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Variational message passing for
online polynomial NARMAX identification

Wouter M. Kouw, Albert Podusenko, Magnus T. Koudahl and Maarten Schoukens

Abstract— We propose a variational Bayesian inference pro-
cedure for online nonlinear system identification. For each
output observation, a set of parameter posterior distributions
is updated, which is then used to form a posterior predictive
distribution for future outputs. We focus on the class of
polynomial NARMAX models, which we cast into probabilistic
form and represent in terms of a Forney-style factor graph.
Inference in this graph is efficiently performed by a variational
message passing algorithm. We show empirically that our
variational Bayesian estimator outperforms an online recursive
least-squares estimator, most notably in small sample size
settings and low noise regimes, and performs on par with an
iterative least-squares estimator trained offline.

I. INTRODUCTION

Nonlinear autoregressive moving-average with exogenous
input (NARMAX) models are a staple in modern system
identification. They have been applied to a wide range of
systems such as the kinematics of mobile robots, the effects
of space weather on earthbound electronics or the visual
system of fruit flies [1]. We are interested in online esti-
mators, because they allow for in-situ learning on embedded
systems, and Bayesian estimators, i.e., posterior distributions
instead of point estimates [2], [3]. The advantage of Bayesian
estimators is that they are naturally robust to overfitting when
data is still scarce [2, Ch. 5.3.1]. This paper proposes a
recursive approximate Bayesian estimator for online system
identification.

Despite its long history, Bayesian identification has al-
ways been challenging from a practical perspective [4].
Intractable integrals may prevent the formulation of an
exact Bayesian estimator. Approximate Bayesian inference,
especially Sequential Monte Carlo (a.k.a. particle filtering),
has proven to be much more practical for dynamical systems
[5]. Nonetheless, Monte Carlo-based methods are still quite
computationally expensive. Variational Bayesian inference is
an attractive alternative because it is typically much cheaper -
computation-wise - than Monte Carlo sampling. The unnor-
malized posterior distribution function is approximated by
minimizing a variational free energy functional with respect
to a second probabilistic model [6]. The first uses of vari-
ational Bayes for system identification allowed for simulta-
neous estimation of states, coefficients and noise parameters
in a wide range nonlinear stochastic differential equations
[7], [8]. A particular technique called Dynamic Expectation
Maximization (DEM), became popular and was recently used
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to simultaneously estimate not only states and inputs, but
also colored noise [7], [9]. DEM relies on Laplace’s method,
i.e., approximating the posterior with a Gaussian distribution
using gradient-based techniques for finding the mode and
local curvature. However, Laplace approximations fail for
non-modal, multi-modal or discrete distributions, and can
be inaccurate for distributions with higher-order moments
(e.g., skewed or kurtotic ones). We employ a richer class of
form constraints on the approximating distributions, namely
the exponential family. A few recent papers have ventured
into non-parametric families such as Gaussian processes and
deep neural networks, achieving impressive results [10], [11].
But non-parametric models can quickly become computa-
tionally costly again. We formulate the inference procedure
as message passing on a factor graph [12]. Computation
can be distributed along nodes and edges by exploiting
the factorization of the probabilistic model. This produces
an efficient and parallelizable algorithm [13], [14]. Lastly,
variational Bayes has found its way to autoregressive-based
models. A recent ARMAX paper infers the noise sequence
explicitly, but extending it to the nonlinear case is not trivial
[15]. In addition, there are also NARX, NLARX, and SARX
models which show competitive performance [16], [17], [18].
Our work complements these techniques by extending the
scope to polynomial NARMAX models.

Our key contribution is the formulation of a recursive
parameter and posterior predictive estimation algorithm using
variational message passing on a Forney-style factor graph
(Sec. IV-C). We show that our estimator competes well with
an online least-squares estimator, outperforming it in small
sample size settings without the need for informative priors

(Sec. [VI).
II. NARMAX SYSTEM

Consider a discrete-time dynamical system with an un-
known time horizon, indexed by time € N. Let u; € R be
a measured input signal, y; € R a measured output signal
and e¢; € R be noise, drawn from a zero-mean Gaussian
distribution with zero auto-correlation: e; ~ A(0,771)
where 7 is a precision (inverse variance) parameter. In a
NARMAX system, the output y; is generated according to:

Yk = f(ur, Up—1,Yr—1,€x—1) + €k , (D

where w1 = (ug—1,.-Ug—p7) IS a vector containing
M; delayed inputs, yp—1 = (Yk—1, .- Ye—n,) contains My
delayed outputs and the vector ex_1 = (ex—1,..€x—ns;)
contains M3 delayed noise instances. The function f is
assumed to be continuous, nonlinear, and time-invariant.



III. PROBABILISTIC MODEL

In a polynomial NARMAX, the function f is modeled
with a linear combination of coefficients § and a polynomial
basis function ¢ applied to inputs, outputs and errors:

Yo = 07 d(up, W1, Yk—1,€5-1) + €5, - 2

We define the vector ¢, = ¢d(up, ug—1,yr—1,€xr—1) for con-
ciseness in later derivations. Specifying a probabilistic model
consists of expressing the likelihood of observations, given
parameters and noise, and posing a set of prior distributions
for the unknown variables.

A. Likelihood function

The noise variable is Gaussian distributed, which lets us
express the likelihood of observing y; as:

N(ye |0 dr, 7). (3)

In this notation, it is implied that variables with subscripts
smaller than 1 drop out. So, the likelihood of the first
observation simplifies to p(y; | u1,0,7). In practice, the
vectors ux_1, Yx_1, and e;_1 can be initialized with zeros
and updated as data streams in. This allows for the recursive
application of (3).

P(Yk | Uy Uk-1, Vi1, €5-1,0,T) =

B. Prior distributions

Our model has two unknown variables: the coefficients 6
and the noise precision 7. We need to pose an initial prior
distribution for each. The coefficients are unbounded real-
valued numbers, which could be modeled with a variety of
continuous probability distributions. We choose a Gaussian
distribution because its linear transformation 0" ¢;, results
in another Gaussian that is conditionally conjugate to the
likelihood function in [2, Ch. 4.6]. The precision param-
eter 7 is a strictly positive number, which could be modeled
with for instance an Exponential or Gamma distribution. We
choose a Gamma distribution, also because it is conditionally
conjugate to our Gaussian likelihood [2, Ch. 4.6]. The initial
priors are denoted as:

p(a) :N(9|NOaA61)7 p(T) :F(T|0[0,ﬁ0), (4)

where the subscripts refer to time k = 0, i.e., before k = 1.
We parameterize our Gaussian distributions with means p
and precision matrices A (inverse covariance matrix) and our
Gamma distributions with shapes « and rates .

C. Parameter posteriors

Given a likelihood function and prior distributions, we
can apply Bayes’ rule to obtain posterior distributions. For
the purposes of online system identification, we describe the
posterior recursively [3, Chapter 3]. We start with the initial
application of Bayes’ rule:

1
p(O,7 | y1,u1) = ————p(y1 | u1,0,7) p(O)p(T) . (5)
—_— Py | Ur) —— e —
posterior at k=1 —— likelihood initial priors
evidence

The likelihood is multiplied with both priors to form a joint
distribution over y1, # and 7. That joint is normalized by the

evidence for y;, after which a joint posterior distribution for
the parameters is obtained.

In recursive estimation, the posterior at one time point
becomes the prior for the next [3]. At k£ = 2, we have:

1
p(yQ | Uu1:2,Y1, 61)

evidence for yo

p(977' \ Y1:2,U1:2, 61) =

posterior at k=2

p(y2 | ui:2,y1,€1,60,7) p(0,7 | y1,u1) . (6)

likelihood of y2 prior (posterior k=1)

The likelihood now contains the first elements of the previous
input ug_1, output yx_; and error e;_; vectors. Note the
structure of this equation: the previous posterior distribution
is updated using two terms describing properties of the new
observation y,. In general, at time &, we have the following
recursive posterior estimation procedure:

1

PV [U1kes Y1:k-1, €1:4-1)

p(97 7'|y1:kv ULk, elzk-l) =

parameter posterior at k
evidence
p(yk'|uka Uk-1, Yk-1,€k-1, 07 7—) p(aa T|y1:k-la Ul:k-1, el:k—?) 5

NARMAX likelihood

prior (posterior at k-1)

)

where the evidence consists of integrating the product of
the NARMAX likelihood and the prior with respect to the
parameters 6 and 7:

P(Yk | Uiiks Y1:k-1,€1:0-1) =

// yklukauk 1, Yk-1,€k- 130 T)

(0, T | Y11, Ut k1, €1:-2) AOAT . (8)

Unfortunately, the resulting posterior distribution is not of
exactly the same form as the prior and is therefore not
suited to recursive estimation. We approximate it with a more
suitable distribution in Section [Vl

D. Posterior predictive
Given a posterior distribution of the parameters, the one-
step-ahead posterior predictive distribution for the output is:

p(yk+1 |U1:k+1,y1:k,61;k) =

posterior predictive

//p(ka | Upt1, Uk, Yis €k, 0,7)

likelihood of future observation

p(0, 7 | Y1k, Uik, €1:6-1) dOAT . (9)

parameter posterior

The posterior predictive is the average distribution for yx 1,
weighted by the posterior probability of each value of the
parameters. This weighted average has a greater uncertainty
than what would have obtained by plugging in a selected
parameter. As such, the posterior predictive distribution is
naturally regularized and is more robust to overfitting on
the training data. Details on how to compute the posterior
predictive are described in Section



E. Prediction errors

Typically, the prediction errors are defined as the differ-
ence between the observed output yiy; and a numerical
prediction ¢4 based on previous data [1]:

€kt+1 = Yk+1 — Uk+1 - (10

However, our prediction comes in the form of a posterior
predictive distribution (i.e., a random variable, not a number).
To adhere to the original definition of the prediction errors,
we select the maximum a posteriori (MAP) of the posterior
predictive distribution:

(1)

U1 = arg max p(Yr+1 | Utik+1, Yioks €1:k) -
Yre+1

To be clear, the order of operations in our recursive estima-
tion procedure is as follows: at time %k, we observe y; and
update the parameter posterior according to (7). We then
use the prediction ¢ made during the previous time-step to
compute the prediction error ey. This error is used when we
make a prediction for 941, which is passed on to the next
time-step.

IV. INFERENCE

It is not possible to obtain the posterior distribution exactly
due to the priors being merely conditionally conjugate and
not jointly conjugate to our NARMAX likelihood. Below,
we show how to approximate it in a recursive manner.

A. Free energy minimization

We adhere to a form of approximate Bayesian inference
called variational free energy minimization [6]. Essentially,
one poses a second probabilistic model ¢, called the recog-
nition model, with which the generative model p is approxi-
mated. The free energy functional at time k is the Kullback-
Leibler (KL) divergence between the recognition model and
the true posterior, minus the log evidence:

%(977)
F :// 0,7)In dodr
tla %(8:7) PO, 7 [ Yo, Wik, €1:81)
approximation of posterior

—Inp(ye | w1k, Yik—1, €1:8-1) -

12)

evidence
Note that the g;, that minimizes Fj is an optimal approxi-
mation of the true posterior at time k.
Equation necessitates the computation of the true
posterior, which is intractable. We therefore re-formulate the
objective along the lines of ({7):

qk(ea T)
Filgw] = / / 6,7)1n dd
k[qk] qk( T) p(07T|y1:k—13ul:k—lael:k-Q) ’

complexity

_//Qk(9a7> In p(yr|ur, Up-1, Yi-1, €k-1,0, 7)dOdT . (13)

accuracy

Accuracy expresses how well the observation was predicted
given the current parameter estimates and complexity is a

measure of how much the recognition model deviates from
the previous posterior. Minimizing Fj, should therefore be
interpreted as balancing a fit to data and avoiding large
changes to parameters.

B. Mean field assumption

If we make a mean-field assumption on the factorization
of the recognition model:

ar(0,7) = qr(9) (1) .

then we can derive the forms of the recognition factors for
which F;, is minimal [6], [14]:

(14)

ar(0) o< exp (Eq, () np(0, 7 | Y1:-1, U1, €1:0:2) )

@ prior-based

- exp (Equ(r) Inp(yr | U, Wp1, Y1, €401, 0, 7)), (15a)

@ likelihood-based

%(7') X exp (Eqk(a) 1DP(977' \ Y1:k-1,U1:k-1, 61;k-2)])

@ prior-based

-exp (Equ0) M (Y | ks o1, Vi1, €41, 6, 7)) -

(15b)

@ likelihood-based

At k = 0, the prior-based terms (1) and (3) correspond
directly to the prior distributions in (4). Computing and
updating these recognition factors can be formulated as a
variational message passing algorithm [14].

C. Message passing on factor graphs

Factor graphs are visual representations of probabilistic
models [12]. Figure [T] shows a Forney-style factor graph
(FFG) of the probabilistic NARMAX model in recursive
form. The square nodes represent operations, either deter-
ministic such as the basis expansion or the dot product, or
stochastic such as the Gaussian and Gamma prior distri-
butions. Edges represent unknown variables with associated
recognition factors, except those terminated by small black
squares as they correspond to observed variables. Nodes
containing an "=" sign represent an equality constraint posed
on all connected edges [12]. The dotted box is a composite
node encompassing all the operations in the NARMAX
likelihood.

The inference procedure starts with the nodes on the left
(initial priors) which pass messages rightwards towards the
two equality nodes. Each time-step, the messages contain-
ing prior information, @ and @, travel downwards from
the equality node and arrive at the composite NARMAX
likelihood node. The composite node first incorporates all
observed variables and performs its internal operations. Then,
it uses incoming message @ to pass message @ along
the edge corresponding to the noise precision variable. It
also uses message @ to pass message @ towards the
coefficients.

The equality nodes perform the recognition factor updates:
the prior-based messages from the left, @ and @, and



likelihood-based messages from below, @ and @, are
combined according to (I3). These updated beliefs are then
passed downwards again, where the NARMAX node uses
them to compute new outgoing messages. After a prespeci-
fied number of iterations, message passing is halted and the
resulting recognition factors are sent rightwards to serve as
priors for the next time-step.

Fig. 1.
recursive form. Prior-based messages 1 and 3 enter from the left (previous
time-step). Likelihood-based messages 2 and 4 are passed upwards from the
composite "NARMAX" node (dotted box), which is attached to observed
variables yg, ux, Ug1, Yi1 and eg1. At the equality nodes, the recognition
factors are updated based on combining the prior-based and likelihood-based
messages.

Forney-style factor graph of the polynomial NARMAX model in

D. Variational messages

We impose the constraint that each recognition factor
belongs to a parametric family of distributions. For ease of
computation, we choose the following families:

ar(0) =N (0| pe, ALY, qe(r) = I (7 | o, Bi) . (16)

This constraint alters F; from a functional to a function: it
is now minimized with respect to the parameters px, Ay, ay
and Jj instead of a general probability distribution gy,.

In order to obtain Messages @ and @, we need to take
expectations with respect to each recognition factmﬂ For the
coefficient recognition factor, i.e., (I33), this is:

@ = €xXp (EQk () 1Ilp(yk|uk, Ug-15 Yk-15 €k-1, 97 T))
1
X exp ( — 5%( —2yi0 " P + 0T¢>k¢kT€)) .

One may recognize a Gaussian probability density function
N(@| i, A, ') with parameters:

a7)

-1
e = (%Qbkﬁﬁ;) 2 b, Ap= gl
Br Br Bk
One may alternatively parameterize this Gaussian in terms
of the precision and precision-weighted mean, as is done in
information filters [3]. This avoids a matrix inversion during
the recognition factor update (Sec. [V-E).

(18)

!Detailed derivations as well as code for experiments can be found at
https://github.com/biaslab/ACC2022-vmpNARMAX.

The likelihood-based term for the precision in (I3DB) is:

@ = exp (Ey, (o) In p(yk |k, Uke1, Vi1, €51, 0, 7))

*z((yk — o)+ ¢EA;:1¢1<)) :

: 19)

o 72 exp (
One may recognize the probability density function of a
Gamma distribution I'(7 | &g, S ) with parameters:

_ 3
Qp=_-,

5 ((ye — 1" o) + S Ay ') -

Br.= (20)
At k = 1, messages @ and @ consist of the initial
priors in (@). Afterwards, the posteriors are approximated

by recognition factors. That means the prior-based term in
(T3a) simplifies to:

@ = exp (Eqk(T) Inp(0,7 | y1:6—1, v1:k—1, 61:k—2))

~ exp (Eg(r) In [gr1(0)qr1(7)]) o< gua (8) . (21)

Similarly, the prior-based term in (I3b) simplifies to:

@ = exp (Ey, 6y Inp(0, 7 | Y11, Urik—1, €1:5—2) )

~ exp (Eq o) In [qr1(0)qi-1 (7)]) o qra (7). (22)

E. Updating recognition factors

The combination of @ and @ is the product of two
Gaussian probability density functions which is proportional
to another Gaussian density N'(6 | ux, Ay ') where:

Ap=Ap_1+Ar, Appp=Ap_1pp—1+Apir. (23)
Since Ay, is strictly positive, the precision of the recognition
factor always grows after making a new observation.

The combination of (3) and @ is the product of two
Gamma probability density functions and is proportional to
another Gamma density I'(7 | g, Sx) where:

ap =ap_1+0op—1, Br = Br—1+ B - 24
The shape parameter grows by 1/2 each time-step, since
ay, is always 3/2. Although the rate parameter also always
grows with more observations (/3;, consists only of quadratic
terms), the mean of 7 can still shrink when [5; grows at a
slower pace than «y.

Equations (T3) describe optimal forms for the recognition
factors, but these forms depend on each other: the updates
to wy and Ay depend on «y and (j (23] and and the
update to Sj depends on i and Ay (24] and [I3B). They
must therefore be iterated until convergence. This form of
variational inference is equivalent to an exact coordinate
descent procedure: each recognition factor update is an exact
minimization step with respect to the current variational
parameters [6], [14]. The algorithm is guaranteed to converge
because each update leads to an equal or smaller value of
the free energy objective function (T3) [19].


https://github.com/biaslab/ACC2022-vmpNARMAX

V. MODEL SIMULATION

We compute the one-step ahead prediction from (9) using
the approximate posteriors g (6) and g (7). At time k, the
posterior predictive for k + 1 is approximately:

P(Yk41 | Uiikt1, Y1:ks €1:4)
~Ey, 0)Eg(r) [N (Wt |0 b1, 77 1)]

The vector ¢p4; contains the next input uy4; and the
vectors uy, yr and eg. The expectation with respect to the
precision parameter produces a Student’s t-distribution with
2ay, degrees of freedom [2]. For computational convenience,
we approximate this distribution with a Gaussian distribution
with the same parameters:

(25)

E o oAV 01 07 et 7] SN (gt 07 e, g—’;). 26)

Note that this approximation becomes tighter as oy grows.
The remaining expectation with respect to the coefficients is:

Egp(0) [N (i1 107 b1, %)]
= N (yrs1 | 1 Srt, Gpia Ay S + %) . @7

Simulations can be generated by fixing the parameters pi,
Ay, ap and i to their final estimates and then applying
the mean and variance calculation from to ¢; for
i = 1,...T time steps. Instead of observed output, the
vector y; will contain the MAP estimates of the posterior
predictive distribution ¢;, produced during ¢ — 1. Instead of
the prediction errors, the vector e; will contain zeros. This
zero-padding is a common technique for simulation with
NARMAX models, but comes at the cost of a bias [20].

VI. EXPERIMENTS

We performed two experiments on data generated from
a simulated NARMAX system: 1) the noise level is fixed
while the length of the signal for training is varied, and 2)
the training signal length is fixed while the noise level is
varied. Our Variational Message Passing (VMP) estimator
was compared to two baselines: a Recursive Least-Squares
(RLS) estimator with a forgetting factor of 1.0 [21, Sec. 9.4]
and a Iterative Least-Squares (ILS) estimator trained offline
[1, Section 3.6]. Since these lack posterior predictive distri-
butions, we evaluate in terms of Root Mean Square (RMS)
errors over a validation signal of length 1000.

A. Data generation

We generated a random-phase multisine input signal con-
sisting of a range of 100 frequencies between 0 to 100 with a
sampling frequency of 1 kHz [22]. The output was generated
by a polynomial NARMAX system of degree 3 (without
mixed orders involving errors) and delays of Mj=Ms=M3=1.
In the first experiment, the noise was generated with a
standard deviation of 0.02, corresponding to a precision of
2500. The coefficients 8 were pseudo-randomly generated:
ug, up—1 and yrp_q were assigned transfer function coeffi-
cients from a Butterworth filter with a cut-off frequency of

100 Hz and the coefficient for e;_; was assigned the value
0.1. The remaining coefficients were sampled from uniform
distributions centered at 0 scaled by 0.01.

VMP’s prior precision parameters were set to ap = 10 and
Bo = 0.1, corresponding to a mean of 100 with a variance
of 1000. Note that this is not an informative prior as the
true noise precision is 2500. VMP’s coefficients prior was
set to be weakly informative, with pg = 0 and Ay = I. We
generated 200 signal realizations and plot the average RMS
along with the standard error of the mean (SEM) as ribbons.

0.125
= vmp
0.100 = RS
| = S
£ 0.075
o
0.050
0.025
27 28 29 210 211

length of training signal

Fig. 2. Simulation errors for a noise standard deviation of 0.02. Average
RMS (standard errors as ribbon) by length of training signal.

B. Results

Figure [2] shows the simulation errors of the three esti-
mators as a function of the number of training samples.
VMP outperforms RLS, especially for small sample sizes.
This is due to the inclusion of the prior distributions and
the regularizing effect of the parameter posterior on the
predictions. VMP performs on par with ILS, which was
trained offline. As sample size grows, the three estimators
converge to the same level of performance.

020 = vwp
= RLS
0.15
0 = s
=
x 0.10
0.05
27 28 29 210 211
1.00
b
E 0.75
c
.2 0.50
£
o
S 025
[}
0.00
27 28 29 210 211
length of training signal
Fig. 3. 1-step ahead prediction errors for noise std. dev. 0.2. (Top) Average

RMS (standard errors as ribbons) by length of training signal. (Bottom)
Proportion of experiments failed due to diverging parameter estimates.

Figure [3| (top) shows the 1-step ahead prediction errors
as a function of the number of training samples. VMP
still consistently outperforms RLS, but is no longer on par
with ILS. Although ILS performs well, it also tends to
diverge in small sample sizes: it would initially produce a
prediction with just a slightly larger magnitude, but when
the accompanying prediction error was incorporated back



into the model, the next prediction would be even larger in
magnitude. Figure 3] (bottom) plots the proportion of failed
experiments, i.e., those with diverging predictions, for all
three estimators as a function of training signal length. ILS
diverges less often as training signal length increases, with
most of the failures having disappeared after 1024 samples.

0.20f| =3 vmP 0.20
=1 RS

=S
0.15 015
0.05 /_ " /

0.00 0.00
0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.0!
standard deviation of noise standard deviation of noise

Fig. 4. Average RMS (standard errors as ribbons) as a function of system
noise, for training signals of length 128. Simulation (left) and 1-step ahead
prediction (right).

In our second experiment, we keep the training signal
length fixed at 128 and vary the standard deviation of the
system’s noise. Figure @] shows the average RMS of the three
estimators, along with the standard errors, for simulation
(left) and 1-step ahead prediction (right). VMP outperforms
RLS for all levels of noise, but especially in the low noise
levels. VMP performs on par with ILS during simulation but
not during 1-step ahead prediction.

VII. DISCUSSION

Variational message passing is a modular procedure and
can be automatized: tools such as ForneyLab.jl contain
factor nodes in the form of standard parametric distribu-
tions, deterministic operations and common filters [23]. The
advantage of modularity is that different models can be
combined without the need for re-deriving parameter update
equations [24]. Among others, this allows for straightforward
extensions towards hierarchical models and time-varying
parameter estimates [25]. The main limitation of variational
message passing is that it requires some form of conditional
conjugacy in the prior distributions and recognition factors.
Non-conjugate message passing is possible, but often comes
at higher computational cost [26].

VIII. CONCLUSION

We proposed a variational message passing algorithm
for online system identification in polynomial NARMAX
models. We show how to recursively update parameter
posterior distributions and how to predict future outputs
from given inputs. We demonstrated empirically that our
estimator outperforms a recursive least-squares estimator and
performs on par with an iterative least-squares estimator
trained offline.

IX. ACKNOWLEDGEMENTS

This work was partly financed by research programs
ZERO (no. P15-06) and EDL (no. P16-25), funded by the
Netherlands Organisation for Scientific Research (NWO).

[1]

[2]
[3]

[4

=

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

REFERENCES

S. A. Billings, Nonlinear system identification: NARMAX methods in
the time, frequency, and spatio-temporal domains. John Wiley &
Sons, 2013.

K. P. Murphy, Machine learning: a probabilistic perspective.
press, 2012.

S. Sarkkd, Bayesian filtering and smoothing. Cambridge University
Press, 2013.

V. Peterka, “Bayesian approach to system identification,” in Trends
and Progress in System Identification. Elsevier, 1981, pp. 239-304.
T. B. Schon, F. Lindsten, J. Dahlin, J. Wagberg, C. A. Naesseth,
A. Svensson, and L. Dai, “Sequential Monte Carlo methods for system
identification,” IFAC-PapersOnLine, vol. 48, no. 28, pp. 775-786,
2015.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational infer-
ence: A review for statisticians,” Journal of the American Statistical
Association, vol. 112, no. 518, pp. 859-877, 2017.

K. J. Friston, N. Trujillo-Barreto, and J. Daunizeau, “DEM: a varia-
tional treatment of dynamic systems,” Neuroimage, vol. 41, no. 3, pp.
849-885, 2008.

J. Daunizeau, K. J. Friston, and S. J. Kiebel, “Variational Bayesian
identification and prediction of stochastic nonlinear dynamic causal
models,” Physica D: Nonlinear Phenomena, vol. 238, no. 21, pp.
2089-2118, 2009.

A. A. Meera and M. Wisse, “Free energy principle based state and
input observer design for linear systems with colored noise,” in
American Control Conference, 2020, pp. 5052-5058.

R. S. Risuleo, G. Bottegal, and H. Hjalmarsson, “Variational Bayes
identification of acyclic dynamic networks,” IFAC-PapersOnlLine,
vol. 50, no. 1, pp. 10556-10561, 2017.

J. N. Hendriks, F. K. Gustafsson, A. H. Ribeiro, A. G. Wills, and T. B.
Schon, “Deep energy-based NARX models,” IFAC-PapersOnlLine,
vol. 54, no. 7, pp. 505-510, 2021.

H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal
Processing Magazine, vol. 21, no. 1, pp. 28—41, 2004.

S. Korl, “A factor graph approach to signal modelling, system identi-
fication and filtering,” Ph.D. dissertation, ETH Zurich, 2005.

J. Dauwels, “On variational message passing on factor graphs,” in
IEEE International Symposium on Information Theory, 2007, pp.
2546-2550.

K. Fujimoto and Y. Takaki, “On system identification for ARMAX
models based on the variational Bayesian method,” in Conference on
Decision and Control. 1EEE, 2016, pp. 1217-1222.

Y. Lu, S. Khatibisepehr, and B. Huang, “A variational Bayesian ap-
proach to identification of switched ARX models,” in IEEE Conference
on Decision and Control, 2014, pp. 2542-2547.

W. M. Kouw, “Online system identification in a Duffing oscillator
by free energy minimisation,” in International Workshop on Active
Inference. Springer, 2020, pp. 42-51.

W. R. Jacobs, T. Baldacchino, T. Dodd, and S. R. Anderson, “Sparse
Bayesian nonlinear system identification using variational inference,”
IEEE Transactions on Automatic Control, vol. 63, no. 12, pp. 4172—
4187, 2018.

J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Transactions on Information Theory, vol. 51, pp. 2282-2312, 2005.
D. Khandelwal, M. Schoukens, and R. Té6th, “On the simulation of
polynomial NARMAX models,” in IEEE Conference on Decision and
Control, 2018, pp. 1445-1450.

M. H. Hayes, Statistical digital signal processing and modeling. John
Wiley & Sons, 2009.

R. Pintelon and J. Schoukens, System identification: a frequency
domain approach. John Wiley & Sons, 2012.

M. Cox, T. van de Laar, and B. de Vries, “Forneylab.jl: Fast and
flexible automated inference through message passing in julia,” in
International Conference on Probabilistic Programming, 2018.

i Sendz, A. Podusenko, W. M. Kouw, and B. de Vries, “Bayesian joint
state and parameter tracking in autoregressive models,” in Conference
on Learning for Dynamics and Control, 2020, pp. 1-10.

A. Podusenko, W. M. Kouw, and B. de Vries, “Message passing-based
inference for time-varying autoregressive models,” Entropy, vol. 23,
no. 6, p. 683, 2021.

D. Knowles and T. Minka, “Non-conjugate variational message pass-
ing for multinomial and binary regression,” Advances in Neural
Information Processing Systems, vol. 24, pp. 1701-1709, 2011.

MIT



	I Introduction
	II NARMAX system
	III Probabilistic Model
	III-A Likelihood function
	III-B Prior distributions
	III-C Parameter posteriors
	III-D Posterior predictive
	III-E Prediction errors

	IV Inference
	IV-A Free energy minimization
	IV-B Mean field assumption
	IV-C Message passing on factor graphs
	IV-D Variational messages
	IV-E Updating recognition factors

	V Model simulation
	VI Experiments
	VI-A Data generation
	VI-B Results

	VII Discussion
	VIII Conclusion
	IX Acknowledgements
	References

