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Abstract

This paper concerns identification of uncontrolled or closed loop nonlinear systems using a set of trajectories that are

generated by the system in a domain of attraction. The objective is to ensure that the trajectories of the identified systems are

close to the trajectories of the real system, as quantified by an error bound that is prescribed a priori. A majority of existing

methods for nonlinear system identification rely on techniques such as neural networks, autoregressive moving averages, and

spectral decomposition that do not provide systematic approaches to meet pre-defined error bounds. The developed method

is based on Carleman linearization-based lifting of the nonlinear system to an infinite dimensional linear system. The linear

system is then truncated to a suitable order, computed based on the prescribed error bound, and parameters of the truncated

linear system are estimated from data. The effectiveness of the technique is demonstrated by identifying an approximation of

the Van der Pol oscillator from data within a prescribed error bound.

I. INTRODUCTION

Identifying nonlinear dynamical systems from data, without knowledge of the structure of the model, and with guaranteed

error bounds, has proven to be a difficult challenge. The focus of this paper is on the identification of the dynamic model of

a nonlinear system within prescribed error bounds using Carleman lifting, where the finite dimensional nonlinear system is

lifted into an infinite-dimensional linear system via Carleman linearization. The linear system is then truncated to a suitable

order, computed based on the prescribed error bound, and the parameters of the truncated linear system are estimated from

data.

A variety of system identification methods are available for linear time invariant (LTI) systems. For example, in non-

parametric frequency-domain estimation methods, the system is subjected to a white noise input, the output is represented

in the frequency domain, and the user fits a model that is determined by the number of resonant frequencies and the decay

rate of the power spectrum. On the other hand, parametric methods presuppose a system representation, such as an auto

regressive moving average (ARMA) model or a state space (SS) model, where the order of the system is estimated first

using auto correlation. The system identification problem is reduced to a parameter estimation problem, which is solved

using numerical gradient descent methods to minimize a suitable error metric (c.f. [1]).
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In the case of nonlinear systems, the identification problem is much more difficult. If the structure of the system is known

a priori, the identification problem can be reduced to a parameter estimation problem which can be solved using Lyapunov-

based adaptive estimation methods [2]. In the case where the structure of the system is unknown, some assumptions have to

be made. For instance, in [3] a set of basis functions are specified beforehand, such as constant, polynomial, and trigonometric

functions, in the hope that the data can be decomposed appropriately with respect to the chosen basis. Another approach

is using kernel dynamic mode decomposition (DMD) (c.f. [4]) which aims to decompose a time series corresponding to a

nonlinear dynamical system into a collection of dynamic modes using spectral decomposition of the Koopman operator. In

order to establish convergence guarantees and error bounds, the Koopman operator needs to be compact [5], [6], which is

typically not the case when the dynamics are nonlinear [7], although [8] shows convergence in the strong operator topology,

convergence of the spectra is needed. In [9] the Koopman generator is aproximated from data, which can be used to compute

the eigenvalues, eigenfunctions, and modes of the generator and for system identification without any error bound garuntees.

While the techniques described above have been proven effective in many practical applications [3], [4], [10], they generally

do not provide theoretical error bound guarantees.

The approach in this paper is inspired by the Carleman Linearization approach developed in [11]. Carleman linearization

converts a finite dimensional nonlinear system to an infinite dimensional linear system. The conversion is realized by

expanding the state space of the nonlinear system to include all monomial functions of the original state variables.

In [12], the authors used Carleman Linearization in conjunction with a known nonlinear model to develop a truncated

linear system that approximates the nonlinear system in a region of attraction. Moreover, the trajectory of the truncated

linear system is guaranteed to stay within a computable error bound around the trajectory of the nonlinear system. The error

bound can be computed a priori when the decay rate of the Maclaurin expansion of the nonlinear system and the order of

the truncation are known.

In this paper, the results in [12] are leveraged to develop a Carleman lifting-based approach to data-driven modeling of

nonlinear systems. Given a set of trajectories generated by a nonlinear system and an upper bound of the decay rate of the

Maclaurin expansion, a linear system of a higher order is identified such that the trajectory of the identified linear system

stays within a guaranteed error bound around the trajectory of the nonlinear system, and the error bound can be prescribed

a priori.

The paper is organized as follows. The problem is formulated in Section II. In Section III the approach for identification

of linear systems is presented. In Section IV the properties of the identified system are analyzed. In Section V an algorithm

to generate the identified linear system with a guaranteed error bound is presented. In Section VI a simulation is presented

to demonstrate the system identification method. In Section VII, a discussion of the results is presented, and Section VIII

includes concluding remarks and a discussion on future work.

II. PROBLEM STATEMENT

Consider an unknown dynamical system of the form

ẋ = f(t, x) (1)

where f :
(
R+ × Rd

)
→ Rd is a vector valued real analytic function of several variables, R+ := {y ∈ R : y ≥ 0},

x(0) = x0, and f(t, 0) = 0. Given a set of observed trajectories, {γi}mi=1 = X , generated from (1) and an error bound

∆ > 0, the objective is to develop a systematic technique to either



1) construct another dynamical system of the form ˙̂z = g(t, ẑ) such that the error ‖x(t)− ẑ |d (t)‖ between the trajectories

of the ẑ−system and the trajectories of (1) is less than ∆ for t ∈ [0, τ∗], for some τ∗ > 0, where ẑ |d is the truncation

of ẑ to the first d dimensions, or

2) conclude that construction of such a system, using the particular method developed in this paper, is not possible.

The problem, as formulated above, is difficult to solve for general nonlinear systems. In this paper the formulation is

restricted to a sub-class of nonlinear systems, defined by the following assumptions as in [12].

Assumption 1. The vector field f(t, x) admits a Maclaurin expansion about the state vector x

f(t, x) =
∑

α∈Zd
+

fα(t)xα =
∑

α∈Zd
+\{0}

fα(t)xα, t ∈ R+. (2)

where α = (α1, . . . , αd) ∈ Zd+, is a multi-index and its corresponding multi-variate monomial is xα = xα1
1 · · ·x

αd

d , where

Zd+ is the set of non-negative integers.

Assumption 2. The Maclaurin expansion coefficients satisfy the exponential decay property

sup
t≥0

∑
|α|=n

‖fα(t)‖∞ ≤ CR
−n, n ≥ 0 (3)

where C and R are positive constants, and the cardinality of α is defined by |α| = α1 + · · ·+ αd.

While this assumption is restrictive, a large subclass of systems fall under this category, since polynomial, trigonometric,

and exponential functions have Maclaurin expansions with exponential decay. The idea is to use Carleman lifting [11], [12]

to lift the nonlinear system into an infinite-dimensional linear system such that the truncation of the trajectory of the linear

system to the first d dimensions approximates the trajectory of the system in (1), in the infinity norm over a finite time

interval. The infinite-dimensional linear system is then truncated to yield a finite-dimensional linear system such that the

error between the projected trajectories and the original trajectories is less than the given error bound, ∆.

III. DATA-DRIVEN CARLEMAN LIFTING

Carleman linearization [11] lifts a finite dimensional nonlinear system to an infinite dimensional linear system

ẏ = Ay (4)

where y is an infinite dimensional vector consisting of all unrepeated monomials of x and A is an infinite dimensional

operator. The operator A is approximated by truncating its matrix representation to the first M ×M block, which will be

called A.

The nonlinear system is then approximated by a linear system in terms of a lifted state z which consists of unrepeated

monomials of x up to order N . For example, if N = 3 then

z = l(x) =
[x1, . . . , xd, x

2
1, x1x2, . . . , x1xd, x

2
2, . . . , x

2
d,

x3
1, x

2
1x2, . . . , x1x2x3, . . . , x

3
d]
T ,

where l : Rd → RM denotes the lifting map and M is the number of monomials which is M =
∑N
k=1 (k+d−1

d−1 ).



The results of [12] indicate that for any system that satisfies Assumptions 1 and 2, a trajectory in a region of attraction

can be approximated, with arbitrary accuracy, by truncation of solutions of

ż = Az (5)

to the first d dimensions, where computation of A requires complete knowledge of the system dynamics, f .

In this paper, a data-driven approach to generate the linear system is developed. Given a set of trajectories of the nonlinear

system, denoted by {γi} : [0, T ]→ Rd, that satisfy ‖γi(t)‖ ≤M for all t ∈ [0, T ], the objective is to find an order N and

an estimate Â of an N th-order truncation A of the operator A such that supt∈[0,τ∗] ‖x(t)− ẑ |d (t)‖ ≤ ∆, where [0, τ∗] is

the interval over which the error bound can be guaranteed and ẑ |d is the d−dimensional truncation of the solution ẑ of

˙̂z = Âẑ starting from ẑ(0) = l(x(0)).

Let zi denote the trajectory of (5) starting from the initial condition zi(0) = l(γi(0)). Let

εi(t) := l(γi(t))− zi(t) (6)

denote the error between the trajectories of the model-based Carleman linearization in (5) and the trajectories of (1). The

trajectories of the linear and the nonlinear systems are then related by

d

dt
l(γi(t)) = żi(t) + ε̇i(t) = Azi(t) + ε̇i(t). (7)

Integrating (7), ∫ T

0

d

dt
l(γi(t)) =

∫ T

0

Azi(τ)dτ + εi(T )

= A

∫ T

0

(l(γi(τ))− εi(τ)dτ) + εi(T ). (8)

Note that εi(0) = 0. Concatenating all the measured trajectories into a vector Γ(t) = [l(γ1(t)) , . . . , l(γm(t))]T , and letting

I =
∫ T

0
Z(τ)dτ , where Z = [z1, . . . , zm], with Iε =

∫ T
0
ε(τ)dτ and IΓ =

∫ T
0

Γ(τ)dτ , one gets the relationships IΓ = I+ Iε

and

Γ(T )− Γ(0) = AIΓ −AIε + ε(T ), (9)

where ε(t) = [ε1(t) , . . . , εm(t)]T .

Provided the matrix IΓ is full rank, a data-driven approximation Â of the lifted matrix A can be computed using the

least-squares solution of (9) as

Â = (Γ(T )− Γ(0)) I†Γ, (10)

where (·)† denotes the Moore-Penrose pseudo-inverse.

Once the matrix Â is computed from data, trajectories of the linear system ˙̂z = Âẑ can be computed and truncated to the

first d dimensions to estimate the trajectories of the nonlinear system.

IV. ERROR ANALYSIS AND PRESCRIBED ERROR APPROXIMATION

There are two sources of error between the trajectories of the identified system truncated to the first d dimensions, and

the trajectories of the nonlinear system. The first, is the error ε introduced in (6), between the trajectories of the nonlinear

system and the model-based Carleman linearized system in (5). The second, is the error z̃(t) := z(t) − ẑ(t), between the



trajectories of the model-based Carleman linearized system and the identified linear system, starting from the same initial

conditions. The former is quantified in [12] as follows.

Assumption 3. The measured trajectories are bounded such that ‖γi(t)‖ ≤M for all i = 1, ..., d and t ∈ [0, T ] and

M <
R

e
,

where R is introduced in (3) and e is the base of the natural logarithm.

Under Assumptions 1 - 3, for every N ≥ 1 there exists a τ∗ > 0 such that

‖ε |d (t)‖ ≤ DµN ,∀t ∈ [0, τ∗], (11)

where ε |d is the d−dimensional truncation of ε in (6),

0 < D = M

(
1−

(
M

R

))−1

,

C0 ≤ CR−1,

and

µ <
(
MeR−1

)
eC0τ

∗
< 1.

The error bound in (11) can then be guaranteed over the time interval [0, τ∗] where

τ∗ <
− log(MeR−1)

C0
, (12)

One of the main contribution of this paper is to quantify the error z̃, between the trajectories of the identified system and

the model-based Carleman linearized system.

Theorem 1. If assumptions 1,2,3, and 4 hold, then the state estimation error ‖x(t)− ẑ |d (t)‖ ≤ DµN+tBzA, ∀t ∈ [0, τ∗]

for B, z, and A from (13) as described in the following.

Proof. The dynamics of the error are given by

˙̃z = Az − Âẑ.

By adding and subtracting Aẑ,

˙̃z = Az̃ + (A− Â)ẑ.

Using the variation of constants formula [13]

z̃(τ∗) = eAτ
∗
z̃(0) +

∫ τ∗

0

eA(τ∗−τ)(A− Â)ẑ(τ)dτ.

The triangle inequality and the Cauchy-Schwarz inequality then result in the bound

‖z̃(τ∗)‖ ≤
∫ τ∗

0

∥∥∥eA(τ∗−τ)
∥∥∥∥∥∥A− Â∥∥∥ ‖ẑ(τ)‖ dτ.

Since z̃(0) = 0, then

‖z̃(τ∗)‖ ≤ τ∗BzA (13)

where B = max {
∥∥eAτ∗∥∥ , 1}, z = supt∈[0,τ∗] ‖ẑ(t)‖, and A =

∥∥∥A− Â∥∥∥.



Since A is unknown, calculation of A requires further effort. To that end, let

D(t) = Z(t)− Z(0).

From (5) if IIT is nonsingular, then

A = DIT (IIT )−1,

and from (10) the estimation is calculated as

Â = (D + ε)(I + Iε)
T [(I + Iε)(I + Iε)

T ]−1.

To compute a bound on z̃, the following assumption is needed.

Assumption 4. There exists a constant I such that
∥∥(IT I)−1

∥∥ ≤ I .

Note that the matrix I is comprised of integrals of the trajectories of the model-based Carleman linearized system, and as

such, it is unknown. However, the matrix IΓ can be computed, and is perturbed from I by Iε. Using continuity of eigenvalues

of matrices with respect to elements of the matrix, it can be concluded that for small enough Iε, the difference between∥∥(IT I)−1
∥∥ and

∥∥(ITΓ IΓ)−1
∥∥ is o(Iε).

The bound A can then be estimated using the matrix inverse identity [14],

(Q+ V )−1 = Q−1 −Q−1V (Q+ V )−1,

where Q and (Q+ V ) are non-singular matrices. Applying the identity to the expression for Â,

A ≤
∥∥I∥∥ (

∥∥IT∥∥ ‖ε‖+
∥∥ITε ∥∥ ‖D‖+

∥∥ITε ∥∥ ‖ε‖)
+ [
∥∥I∥∥ (

∥∥IT∥∥ ‖Iε‖+
∥∥ITε ∥∥ ‖I‖+ ‖Iε‖

∥∥ITε ∥∥)]

· [
∥∥IT∥∥ ‖D‖+

∥∥IT∥∥ ‖ε‖+
∥∥ITε ∥∥ ‖D‖+

∥∥ITε ∥∥ ‖ε‖], (14)

where
∥∥IT∥∥ ≤ ∥∥ITΓ ∥∥+

∥∥ITε ∥∥.

Since B = max{
∥∥eAτ∗∥∥ , 1}, an estimate of

∥∥eAτ∗∥∥ is obtained by realizing that

eAτ
∗

= e(A−Â+Â)τ∗
= eA−Âτ

∗
eÂτ

∗
,

and as a result,

B =
∥∥∥eAτ∗

∥∥∥ ≤ eAτ∗
∥∥∥eÂτ∗

∥∥∥ . (15)

By using the triangle inequality

‖x(t)− ẑ |d (t)‖ ≤ ‖ε |d (t)‖+ ‖z̃‖ ,

using (13) and (11) it can be further simplified as

‖x(t)− ẑ |d (t)‖ ≤ DµN + tBzA, ∀t ∈ [0, τ∗]. (16)



V. ORDER SELECTION ALGORITHM

Once the upper bound is calculated as a function of N using (16), a search over N = 1, 2, . . . , N can be conducted (see

Algorithm 1), to yield

N∗ = arg min
N

(DµN + τ∗BzA),

where N∗ denotes the lifted order which produces an identified system with the smallest guaranteed error bound. If DµN
∗

+

τ∗BzA > ∆, then the system identification method cannot produce a system that guarantees supt∈[0,τ∗] ‖x(t)− ẑ |2 (t)‖ <

∆. Otherwise, if DµN
∗

+ τ∗BzA ≤ ∆, then a system can be identified using the truncation order N∗ to guarantee

supt∈[0,τ∗] ‖x(t)− ẑ |2 (t)‖ < ∆.

Algorithm 1 Carleman System identification algorithm. In the algorithm, N is an upper bound on the truncation order,

selected a priori.

Require: X , R, C, N and ∆

Ensure: C0 ≤ CR−1

Ensure: M > ||x||∞
D ←M

(
1−

(
M
R

))−1

Ensure: D > 0

Ensure: τ∗ < − log(MeR−1)
C0

Ensure: µ <
(
MeR−1

)
eC0τ

∗
< 1

N ← 1

while N 6= N do

Find A from (14)

Find B from (15)

Θ(N)← DµN + τ∗AzB

N ← N + 1

end while

if min[Θ(N)] ≤ ∆ then

N∗ ← arg minN [Θ(N)]

Return Â using N∗

else if min[Θ(N)] > ∆ then

Return “Failed”

end if

VI. SIMULATION

To demonstrate the effectiveness of the system identification approach in Section III, the Van der Pol Oscillator is used.

Consider the Van der Pol Oscillator given by

ẋ1 = x2,

ẋ2 = −x1 − x2 + x2x
2
1.

(17)
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Fig. 1. Trajectories of the nonlinear system, the identified system, and the

model-based Carleman linearized system using N = 2.
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Fig. 2. Trajectories of the nonlinear system, the identified system, and the

model-based Carleman linearized system using N = 5.
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Fig. 3. Trajectories of the nonlinear system, the identified system, and the model-based Carleman linearized system using N = 11.
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Fig. 4. Comparison of analytical errors bounds on

supt∈[0,τ∗] ‖x(t)− ẑ |2 (t)‖, the error between the trajectories

of the nonlinear system and the identified system, and

supt∈[0,τ∗] ‖x(t)− z |2 (t)‖, the error between the trajectories of

the nonlinear system and the model-based Carleman linearized system, for

truncation orders N = 1, 2, ..., 12.
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Fig. 5. Comparison of errors supt∈[0,τ∗] ‖x(t)− ẑ |2 (t)‖ be-

tween the measured trajectories and the identified trajectories, and

supt∈[0,τ∗] ‖x(t)− z |2 (t)‖, between the measured trajectories and the

model-based Carleman linearized trajectories, for truncation orders N =

1, 2, ..., 12.
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Fig. 6. maximum error norm of the full state between the linearized system

and the identified system using N = 1, 2, ..., 12
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Fig. 7. maximum error norm of the first two states between the linearized

system and the identified system using N = 1, 2, ..., 12

A total of 209 trajectories of the system in (17) are sampled , each over the time interval [0, 10] with a sampling time

of 0.02 seconds. The trajectories are recorded starting form initial conditions that are uniformly sampled from the set

[−1, 1]× [−1, 1]. The trajectories are then lifted to different dimensions, with N = 2, 3, ..., 12 for system identification.

Using the lifted trajectories, (10) is used to determine the system matrix Â. The identified system matrix is used to simulate

the identified system from t0 = 0 to tf = 20 seconds. The trajectories generated by the identified system are truncated

to the first two dimensions and compared with the recorded trajectories of the nonlinear system in (17). For comparison,

trajectories of the linear system obtained using the model-based Carleman linearization in [12] are also generated. Note

that the system matrix Â is computed directly using recorded data from the nonlinear system. The model-based Carleman

linearization from [12] is used for comparison and analysis purposes only.

The resulting trajectories of the nonlinear system, the model-based Carleman linearized system, and the identified linear

systems are shown in Figures 1-3. To quantify the performance, the errors supt∈[0,τ∗] ‖x(t)− ẑ |2 (t)‖ between the measured

trajectories and the identified system trajectories, and supt∈[0,τ∗] ‖x(t)− z |2 (t)‖, between the measured trajectories and

the model-based Carleman linearized trajectories, are plotted in Figure 5. The parameters introduced in Sections II and IV

are selected as M = 1.5, R = 4.1, C = 33.7, N = 13 and C0 = 0.001, all of which satisfy the conditions in Section IV



and in (3). Using (16) the selected parameters can be seen to guarantee the error bound ‖x(t)− ẑ |2 (t)‖ ≤ 3 over the time

interval t ∈ [0, 0.2].

Remark 1. Since the algorithm returns Â using N∗ or returns ”Failed”, insights into the system identification method and

the error bounds for N 6= N∗ are not obtainable. To that end, this paper presents results for identified systems using lifting

orders other than N∗ and compares the guaranteed error bounds and the error for a range of lifting orders.

Figure 4 illustrates the data-driven bound on supt∈[0,τ∗] ‖x(t)− ẑ |2 (t)‖, developed in (16), compared with the model-

based bound on supt∈[0,τ∗] ‖x(t)− z |2 (t)‖, developed in [12].

VII. DISCUSSION

The results in Figures 1-5 show that for the model-based Carleman linearized system, increasing the order N produces

a more accurate approximation of (17). However, as seen in Figure 3 for the data-driven identified system, increasing the

order N past a certain point can result in an identified model that is inaccurate. As indicated by the bound in (16), as long

as τ∗ is small enough to satisfy (12), the Carleman linearization is guaranteed to get better with increasing truncation order.

However, when used in conjunction with a system identification method, there is a critical truncation order after which the

estimation becomes less accurate.

The optimal truncation order can be estimated using the bound developed in (16), as illustrated by Figures 5 and 4. Figure

5 shows that in the numerical experiment, N = 6 produces the identified system with the lowest error, while the analytical

bound, (see Figure 4) indicates that N∗ = 3, meaning for N = 3 the smallest guaranteed error bound is obtained. Since the

analytical bound is conservative, some discrepancy between the numerical results and the analytical bound is expected.

To further explore the discrepancy, it is instructive to plot the error between the full trajectories of the model-based

Carleman linearized system and the data-driven identified linear system (see Figure 6) and the error between the same

trajectories, truncated to the first two dimensions (see Figure 7). The results indicate that while the full state estimation error

sup0≤t≤τ∗ ‖z(t)− ẑ(t)‖ increases monotonically with N , the truncated state estimation error sup0≤t≤τ∗ ‖z |2 (t)− ẑ |2 (t)‖

initially decreases and then increases with increasing N . The analysis presented in this paper, that produces N∗ = 3, is

based on a bound on the full state estimation error, which is observed to be an overly conservative bound on the truncated

state estimation error for a subset of truncation orders. The authors postulate that development of an error bound for the

truncated state estimation error will reduce the discrepancy between the analytical and the experimental results.

VIII. CONCLUSION AND FUTURE WORK

A system identification method using Carleman linearization is developed to identify a lifted linear system that produces

trajectories which remain within a guaranteed error bound from the trajectory of a nonlinear system under mild assumptions.

The effectiveness of the technique is demonstrated by identifying an approximation of the Van der Pol oscillator from data.

The time interval [0, τ∗] over which the error bound is guaranteed is determined by the decay rate in the assumptions. It

would be desirable for τ∗ to be defined by the user, this would part of future work drawing from the results presented

in [15]. Analytical estimation of truncated state estimation error and the bound in Assumption 4, investigation of machine

precision effects at high truncation orders, and development of a less conservative error bounds for the states of interest are

part of future work.
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