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Abstract— We study the dynamics of belief formation on mul-
tiple interconnected topics in networks of agents with a shared
belief system. We establish sufficient conditions and necessary
conditions under which sustained oscillations of beliefs arise
on the network in a Hopf bifurcation and characterize the
role of the communication graph and the belief system graph
in shaping the relative phase and amplitude patterns of the
oscillations. Additionally, we distinguish broad classes of graphs
that exhibit such oscillations from those that do not.

I. INTRODUCTION

Having the means to evaluate what can happen when a
group of social agents forms beliefs on a set of related topics
is key to understanding belief propagation in human social
networks and to enabling decentralized decision-making in
teams of robots and other distributed technological systems.
Dynamic models of social belief formation provide a tool for
systematic investigation of belief processes and for principled
design of distributed algorithms for decision-making.

In this paper we investigate conditions under which oscil-
lations emerge in the beliefs of agents in social networks.
Temporal oscillations in attitudes and beliefs may be an
important feature of individual cognition [1]. Oscillations in
beliefs are common in social systems; e.g., periodic swings in
public opinion between more conservative and more liberal
attitudes are characteristic of the American electorate [2].
In a multi-robot problem such as task allocation, it may be
important to reliably promote or avoid oscillations. Design-
ing oscillations will also be necessary for building electronic
circuits with complicated, but well controlled, oscillation
patterns as those needed for neuromorphic applications [3].

However, sustained oscillations are rarely observed in
popular models of belief formation. Classically, formation
of beliefs or opinions on a single topic is modeled as a
discrete-time or continuous-time linear weighted averaging
process on a network [4], [5]. For the multi-topic scenario,
multi-dimensional averaging models have been investigated,
e.g., see [6]–[12]. According to linear models, the beliefs
of agents in a static social network typically converge to an
equilibrium. The study of these models is thus concerned
with characterizing the agents’ beliefs at steady state.

Recently, an alternative modeling paradigm for social
opinion formation was proposed that assumes the belief
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or opinion update rules of agents to be nonlinear [13],
[14]. The nonlinearity is deceptively simple: each agent
saturates information it accumulates from its social network.
The imposition of a saturating function is a well-motivated
and mild extension of classic averaging models [13], [14].
Despite the simplicity, networked beliefs that follow this non-
linear update rule can have dramatically different properties
from those predicted by classic averaging models, including
sustained oscillations. These nonlinear dynamics are also
general. Beyond opinion formation, they are closely related
to recurrent neural network and neuromorphic electronic
circuit models. To date, analysis of these nonlinear dynamics
focused on characterizing multi-stable equilibria [13]–[15].
In this paper we add to this body of work and present
novel analysis that characterizes the emergence of belief
oscillations and their properties as a function of design
parameters including mixed-sign network structure.

Our main contributions are as follows. 1) We establish
sufficient conditions and necessary conditions for the onset
of stable sustained oscillations in belief dynamics. 2) We
characterize the relative phase and amplitude patterns of the
oscillations in terms of the parameters of the model.

Section II reviews mathematical preliminaries. Section III
introduces the belief dynamics model. Section IV presents
the main results. Classes of graphs that can lead to oscilla-
tions are distinguished from those that cannot in Section V.
Section VI presents numerical examples.

II. MATHEMATICAL PRELIMINARIES

A. Notation

For x = a + ib = reiφ ∈ C, x = a − ib = re−iφ is
its complex conjugate, |x| =

√
xx = r its modulus, and

arg(x) its argument φ. The inner product of vectors v,w is
〈w,v〉 = wTv. 0 ∈ RN is the zero vector and diag(v) is
the diagonal matrix with diagonal entries the elements of v.

The spectrum of A ∈ Rn×n is σ(A) = {λ1, . . . , λn}
and its spectral radius ρ(A) = max{|λi|, λi ∈ σ(A)}.
The kernel of A is N (A) = {v ∈ Rn s.t. Av = 0}.
An eigenvalue λ ∈ σ(A) is a leading eigenvalue of A if
Re(λ) ≥ Re(µ) for all µ ∈ σ(A). A leading eigenvalue λ
of A is a dominant eigenvalue if λ = ρ(A). Given vectors
v,w or matrices M,N , we say v � w if vi > wi for all i
and M � N if Mij > Nij for all i, j. For matrices M,N ∈
Rm×n, the element-wise Hadamard product M�N ∈ Rm×n
is defined as (M � N)ij = MijNij . For matrices A =
(aij) ∈ Rm×n, B = (bij) ∈ Rl×k the Kronecker product
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A⊗B ∈ Rml×nk is defined as

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 .

A real square matrix A has the strong Perron-Frobenius
property if it has a unique dominant eigenvalue λ = ρ(A)
satisfying λ ≥ |λi| for all λi 6= λ in σ(A) and its
corresponding eigenvector satisfies v � 0. A is irreducible
if it cannot be transformed into an upper triangular matrix
through similarity transformations. A is eventually positive
(eventually nonnegative) if there exists a positive integer k0
such that Ak � 0N×N (Ak � 0N×N ) for all integers k > k0.

Proposition II.1. [16, Theorem 2.2] The following state-
ments are equivalent for a real square matrix A: (1) A
and AT have the strong Perron-Frobenius property; (2) A is
eventually positive; (3) AT is eventually positive.

B. Signed graphs

A graph G = (V, E) is a set of nodes V = {1, . . . , N} and
a set of edges E . We assume the graph is simple, i.e., there
is at most one edge between any two nodes. The adjacency
matrix A = (aik) of G satisfies aik = 0 if eik 6∈ E and
aik 6= 0 otherwise. A is weighted if nonzero entries aik ∈ R.
G is unweighted if aik ∈ {0, 1} or signed unweighted if
aik ∈ {0, 1,−1} for all i, k ∈ V . G is undirected whenever
aik = aki for all i, k ∈ V , and directed otherwise.

The in-degree of node i on G is
∑
k aik. A path on G is

a finite or infinite sequence of edges that joins a sequence
of nodes. G is strongly connected if there exists a path from
any node to any other node. G is strongly connected if and
only if A is an irreducible matrix. A switching matrix M is
a diagonal matrix with diagonal entries that are either 1 or
−1. Two graphs G1, G2 with adjacency matrices A1, A2 are
switching equivalent whenever A1 = MA2M .

C. Hopf bifurcation

Assume without loss of generality that (x, p) = (0, 0) is
an equilibrium of a system ẋ = f(x, p), where x is the state
and p a parameter. Then (0, 0) is a Hopf bifurcation point
if it satisfies the following: i) The Jacobian Df(0, 0) has a
complex conjugate pair of eigenvalues ±iω(0); ii) No other
eigenvalues of Df(0, 0) lie on the imaginary axis; iii) Let
λ(p) = r(p)+iω(p), λ(p) = r(p)−iω(p) be the eigenvalues
of Df(x, p) that are smoothly parametrized by p and for
which r(0) = 0; then ∂r

∂p (0, 0) 6= 0. We use Lyapunov-
Schmidt reduction methods [17, Chapter VIII] to study the
limit cycles that emerge through a Hopf bifurcation.

III. BELIEF FORMATION MODEL

We study a nonlinear model of Na homogeneous agents
forming beliefs about No topics, adapted from [13], [14].
zij ∈ R is the belief of agent i about topic j. Whenever
zij > 0(< 0), agent i is in favor of (in opposition to) topic
j, and when zij = 0 it has a neutral belief on the topic. The
magnitude |zij | signifies the strength of commitment to the
belief on topic j. The total belief state of agent i is the vector

Zi = (zi1, . . . , ziNo
) ∈ RNo , and the total network belief

state is Z = (Z1, . . . ,ZNa) ∈ RNaNo . We say agents i and
k agree (disagree) on topic j if they both form a non-neutral
belief on the topic and sign(zij) = sign(zkj)( 6= sign(zkj)).
Agent i updates its belief on topic j in continuous time as

żij = −d zij + u

(
S1

(
αzij + γ

∑Na

k=1
k 6=i

(Aa)ikzkj

)
+
∑No

l 6=j
l=1

S2

(
β(Ao)jlzil + δ(Ao)jl

∑Na

k=1
k 6=i

(Aa)ikzkl

))
(1)

where S1, S2 : R → R are bounded saturation functions
satisfying Sr(0) = 0, S′r(0) = 1, S′′r (0) = 0, S′′′r (0) 6= 0,
with an odd symmetry Sr(−y) = −Sr(y) where r ∈
{1, 2}. S1 saturates same-topic information and S2 saturates
inter-topic information. These saturations reflect that social
network influence on each topic is bounded, and that an agent
is maximally affected by small changes in its neighbors’
beliefs on a topic when their weighted average is close to
zero. Parameter d > 0 represents the agents’ resistance to
forming strong beliefs. Parameter u ≥ 0 regulates the amount
of attention agents allocate towards their social interactions,
or their susceptibility to social influence.

There are two signed directed graphs underlying the belief
formation process. One is the communication graph Ga =
(Va, Ea, sa), with signed adjacency matrix Aa ∈ RNa×Na .
(Aa)ik = 1 means agent i is cooperative towards agent k,
and (Aa)ik = −1 means it is antagonistic towards agent
k. The other is the belief system graph Go = (Vo, Eo, so),
with signed adjacency matrix Ao ∈ RNo×No . The graph
Go encodes the logical interdependence between different
topics in the set Vo. Whenever (Ao)jl = 1(−1), topic j
is positively (negatively) aligned with topic l according to
the belief system, and whenever (Ao)jl = 0, topic j is
independent of topic l. In the model (1) we assume that all
agents form beliefs following a single shared belief system.

The gains α, γ, β, δ ≥ 0 regulate the relative strengths
of influence on beliefs in (1). α is the strength of agent
self-reinforcement of already-held beliefs; β is the strength
of agent internal adherence to the belief system Go. γ is
the strength of agent social imitation, i.e. to mimic the
beliefs of neighbors towards whom the agent is cooperative
and to oppose the beliefs of those towards whom it is
antagonistic. δ is agent ideological commitment; when δ
is large, agents evaluate their neighbors’ influence more
holistically according to the belief system Go rather than
through pure imitation along each topic. An illustration of
these four effects and their respective cumulative weights in
the model (1) is shown in Fig. 1.

IV. INDECISION-BREAKING AND OSCILLATIONS

We establish sufficient conditions for the onset of small-
amplitude periodic oscillations in the dynamics of beliefs (1).
The indecision state Z = 0 in which all agents have neutral
beliefs on all topics is an equilibrium of (1) for all parameter
values. To establish the onset of oscillations we first study



Fig. 1: Four classes of communication weights in the model (1).
Arrow direction follows sensing convention.

the stability of Z = 0. The Jacobian of (1) about Z = 0 is

J(0, u) = (−d+ uα)INa
⊗ INo

+ uγAa ⊗ INo

+ uβINa
⊗Ao + uδAa ⊗Ao. (2)

The following proposition connects the eigenvalues and
eigenvectors of (2) to the eigenvalues and eigenvectors of
the signed adjacency matrices Aa and Ao.

Proposition IV.1 (Eigenvalues and eigenvectors). The fol-
lowing statements hold for (2), with some selection of
parameters d, u, α, γ, β, δ:

1) For each η ∈ σ
(
J(0, u)

)
, there exists λ ∈ σ(Aa) and

µ ∈ σ(Ao) so that

η = −d+ u(α+ γλ+ βµ+ δλµ) := η(u, λ, µ); (3)

2) Suppose λi is an eigenvalue of Aa with an eigenvector
va,i and µj is an eigenvalue of Ao with an eigenvector vo,j ,
then the vector va,i ⊗ vo,j is an eigenvector of (2) with
corresponding eigenvalue η(u, λi, µj).

Proof. 1) By Schur’s unitary triangularization theorem [18,
Theorem 2.3.1] there exist unitary matrices U ∈ CNa×Na

,
V ∈ CNo×No

such that U∗AaU = ∆a, V ∗AoV = ∆o where
∆a,∆o are upper triangular complex matrices with eigen-
values of Aa, Ao on the diagonal. Then, using the mixed-
product property of the Kronecker product, ∆J = (U ⊗
V )∗J(0, u)(U⊗V ) = (−d+uα)(U∗INa

U)⊗ (V ∗INo
V )+

uγ(U∗AaU) ⊗ (V ∗INo
V ) + uβ(U∗INa

U) ⊗ (V ∗AoV ) +
uδ(U∗AaU)⊗ (V ∗AoV ) = (−d+uα)INa

⊗INo
+uγ∆a⊗

INo + uβINa ⊗ ∆o + uδ∆a ⊗ ∆o. The matrix ∆J is
upper triangular, with its diagonal entries corresponding to
the eigenvalues of J(0N , u). By inspection we see that all
diagonal entries of ∆J have the form η(u, λ, µ) for some
λ ∈ σ(Aa), µ ∈ σ(Ao).

2) va,i⊗vo,j is an eigenvector of Aa⊗Ao with eigenvalue
λiµi by [19, Theorem 4.2.12]; it is also an eigenvector of
INa ⊗ INo , Aa ⊗ INo , and INa ⊗ Ao with corresponding
eigenvalues 1, λi, µi, respectively, and the proposition state-
ment follows from multiplying (2) by va,i ⊗ vo,j .

Whenever eigenvalues λ ∈ σ(Aa) and µ ∈ σ(Ao) define
an eigenvalue η ∈ σ

(
J(0, u)

)
through (3), we say λ and µ

generate η. We define the maximal real part of the social
network contribution to the eigenvalue (3) of the Jacobian as

K = maxλ∈σ(Aa),µ∈σ(Ao) Re (α+ γλ+ βµ+ δλµ) . (4)

For every leading eigenvalue ηmax of (2), Re(ηmax) =
−d + uK. In the following lemma we establish existence
of a critical value of attention to social interactions at which
the neutral equilibrium Z = 0 loses stability.

Lemma IV.2 (Stability of origin). Consider (1) and suppose
K > 0. If u < u∗ := d/K, the neutral equilibrium Z = 0
is locally exponentially stable. If u > u∗ it is unstable.

Proof. Let ηmax be a leading eigenvalue of (2). Whenever
u < u∗(> u∗), Re(ηmax) < 0(> 0). Furthermore since
ηmax is a leading eigenvalue, whenever u < u∗, Re(η) < 0
for all η ∈ σ(J(0, u)). The stability conclusions follow by
Lyapunov’s indirect method [20, Theorem 4.7].

Lemma IV.2 establishes the existence of a bifurcation
point u = u∗ at which the origin loses stability. As a
consequence of the center manifold theorem [21, Theorem
3.2.1] for values of attention parameter u in a neighborhood
of u∗, trajectories of (1) that start in a neighborhood of
Z = 0 will settle on an attracting manifold with dimension
determined by the number of eigenvalues of J(0, u∗) with
zero real part. We examine the onset of network oscillations
along this manifold which result from a Hopf bifurcation.

The following standing assumption ensures that Condi-
tions i), ii) for a Hopf bifurcation (Section II-C) are satisfied.

Assumption 1. The leading eigenvalues of (2) are a
complex-conjugate pair, η+ and η− = η+, with Im(η±) 6= 0.

In Section V we establish several broad classes of graphs
for which this assumption is either always, or never, satisfied.
Let the pair λ† = λa + iλc ∈ σ(Aa) and µ† = µo +
iµc ∈ σ(Ao) generate one of the leading eigenvalues of
Assumption 1 according to (3), i.e. suppose that either η+ =
η(u, λ†, µ†) or η− = η(u, λ†, µ†). Then it holds that

Re(η±) = −d+u
(
α+γλa+βµo+δ(λaµo−λcµc)

)
, (5a)

Im(η±) = ±u
∣∣γλc + βµc + δ(λaµc + λcµo)

∣∣. (5b)

Note that in this case,

K = α+ γλa + βµo + δ(λaµo − λcµc). (6)

We are now ready to establish our first main result.

Theorem IV.3 (Hopf bifurcation). Consider (1) with com-
munication graph Ga and belief system graph Go. Let As-
sumption 1 hold, and suppose K > 0.

Suppose λ† ∈ σ(Aa), µ† ∈ σ(Ao) generate η+(u). Let
wa,va ∈ CNa be the left and right eigenvectors of Aa
corresponding to λ† and λ†, respectively; let wo,vo ∈ CNo

be the left and right eigenvectors of Ao corresponding to µ†

and µ†, respectively. Choose the eigenvectors to satisfy the
biorthogonal normalization condition

〈wa ⊗wo,va ⊗ vo, 〉 = 2, 〈wa ⊗wo,va ⊗ vo, 〉 = 0.

1) There is a unique 3-dimensional center manifold W c ⊂
RNaNo × R passing through (Z, u) = (0, u∗), tangent to
span{Re(va ⊗ vo), Im(va ⊗ vo)} at u = u∗ = d/K. There



is a family of periodic orbits of (1) that bifurcates from the
neutral equilibrium Z = 0 along Wc at u = u∗;

2) Let b = Re

((
S′′′1 (0)

(
α+ γλ†

) ∣∣α+ γλ†
∣∣2 +

+S′′′2 (0)
(
β + δλ†

)
µ†
∣∣β + δλ†

∣∣2 ∣∣µ†∣∣2 ) (7)

×〈wa ⊗wo, |va ⊗ vo|2 � (va ⊗ vo)〉

)
where |x|2 = x�x. Whenever b < 0 the bifurcating periodic
solutions appear supercritically (for u > u∗) and are locally
asymptotically stable; whenever b > 0, the solutions appear
subcritically (for u < u∗) and are unstable;

3) When |u − u∗| is small, the period of the solutions
is near 2π/(u∗|γλc + βµc + δ(λaµc + λcµo)|), the dif-
ference in phase between zij(t) and zkl(t) is near ϕ =
arg((va)i(vo)j) − arg((va)k(vo)l), and the amplitude of
zij(t) is greater than the amplitude of zkl(t) if and only
if |(va)i||(vo)j | > |(va)k||(vo)l|.

Theorem IV.3 provide sufficient conditions for the emer-
gence of stable sustained oscillations at an indecision-
breaking bifurcation. Statement 3) of Theorem IV.3 relates
the relative phase and amplitude pattern along the emerging
oscillation to the spectral properties of Ga and Go.

V. NECESSARY AND SUFFICIENT GRAPH PROPERTIES

Assumption 1 is a necessary condition for the emergence
of oscillations at an indecision breaking bifurcation. The
following proposition singles out classes of communication
and belief system graphs for which the leading eigenvalues
of (2) are necessarily real and therefore no oscillation in
beliefs can emerge at the breaking of indecision.

Proposition V.1 (Graphs that never support oscillations).
Consider (1) with communication graph Ga and belief system
graph Go with signed adjacency matrices Aa, Ao. Suppose
at least one of the following statements is true: 1) Ga and Go
are undirected; 2) for both Ga and Go there exist switching
matrices Ma,Mo such that MaAaMa and MoAoMo are
eventually positive. Then the indecision-breaking bifurcation
of the origin at u = u∗ cannot be a Hopf bifurcation.

Proof. 1) All eigenvalues λ ∈ σ(Aa) and µ ∈ σ(Ao) are
real because Aa, Ai are symmetric; all eigenvalues η(u, λ, µ)
are also real which violates Assumption 1. 2) Eventually
positive matrices have the strong Perron-Frobenius property
by Proposition II.1. Conjugation by a switching matrix
preserves eigenvalues as it is a similarity transformation.
Thus, Aa and Ao possess unique dominant real eigenvalues
λ = ρ(Aa) and µ = ρ(Ao). The eigenvalue η(u, λ, µ) is
therefore a unique dominant eigenvalue of the Jacobian (2),
which violates Assumption 1.

Proposition V.1 singles out two classes of communications
and belief system graphs for which no oscillations in beliefs
are possible at an indecision-breaking bifurcation. In the first
class, both graphs are undirected. In the second class both

graphs are eventually structurally balanced, that is, their
adjacency matrices are switching equivalent to eventually
positive matrices. The two classes have in common that all
the loops between any pairs of agents are positive, which
makes oscillations impossible. Conversely, when some neg-
ative feedback loops are present in either the communication
or the belief system graph, then leading complex eigenvalues
can appear in either graph and oscillations are possible.

Proposition V.2 (Graphs that support oscillations). Consider
(1) with communication graph Ga and belief system graph
Go with signed adjacency matrices Aa, Ao. Suppose there
exists a switching matrix M such that MAaM (MAoM ) is
eventually positive, and suppose the leading eigenvalues of
Ao(Aa) are a complex-conjugate pair with positive real part.
Then there exists a critical value γ∗ (β∗) such that whenever
γ > γ∗ (β > β∗), the indecision-breaking bifurcation of the
origin at u = u∗ is a Hopf bifurcation.

Proof. Consider without loss of generality an eventually
structurally balanced Aa with dominant eigenvalue λ >
0, and Ao with leading eigenvalues µ, µ. The eigenval-
ues η(u, λ, µ), η(u, λ, µ) are the leading eigenvalues of the
Jacobian (2) whenever γ Re(λ − λa) + βRe(µ − µo) +
δRe(µλ − µoλa) > 0 for all λa ∈ σ(Aa), µo ∈ σ(Ao)
with λa 6= λ, λ; µa 6= µ, µ. This is satisfied whenever
γ > maxλa∈σ(Aa),µo∈σ(Ao)−

(
βRe(µ − µo) + δRe(µλ −

µoλa)
)
/(λ − λa) =: γ∗. Furthermore K = α + γλ +

βRe(µ) + δλRe(µ) > 0 and the necessary and sufficient
conditions of Theorem IV.3 are satisfied. Analogous argu-
ments establish existence of β∗.

In the classes of communication and belief system graphs
singled out by Proposition V.2, the graph whose leading
eigenvalues are not complex must be eventually structurally
balanced. This ensures that the complex leading eigenvalues
of the communication or belief system graph (as appropriate)
are mapped to complex leading eigenvalues of (2).

VI. NUMERICAL EXAMPLES

We explore how different communication and belief sys-
tem graphs shape the emerging oscillations. In all the exam-
ples, S1(·) = tanh(·), S2(·) = 1

2 tanh(2·).

A. Single topic: communication-induced oscillations

We first consider (1) in the case that agents evaluate a
single topic so Zi = zi1 ∈ R and only the communication
graph Ga plays a role in the belief dynamics. We denote zi1
by zi and the dynamics are

żi = −d zi + u S1

(
αzi + γ

∑Na

k=1
k 6=i

(Aa)ikzk

)
. (8)

Since the belief system adjacency matrix Ao = 1 in the one-
topic case, vo = wo = µ† = 1 in Theorem IV.3.

Consider (8) for seven agents and communication graph
Ga of Fig. 2a, with model parameters d = 1, α = γ = 0.1.
The adjacency matrix Aa has complex conjugate leading
eigenvalues λ± = 0.90 ± 0.43i, which generate the leading
eigenvalues of the Jacobian η± = −d + u(α + γλ±). The



a) b)-

Fig. 2: a) Communication graph for seven agents; red edges
represent negative connections; b) trajectories of (8) with the com-
munication graph of a) from random initial conditions. Parameters:
d = 1, α = γ = 0.1, u = 5.35

a) b) c) d)
-

+

Fig. 3: a) Belief system graph for three topics; b)-d) three different
communication graphs for four agents with the same connectivity.
Blue (red) edges represent positive (negative) connections.

conditions for oscillations in Theorem IV.3 are satisfied. The
origin loses stability at u∗ = 5.26 and b ≈ −0.0041 from
(7), which predicts a supercritical bifurcation of stable oscil-
lations. Since |(va)i| = |(va)k| for i, k = 1, . . . , 7, all agent
opinions oscillate with the same amplitude. By Theorem IV.3
the predicted period of oscillation is approximately 27.53,
and the predicted oscillation phases of the seven agents
relative to agent 1 are (0, 3.59, 0.90, 4.49, 1.80, 5.39, 2.69).
Fig. 2b illustrates these predictions.

B. Multiple topics: communication and belief system-
induced oscillations

In the multiple-topic case, it is the interaction of commu-
nication and belief system graphs that shapes the oscillations.
We stress that in all examples interchanging agents for topics
and communication graph for belief system graph preserves
the model dynamical behavior (modulo a reordering of
state variables) but changes its interpretation: a given phase
difference and amplitude oscillation pattern between the
agents (topics) is mapped to the same phase difference and
amplitude oscillation pattern between the topics (agents). We
consider three examples with the same belief system (Fig.
3a). The adjacency matrix Ao has a complex conjugate pair
of leading eigenvalues, µ± ≈ 0.66 ± 0.56i. For all three
examples, d = 1, α = γ = 0.1, and β = δ = 0.25.

1) Agreement oscillations: Consider the strongly con-
nected communication graph G′a (Fig. 3b) with purely co-
operative agents. Its adjacency matrix A′a has the strong
Perron-Frobenius property, and the conditions of Proposition
V.2 are satisfied. By (7), b ≈ −0.46 < 0, and thus a
supercritical bifurcation of stable periodic orbits is expected
at u∗ = 0.93 (Fig. 4). Phase differences between any two
belief trajectories on the same topic must be zero (Fig. 4a)
because Aa has the strong Perron-Frobenius property and
its dominant eigenvector va � 0. In contrast, each agent’s
beliefs on different topics are not in phase (Fig. 4b) as

a)

b)

Fig. 4: Trajectories zij(t) of (1) with belief system Go and com-
munication graph G′

a of Fig. 3 from random initial conditions.
Trajectories are grouped by a) topic b) agent. In a) trajectories
of agents 1 and 4 overlap in all three plots. Parameters: d = 1,
α = γ = 0.1, β = δ = 0.25, u = 1.25

predicted by the entries of vo.
2) Clustered disagreement oscillations: Consider the

mixed-sign communication graph, G′′a in Fig. 3c. The ad-
jacency matrix A′′a of this graph is generated from A′a
of the previous example as A′′a = MA′aM where M =
diag(1, 1,−1,−1) is a switching matrix. As in the previous
example, b ≈ −0.46 and u∗ ≈ 0.93. In contrast to the
previous example, sign(va)1 = sign(va)2 = − sign(va)3 =
− sign(va)4. As a result, the beliefs of agents 1 and 2
oscillate in anti-phase with respect to the beliefs of agents 3
and 4 (Fig. 5).

3) Asynchronous disagreement oscillations: Consider the
mixed-sign communication graph G′′′a in Fig. 3d, whose
adjacency matrix A′′′a has a complex-conjugate set of leading
eigenvalues, λ± ≈ 0.88 ± 0.74i. The two pairs (λ+, µ−),
(λ−, µ+) generate the two complex-conjugate leading eigen-
values of J(0, u) which satisfy the conditions of Theorem
IV.3. We compute b ≈ −0.13 and a supercritical bifurcation
of stable periodic orbits is expected at u∗ ≈ 1.64 (Fig. 6). In
contrast to the previous examples, the leading eigenvectors
of J(0, u) are a product of two complex eigenvectors, and
there is no phase synchronization in the resulting oscillations
along any topic or within the agents’ internal dynamics.



Fig. 5: Trajectories zij(t) of (1) with belief system Go and com-
munication graph G′′

a of Fig. 3 from random initial conditions,
grouped by topic. Parameters: u = 1.25, d = 1, α = γ = 0.1,
β = δ = 0.25, u = 1.25

a) b)

Fig. 6: Representative trajectories zij(t) of (1) with belief system
Go and communication graph G′′′

a of Fig. 3, from random initial
conditions. a) Beliefs of all agents on topic 1; b) beliefs of agent
1 on all topics. Color legend for a) and b) the same as in Fig. 4 a)
and b). Parameters: d = 1, α = γ = 0.1, β = δ = 0.25, u = 1.7

APPENDIX: PROOF OF THEOREM IV.3

1) To establish existence of periodic orbits we check that
the system (1) under the stated assumptions satisfies the
conditions of the Hopf bifurcation theorem [21, Theorem
3.4.2]. When u = u∗ = d/K, the leading eigenvalues of (2)
are a simple purely imaginary pair η±(u∗) = ±iu∗

∣∣γλc +
βµc + δ(λaµc + λcµo)

∣∣ 6= 0, which satisfies the eigenvalue
condition (H1) of the Hopf theorem. Next, we check that the
leading eigenvalues cross the imaginary axis with nonzero
speed as u is varied, i.e. d

du Re(η±(u)) = K > 0, which
satisfies the nonzero crossing speed condition (H2) of the
Hopf theorem. Existence of periodic orbits directly follows
by the Hopf theorem. By this theorem and by the definition
of a center manifold [21, Theorem 3.2.1], the solutions
appear along a unique W s which is tangent at u = u∗ to
N
(
J(0, u∗)

)
= span{Re(va ⊗ vo), Im(va ⊗ vo)}.

To show 2) and 3) we first compute the coefficients of
a third-order approximation of (1) following the Lyapunov-
Schmidt reduction for a Hopf bifurcation [17, Chapter
VIII, Proposition 3.3]. This approximation reads f(y, u) =
Ky(u − u∗) + 1

16u
∗by3, where K is defined in (6) and

b is defined in (7). As long as b 6= 0, by [17, Chap-
ter VIII, Theorems 2.1 and 3.2] the reduced bifurcation
equation f(y, u) possesses a pitchfork bifurcation which is
supercritical for b < 0 and subcritical for b > 0. When

|u − u∗| is small, solutions to f(y, u) = 0 are in one-to-
one correspondence with orbits of small amplitude periodic
solutions to the system (1) with period near 2π/(u∗|γλc +
βµc + δ(λaµc + λcµo)|) =: 1/ω. For u near u∗, the small
amplitude oscillations can be approximated to first order as
scalar multiples of eiωtva ⊗ vo from which the conclusions
on phase and amplitude difference between agents follow.
When b < 0 (> 0), the bifurcating periodic solutions are
stable (unstable) by [17, Chapter VIII, Theorem 4.1].
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