic splines constitute a motivated class
of functions for modeling aortic flow and pressure
signal from sampled data. These models can readily be
combined into a power signal model that maintains the
smoothness properties of the cubic spline.

• It is desirable, but not straightforward, to independently
control diastolic and systolic pressure within a Wind-
kessel model with adjustable parameters.
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