
Federated Learning Using Variance Reduced
Stochastic Gradient for Probabilistically Activated

Agents

Mohammadreza Rostami and Solmaz S. Kia, Senior Member, IEEE

Abstract

This paper proposes an algorithm for Federated Learning (FL) with a two-layer structure that achieves
both variance reduction and a faster convergence rate to an optimal solution in the setting where each
agent has an arbitrary probability of selection in each iteration. In distributed machine learning, when
privacy matters, FL is a functional tool. Placing FL in an environment where it has some irregular
connections of agents (devices), reaching a trained model in both an economical and quick way can
be a demanding job. The first layer of our algorithm corresponds to the model parameter propagation
across agents done by the server. In the second layer, each agent does its local update with a stochastic
and variance-reduced technique called Stochastic Variance Reduced Gradient (SVRG). We leverage the
concept of variance reduction from stochastic optimization when the agents want to do their local update
step to reduce the variance caused by stochastic gradient descent (SGD). We provide a convergence
bound for our algorithm which improves the rate from O(1√

K
) to O(1

K) by using a constant step-size.
We demonstrate the performance of our algorithm using numerical examples.

I. INTRODUCTION

In recent years, with the technological advances in modern smart devices, each phone, tablet, or smart home system,
generates and stores an abundance of data, which, if harvested collaboratively with other users’ data, can lead to
learning models that support many intelligent applications such as smart health and image classification [1], [2].
Standard traditional machine learning approaches require centralizing the training data on one machine, cloud, or
in a data center. However, the data collected on modern smart devices are often of sensitive nature that discourages
users from relying on centralized solutions. Federated Learning (FL) [3], [4] has been proposed to decouple the
ability to do machine learning from the need to store the data in a centralized location. The idea of Federated
Learning is to enable smart devices to collaboratively learn a shared prediction model while keeping all the training
data on the device.

Figure 1 shows a schematic representation of an FL architecture. In FL, collaborative learning without data sharing
is accomplished by each agent receiving a current model weight from the server. Then, each participating learning
separately updates the model by implementing a stochastic gradient descent (SGD) [5] using its own locally collected
datasets. Then, the participating agents send their locally calculated model weights to a server/aggregator, which
often combines the models through a simple averaging, as in FedAvg [4], to be sent back to the agents. The process
repeats until a satisfactory model is obtained. Federated learning relies heavily on communication between learner
agents (clients) and a moderating server. Engaging all the clients in the learning procedure at each time step of the
algorithm results in huge communication cost. On the other hand, poor channel quality and intermittent connectivity
can completely derail training. For resource management, in the original popular FL algorithms such as FedAvg in
[4], at each round of the algorithm, a batch of agents are selected uniformly at random to receive the updated model
weights and perform local learning. FedAvg and similar FL algorithms come with convergence guarantees [6]–[9]
under the assumption of availability of the randomly selected agents at each round. However, in practice due to
factors such as energy and time constraints, agents’ availability is not ubiquitous at all times. Thus, some works
have been done to solve this problem via device scheduling [10]–[14]. Nevertheless, the agents’ availability can be
a function of unforeseen factors such as communication channel quality, and thus is not deterministic and known
in advance.

The authors are with the Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA
92697, {mrostam2,solmaz}@uci.edu. This work was supported by NSF, under CAREER Award ECCS-1653838.

ar
X

iv
:2

21
0.

14
36

2v
2

 [
cs

.L
G

]
 1

 A
pr

 2
02

3

Fig. 1: Federated Learning structure with non-uniform probability of agent selection in each iteration.

To understand the effect of an agent’s stochastic availability on the FL, recent work such as [15] proposed to
move from random batch selection to an FL model where the agents availability and participation at each round
are probabilistic, see Fig. 1. In this paper, we adopt this newly proposed framework and contribute to devising an
algorithm that achieve faster convergence and lower error covariance. Our focus will be on incorporating a variance
reduction procedure into the local SGD procedure of participating learner agents at each round. The randomness
in SGD algorithms induces variance of the gradient, which leads to decay learning rate and sub-linear convergence
rate. Thus, there has been an effort to reduce the variance of the stochastic gradient, which resulted in the so-called
Stochastic Variance Reduced Gradient (SVRG) methods. It is shown that SVRG allows using a constant learning
rate and results in linear convergence in expectation.

In this paper, we incorporate an SVRG approach in an FL algorithm where agents’ participation in the update process
in each round is probabilistic and non-uniform. Through rigorous analysis, we show that the proposed algorithm has
a faster convergence rate. In particular, we show that our algorithm results in a practical convergence in expectation
with a rate O(1

K), which is an improvement over the sublinear rate of O(1√
K

) in [15]. We demonstrate the
effectiveness of our proposed algorithm through a set of numerical studies and by comparing the rate of convergence,
covariance, and the circular error probable (CEP) measure. Our results show that our algorithm drastically improves
the convergence guarantees, thanks to the decrease in the variance, which results in faster convergence.

Organization: Section II introduces our basic notation, and presents some of the properties of smooth functions.
Section III presents the problem formulation and the structure behind it. Section IV includes the proposed algorithm
and its scheme. Section V contains our convergence analysis for the proposed algorithm and provides its convergence
rate. Section VI presents simulations and Section VII gathers our conclusions and ideas for future work. For the
convenience of the reader, we provide some of the proofs in the Appendix.

II. PRELIMINARIES

In this section, we introduce our notations and terminologies used throughout the paper. We let R, R>0, R≥0,
denote the set of real, positive real numbers. Consequently, when x ∈ R, |x| is its absolute value. For x ∈ Rd,
‖x‖ =

√
x>x denotes the standard Euclidean norm. We let 〈., .〉 denotes an inner product between two vectors for

two vectors x and y ∈ Rd. A differentiable function f : Rd → R is Lipschitz with constant L ∈ R>0, or simply
L-Lipschitz, over a set C ⊆ Rd if and only if ‖f(x)− f(y)‖ ≤ L‖x− y‖, for x, y ∈ C. Furthermore, if the function
is differentiable, we have f(y) ≤ f(x) +∇f>(y − x) + L

2‖y − x‖
2 for all x, y ∈ C [16]. Lastly, we recall Jensen’s

inequality, which states [17]: ∥∥∥∥ 1

N

∑N

n=1
xn

∥∥∥∥2 ≤ 1

N

∑N

n=1
‖xn‖2. (1)

III. PROBLEM STATEMENT

This section formalizes the problem of interest. Consider a set of N agents (clients) that communicate with a server
to learn parameters of a model that they want to fit into their collective data set. Each agent has its own local

Fig. 2: SVRG update steps.

data which can be distributed either uniformly or non-uniformly. The learning objective is to obtain the learning
function weights θ ∈ Rd from

min
θ∈Rd

f(θ) :=
1

N

N∑
n=1

fn(θ), fn(θ) =
1

Ln

Ln∑
i=1

fn,i(θ), (2)

where fn is possibly a convex or non-convex local learning loss function. At each agent n ∈ {1, · · · , N}, fn
depends on training data set {(qn,i, ŷn,i)}Lni=1 ⊂ R1×d × R (supervised learning). Examples include [18]

• square loss fn,i(θ) = ‖(ŷn,i − qn,iθ)‖2,
• log loss fn,i(θ) = log(1 + e−ŷn,iqn,iθ).

Assumption 1 (Assumption on L-smoothness of local cost functions). The local loss functions have L-Lipschitz
gradients, i.e., for any agent n ∈ {1, · · · , N} we have

‖∇fn(θ)−∇fn(θ̄)‖ ≤ L‖θ − θ̄‖ (3)

for any θ, θ̄ ∈ Rd and L ∈ R>0.

This assumption is technical and common in the literature.

Problem (2) should be solved in the framework of FL in which agents maintain their local data and only interact
with the server to update their local learning parameter vector based on a global feedback provided by the server.
The server generates this global feedback from the local weights it receives from the agents. In our setting, at
each round k of the FL algorithm, each agent n ∈ {1, · · · , N} becomes active to perform local computations and
connect to the server with a probability of pkn. We denote the active state by 1kn ∈ {0, 1}; thus,

pkn = Prob(1kn = 1).

The activation probability at each round can be different.

IV. FEDERATED LEARNING WITH VARIANCE REDUCTION

To solve (2), we design the FedAvg-SVRG Algorithm 1, which has a two-layer structure. In this algorithm, each
agent has its own probability to be active or passive in each round which is denoted by pkn for agent n at iteration
k.

Algorithm 1 is initialized with θ0 by the server. We denote the number of the FL iterations by K. At each round
k ∈ {1, · · · ,K}, the set of active agents is denoted by Ak (line 5), which is the set of agents for which 1kn = 1.
Then, each active agent receives a copy of the learning parameter θk from the server. Afterward, active agents
perform their local updates according to steps 7 to 18. For resource management local update in FL algorithms,
e.g., [15], follow an SGD update. However, the SGD update suffers from a high variance because of the randomized
search of the algorithm, so instead of using the SGD update step, which results in a decaying step size and slow
convergence, we use the SVRG update step which is stated in lines 7 to 18. In the SVRG update, we calculate
the full batch gradient of the agents at some points, which are referred to as snapshots. Then, between every two
snapshots, each agent does its local update. A schematic of SVRG update steps is shown in Fig. 2.

We denote the number of snapshots in our SVRG method by S. We let M be the number of local SVRG updates in
between two snapshots for each active agent before aggregation. Line 10 of Algorithm 1 corresponds to computing
the full batch gradient of each agent at the snapshot points, then in line 12, each agent does its local update with
substituted gradient term denoted as vkn,s,m = ∇f#(wkn,s,m)−∇f#(w̃) + µ̃. Note the gradient substituted term in

Algorithm 1 FedAvg-SVRG with non-uniformly agent sampling

1: Input: δ, K, θ0, {pkn}, S, M
2: Output: θk
3: for k ← 0, ..., K − 1 do
4: Determine the active agents (sample 1k

n ∼ pkn)
5: Ak ← set of active agents
6: for n ∈ Ak do
7: w̃k

n,0 = θk

8: for s← 0, ..., S − 1 do
9: w̃ = w̃k

n,s

10: µ̃ = 1
Ln

∑Ln

i=1∇fn,i(w̃)
11: wk

n,s,0 = w̃
12: for m← 0, ...,M − 1 do
13: Randomly pick # from ∈ {1, ..., Ln}
14: wk

n,s,m+1 = wk
n,s,m − δvkn,s,m

15: where vkn,s,m = ∇f#(wk
n,s,m)−∇f#(w̃) + µ̃

16: end for
17: set w̃k

n,s+1 = wk
n,s,M

18: end for
19: end for
20: θk+1 = θk + 1

N

∑N
n=1

1k
n

pkn
(wk

n,S−1,M − w̃k
n,0)

21: end for

the SVRG update is an unbiased estimator. After completing the SVRG update, each agent updates its snapshot,
which is mentioned in line 17 [19] [5]. In the end, in line 20, the model parameter gets updated. It should be noted
that the weight for updating the model parameter denoted by 1kn

pkn
makes the gradient to be unbiased when the model

parameter wants to be updated because, by this fraction, agents with a low probability of being selected for each
iteration still have an adequate impact on a model parameter when they play a part at each iteration. Unlike SGD,
the stepsize δ for the SVRG update does not have to decay in line 14. Hence, it gives rise to a faster convergence
as one can choose a large stepsize.

V. CONVERGENCE ANALYSIS

In this section, we study the convergence bound for the proposed algorithm which is applicable for both convex
and non-convex cost functions.

Assumption 2 (Assumption on unbiased stochastic gradients).

E[∇f#(w)|w] = ∇fn(w) (4)

for any w and # ∈ {1, ..., Ln}.
As a result, our substituted gradient term denoted by vkn,s,m = ∇f#(wkn,s,m)−∇f#(w̃) + µ̃ becomes unbiased
where µ̃ = 1

Ln

∑Ln
i=1∇fn,i(w̃).

Assumption 3 (Bound on the substituted gradient term).

E[||vkn,s,m(w)||2] ≤ G2,∀w, n, s,m for some G > 0 (5)

Assumption 4 (Assumption on µ-strongly convex local cost functions). The local cost functions are strongly convex
with parameter µ, i.e.,

fn(θ2) ≥ fn(θ1) +∇fn(θ1)T (θ2 − θ1) +
µ

2
||θ2 − θ1||2 (6)

Also, we should point out that 1kn and 1kn′ are independent for n 6= n′, and the agent activation for each iteration
is independent of random function selection. In other words, 1kn and ∇f#(w) are completely independent.

Theorem V.1 (Convergence bound for the proposed algorithm for both convex and non-convex cost functions). Let
the assumptions 1 and 2 hold. Then Algorithm 1 results in

1

K

K−1∑
k=0

E
[∥∥∥∥∇f(θk)

∥∥∥∥2] ≤ 2

δKSM
(f(θ0)− f?)

+
δ2L2(M − 1)

KSMN[
K−1∑
k=0

N∑
n=1

S−1∑
s=0

M−1∑
m=0

m−1∑
m′=0

E
[∥∥∥∥vkn,s,m′∥∥∥∥2]

]

+
δL

KN

K−1∑
k=0

N∑
n=1

1

pkn

S−1∑
s=0

M−1∑
m=0

E
[∥∥∥∥vkn,s,m∥∥∥∥2]. (7)

Furthermore, if assumption (5) holds we can write the following bound on the right hand side:

1

K

K−1∑
k=0

E
[∥∥∥∥∇f(θk)

∥∥∥∥2] ≤ 2

δKSM
(f(θ0)− f?)

+ δ2L2(M − 1)2G2

+
δLSMG2

KN

K−1∑
k=0

N∑
n=1

1

pkn
, (8)

where f? is the optimal solution to (2).

Proof of Theorem V.1 is given in the appendix.

Remark: According to (8) a rate of convergence of the algorithm is determined by min[1
δK , δ

2, δK]. In order to
select the convergence rate of our algorithm we can derive it by choosing δ = 1

Kε . Then, the rate of convergence
is chosen from min[1

K1−ε ,
1
K2ε ,

1
K1+ε]. By selecting ε = 1

3 = max{1 − ε, 2ε} the best convergence rate can be
obtained, which is of order O(1

3√
K2

). Thus, using the decaying step-size (δ = 1
3√
K

) allows us obtain O(1
3√
K2

)
convergence to the optimal point for both convex and non-convex cost functions.

Lemma V.1. If assumption (4) holds, then algorithm 1 will convergence to the optimal point with rate no less than
O(1

K).

Proof. Without loss of generality, let say S = 1, i.e, no intermediate full gradient calculation for each agent. Then,
we have the following upper bound for the substituted gradient term:

vkn,m′ = ∇f#(wkn,m′)−∇f#(w̃) + µ̃

Taking expectation with respect to #, using the facts that ||x+ y||22 ≤ 2||x||22 + 2||y||22, µ̃ = ∇fn(w̃) and E ||x−
Ex||22 ≤ E ||x||22, we get the following inequalities:

E ||vkn,m′ ||22 ≤ 2E ||∇f#(wkn,m′)−∇f#(w?n)||22
+ 2E ||[∇f#(w̃)−∇f#(w?n)]−∇fn(w̃)||22
= 2E ||∇f#(wkn,m′)−∇f#(w?n)||22
+ 2E ||[∇f#(w̃)−∇f#(w?n)]

− E[∇f#(w̃)−∇f#(w?n)]||22

≤ 2E ||∇f#(wkn,m′)−∇f#(w?n)||22
+ 2E ||[∇f#(w̃)−∇f#(w?n)]||22
≤ 4L[fn(wkn,m′)− fn(w?n) + fn(w̃)− fn(w?n)].

Where in the last inequality we use theorem 1 in [19].
By summing both sides for m′ = 0 : m− 1 and selecting wkn,m = wkn,m′ for randomly chosen m′ ∈ {0, ...,m− 2}
which is a valid update scheme in SVRG, we get the following:

m−1∑
m′=0

E ||vkn,m′ ||22 ≤
m−1∑
m′=0

4L[fn(wkn,m′)

− fn(w?n) + fn(w̃)− fn(w?n)]

= 4LmE[fn(wkn,m)

− fn(w?n) + fn(w̃)− fn(w?n)]

= 4Lm

[
E[fn(wkn,m)− fn(w?n)]

+ E[fn(w̃)− fn(w?n)]

]
, (9)

where we use the fact that E[x + y] = E[x] + E[y] in the last equality. Next, invoking [19, Theorem 1], we can
write

E[fn(wkn,m)− fn(w?n)] ≤ αk E[fn(w̃kn)− fn(w?n)], (10)

E[fn(wkn,m)− fn(w?n)] ≤ αkD, (11)

where α = h(µ, L, δ,M) < 1 and D is an upper bound of E[fn(w̃kn)−fn(w?n)], then we have geometric convergence
in expectation for SVRG.

Using (10) we can upper bound the last two expectations in (9) and get the following result:

m−1∑
m′=0

E ||vkn,m′ ||22 = 4Lm

[
E[f(w̃kn)− f(w?n)]

+ E[f(w̃)− f(w?n)]

]
≤ 8Lmαk E[fn(w̃kn)− fn(w?n)]

≤ 8LmαkD, (12)

note that because α < 1, we have:
K−1∑
k=0

αk =
1− αK

1− α
. (13)

by using (12) and (13) into (7) we can establish O(1
K) convergence rate for the proposed algorithm.

1

K

K−1∑
k=0

E
[∥∥∥∥∇f(θk)

∥∥∥∥2] ≤ 2

δKM
(f(θ0)− f?)

+
8Dδ2L3(M − 1)2(1− αK)

K(1− α)

+
8DδL2(M − 1)

KN

K−1∑
k=0

αk
N∑
n=1

1

pkn
. (14)

Fig. 3: Error of cost function for the first case (S = 5 and M = 2) over 20 Monte Carlo iterations (thicker line
correspond to the mean of Monte Carlo iterations, vertical axis is limited for the purpose of better visualization).

Fig. 4: Variance of cost function for the first case (S = 5 and M = 2) over 20 Monte Carlo iterations (thicker line
correspond to the mean of Monte Carlo iterations, vertical axis is limited for the purpose of better visualization).

By incorporating a SVRG approach in our FL algorithm, Theorem V.1 guarantees that we can a fixed size step-size
δ and achieve a convergence rate of O(1

K). The improvement is due to the fact that the SVRG update step does not
need to have a decaying stepsize throughout the learning process. Thus, using a constant and larger stepsize leads
the algorithm to faster convergence to the stationary point. This is an improvement over the existing algorithm [15]
in which they guarantee O(1√

K
) as the convergence rate of the algorithm by using the SGD method for their local

update step.

VI. NUMERICAL SIMULATIONS

In this section, we analyze and demonstrate the performance of the Algorithm 1 by solving a regression problem
(quadratic loss function). In this study, we compare the performance of our algorithm to that of the FedAvg in [15].
We used a real medical insurance data set of 900 persons in the form of (y, v) ∈ R× R1×5. Then, to observe the
effect of stochastic optimization, we distribute the data among 18 agents. Thus, each agent owns 50 quadratic costs.
In other words, we seek to solve the following convex optimization problem:

min
θ∈R10

f(θ) =
1

N

N∑
n=1

fn(θ), (15)

fn(θ) =
1

Ln

Ln∑
i=1

fn,i(θ), fn,i(θ) = ‖qn,iθ − ŷn,i‖2,

where in our problem, N , and Ln are 18 and 50, respectively. Here, ŷn,i ∈ R, and θ is the learning parameter
(weight) which is a column vector with 5 elements.We conduct 20 Monte Carlo simulation in all of which we
initialize our algorithm at θ0 = [0.5, ..., 0.5]>, and we use the fixed step-size δ = 1√

100
in all rounds. We also

simulate the FedAvg algorithm of [15] with the same initialization but using the decaying stepsize of 1√
K

as
mentioned in [15]. For our algorithm we consider two cases: (1) (S = 5,M = 2) and (2) (S = 10,M = 5).

The simulation results for the first case are shown in Fig. 3–Fig.5, while the results for the second case are shown
in Fig. 6–Fig.8. Figures 3 and 6 show that in both cases our algorithm has a faster convergence to the optimal cost
(the value is 0.01).

Fig. 5: CEP graph for the second case (S = 5 and M = 2) over 20 Monte Carlo iterations. The results for our
algorithm is in the right while the result for algorithm of [15] is shown on the left.

Fig. 6: Error of cost function for the second case (S = 10 and M = 5) over 20 Monte Carlo iterations (thicker
line correspond to the mean of Monte Carlo iterations, y axis is limited for the purpose of better visualization).

Figures 4 and 7 show the variance caused by the two algorithms. The variance of our algorithm is significantly
lower than that of the algorithm of [15]. In order to show the variance of our algorithm, we put a logarithmic axis
on y axis. Also, the variance of our algorithm decreases as the number of iterations increases as opposed to the
algorithm of [15], which suffers from a high variance.

Figure 5 and 8 show the circular error probable (CEP) to observe the variance in the last iteration (K = 100) for
our algorithm and the FedAvg algorithm in [15]. CEP is a measure used in navigation filters. It is defined as the
radius of a circle, centered on the mean, whose perimeter is expected to include the landing points of 50% of the
rounds; said otherwise, it is the median error radius [20]. Here, then, CEP demonstrates how far the means of the
Monte Carlo runs are from 50% of the Monte Carlo iterations for both algorithms. As a result, less radius means
less variance from the mean of the Monte Carlo runs. This plot shows not only our algorithm reaches a closer
neighborhood to the optimal cost, but also, it has less CEP radius in comparison to that of the algorithm of [15];
this is another indication that our algorithm has less variance compared to the FedAvg algorithm in [15]. For our
algorithm, the CEP radius in the first and the second cases are respectively 0.0029 and 0.0077, while these values
of the algorithm of [15] are respectively 0.0059 and 0.0201.

To complete our simulation study, we also compare the convergence performance of our algorithm to that of the
FedAvg of [4], which uses a uniform agent selection. Figure 9 demonstrates the results when we use the batch size
of 5 of the FedAvg of [4] and use the parameters corresponding to the first case for our algorithm. As we can see,
our algorithm outperforms the FedAvg of [4] both in mean and variance.

VII. CONCLUSIONS

We have proposed an algorithm in the FL framework in the setting where each agent can have a non-uniform
probability of becoming active (getting selected) in each FL round. The algorithm possesses a doubly-layered
structure as the original FL algorithms. The first layer corresponds to distributing the server parameter to the
agents. At the second layer, each agent updates its copy of the server parameter through an SVRG update. Then
after each agent sends back its update, the server parameter gets updated. By leveraging the SVRG technique
from stochastic optimization, we constructed a local updating rule that allowed the agents to use fixed stepsize.
We characterized an upper bound for the gradient of the expected value of the cost function, which showed our
algorithm converges to the optimal solution with the rate of no less than O(1

K). This showed an improvement

Fig. 7: Variance of cost function for the second case (S = 10 and M = 5) over 20 Monte Carlo iterations (thicker
line correspond to the mean of Monte Carlo iterations, y axis is limited for the purpose of better visualization).

Fig. 8: CEP graph for the second case (S = 10 and M = 5) over 20 Monte Carlo iterations. The results for our
algorithm is in the right while the result for algorithm of [15] is shown on the left.

over the existing results that only have a convergence rate of O(1√
K

). We demonstrated the performance of our
algorithm through several numerical examples. We used various statistical measures to show our algorithm’s faster
convergence and low variance compared to some state-of-the-art existing FL algorithms. Future work will investigate
the extension of the result for the non-uniformly selection of snapshots inside the SVRG update for computing the
full batch gradient of the agents.

REFERENCES

[1] D. C. Nguyen, Q. V. Pham, P. N. Pathirana, M. Ding, A. Seneviratne, Z. Lin, O. A. Dobre, and W. J. Hwang, “Federated
learning for smart healthcare: A survey,” ACM Computing Surveys (CSUR), vol. 55, no. 3, pp. 1–37, 2022.

[2] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning with non-iid data,” arXiv preprint
arXiv:1806.00582, 2018.

[3] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated learning,” Synthesis Lectures on Artificial Intelligence
and Machine Learning, vol. 13, no. 3, 2019.

[4] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in International Conference on Artificial Intelligence and Statistics, (Lauderdale, FL), pp. 1273–
1282, 2017.

[5] R. Xin, S. Kar, and U. A. Khan, “Decentralized stochastic optimization and machine learning: A unified variance-reduction
framework for robust performance and fast convergence,” tspm, pp. 102–113, 2020.

[6] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on non-iid data,” 2019.
[7] A. Mitra, R. Jaafar, G. J. Pappas, and H. Hassani, “Achieving linear convergence in federated learning under objective and

systems heterogeneity,” arXiv preprint arXiv:2102.07053, 2021.
[8] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization in heterogeneous networks,”

Proceedings of Machine Learning and Systems, pp. 429–450, 2020.
[9] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan, “Adaptive federated learning in resource

constrained edge computing systems,” IEEE Journal of Selected Areas in Communications, no. 6, pp. 1205–1221, 2019.
[10] H. H. Yang, Z. Liu, T. Q. Quek, and H. V. Poor, “Scheduling policies for federated learning in wireless networks,” IEEE

Transactions on Communications, vol. 68, no. 1, pp. 317–333, 2019.
[11] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated learning: Convergence analysis and power-of-choice

selection strategies,” arXiv preprint arXiv:2010.01243, 2020.

Fig. 9: Comparing the results of the cost function for three algorithms over 20 Monte Carlo iterations (thicker
line correspond to the mean of Monte Carlo iterations, y axis is limited for the purpose of better visualization).

[12] Y. Ruan, X. Zhang, S.-C. Liang, and C. Joe-Wong, “Towards flexible device participation in federated learning,” in
International Conference on Artificial Intelligence and Statistics, pp. 3403–3411, PMLR, 2021.

[13] H. Yang, M. Fang, and J. Liu, “Achieving linear speedup with partial worker participation in non-iid federated learning,”
arXiv preprint arXiv:2101.11203, 2021.

[14] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning and communications framework for federated
learning over wireless networks,” IEEE Transactions on Wireless Communications, vol. 20, pp. 269–283, 2021.

[15] J. Perazzone, S. Wang, M. Ji, and K. Chan, “Communication-efficient device scheduling for federated learning using
stochastic optimization,” in IEEE INFOCOM 2022-IEEE Conference on Computer Communications, (Piscataway, N,J),
pp. 1449–1458, IEEE, 2022.

[16] D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational Research Society, vol. 48, no. 3, pp. 334–334, 1997.
[17] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas (Second Edition). Princeton reference, Princeton

University Press, 2009.
[18] A. Gron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build

Intelligent Systems. O’Reilly Media, Inc., 1st ed., 2017.
[19] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive variance reduction,” in Advances in

Neural Information Processing Systems (C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, eds.),
vol. 26, (57 Morehouse Lane Red Hook, N,Y), Curran Associates, Inc., 2013.

[20] J. C. Spall and J. L. Maryak, “A feasible bayesian estimator of quantiles for projectile accuracy from non-iid data,” Journal
of the American Statistical Association, vol. 87, no. 419, pp. 676–681, 1992.

APPENDIX

This appendix gives the proof of Theorem V.1. However, before giving that proof we state some auxiliary lemmas
that we will invoke in our proof.

Lemma A.1. Consider Algorithm 1. We can establish that

δ2L

2N2
E
[∥∥∥∥ N∑

n=1

1kn
pkn

S−1∑
s=0

M−1∑
m=0

vkn,s,m

∥∥∥∥2∣∣∣∣θk] ≤ NSM N∑
n=1

1

pkn

S−1∑
s=0

M−1∑
m=0

E
[∥∥∥∥vkn,s,m∥∥∥∥2∣∣∣∣θk] (A.16)

Proof. By using Jensen’s inequality we get the following inequalities:

E
[∥∥∥∥ N∑

n=1

1kn
pkn

S−1∑
s=0

M−1∑
m=0

vkn,s,m

∥∥∥∥2∣∣∣∣θk]

≤ N
N∑
n=1

E
[∥∥∥∥1knpkn

S−1∑
s=0

M−1∑
m=0

vkn,s,m

∥∥∥∥2∣∣∣∣θk]

= N

N∑
n=1

E[1kn|θk]

(pkn)2
E
[∥∥∥∥ S−1∑

s=0

M−1∑
m=0

vkn,s,m

∥∥∥∥2∣∣∣∣θk]

≤ NS
N∑
n=1

E[1kn|θk]

(pkn)2

S−1∑
s=0

E
[∥∥∥∥M−1∑

m=0

vkn,s,m

∥∥∥∥2∣∣∣∣θk]

≤ NSM
N∑
n=1

E[1kn|θk]

(pkn)2

S−1∑
s=0

M−1∑
m=0

E
[∥∥∥∥vkn,s,m∥∥∥∥2∣∣∣∣θk]

≤ NSM
N∑
n=1

1

pkn

S−1∑
s=0

M−1∑
m=0

E
[∥∥∥∥vkn,s,m∥∥∥∥2∣∣∣∣θk]

Which concludes the proof.

Lemma A.2. Consider Algorithm 1. We can establish that

− δ E
[〈
∇f(θk),

1

N

N∑
n=1

∇fn(wkn,s,m)

〉]
≤ δ3L2(M − 1)

2N

N∑
n=1

m−1∑
m′=0

E
[∥∥∥∥vkn,s,m′∥∥∥∥2]− δ

2
E
[∥∥∥∥∇f(θk)

∥∥∥∥2]
(A.17)

Proof. We start by noting that

− δ E
[〈
∇f(θk),

1

N

N∑
n=1

∇fn(wkn,s,m)

〉]
= −δ E

[〈
∇f(θk),

1

N

N∑
n=1

∇fn(wkn,s,m)−∇f(θk) +∇f(θk)

〉]

= δ E
[〈
∇f(θk),− 1

N

N∑
n=1

∇fn(wkn,s,m) +∇f(θk)

〉]
− δ E

[〈
∇f(θk),∇f(θk)

〉]

≤ δ

2
E
[∥∥∥∥∇f(θk)

∥∥∥∥2]− δ E [∥∥∥∥∇f(θk)

∥∥∥∥2]+
δ

2
E
[∥∥∥∥∇f(θk)− 1

N

N∑
n=1

∇fn(wkn,s,m)

∥∥∥∥2]

=
δ

2
E
[∥∥∥∥∇f(θk)

∥∥∥∥2]− δ E [∥∥∥∥∇f(θk)

∥∥∥∥2]+
δ

2
E
[∥∥∥∥ 1

N

N∑
n=1

[
∇fn(θk)−∇fn(wkn,s,m)

]∥∥∥∥2]

≤ δ

2N

N∑
n=1

E
[∥∥∥∥∇fn(θk)−∇fn(wkn,s,m)

∥∥∥∥2]− δ

2
E
[∥∥∥∥∇f(θk)

∥∥∥∥2]

≤ δL2

2N

N∑
n=1

E
[∥∥∥∥θk − wkn,s,m∥∥∥∥2]− δ

2
E
[∥∥∥∥∇f(θk)

∥∥∥∥2]

=
δL2

2N

N∑
n=1

E
[∥∥∥∥ m−1∑

m′=0

δvkn,s,m′

∥∥∥∥2]− δ

2
E
[∥∥∥∥∇f(θk)

∥∥∥∥2]

≤ δ3L2

2N

N∑
n=1

E
[∥∥∥∥ m−1∑

m′=0

vkn,s,m′

∥∥∥∥2]− δ

2
E
[∥∥∥∥∇f(θk)

∥∥∥∥2]

≤ δ3L2(M − 1)

2N

N∑
n=1

m−1∑
m′=0

E
[∥∥∥∥vkn,s,m′∥∥∥∥2]− δ

2
E
[∥∥∥∇f(θk)

∥∥∥2]
Which concludes the proof. Where in the third inequality, we use the smoothness property of functions. For rest
of inequalities we use Jensen’s inequality.

We are now ready to present the proof of Theorem V.1.

Proof of TheoremV.1. Our proof is based on the smoothness of the cost function. Then, from the smoothness, we
can write the following inequality:

E[f(θk+1)|θk] ≤ f(θk) + 〈∇f(θk),E[θk+1 − θk|θk]〉

+
L

2
E
[
‖θk+1 − θk‖2

∣∣θk] (A.18)

From the proposed algorithm, we can write the following:

θk+1 − θk =
1

N

N∑
n=1

1kn
pkn

(wkn,S−1,M − w̃kn,0)

= − δ

N

N∑
n=1

1kn
pkn

S−1∑
s=0

M−1∑
m=0

vkn,s,m (A.19)

From (A.18) and (A.19), we have the following:

E[f(θk+1)|θk] ≤ f(θk) + 〈∇f(θk),E[θk+1 − θk|θk]〉+
L

2
E
[
‖θk+1 − θk‖2

∣∣θk]
= f(θk)− δ

〈
∇f(θk),E

[
1

N

N∑
n=1

1kn
pkn

S−1∑
s=0

M−1∑
m=0

vkn,s,m

∣∣∣∣θk]〉

+
δ2L

2N2
E
[∥∥∥∥ N∑

n=1

1kn
pkn

S−1∑
s=0

M−1∑
m=0

vkn,s,m

∥∥∥∥2∣∣∣∣θk]

= f(θk)− δ
〈
∇f(θk),

1

N

N∑
n=1

S−1∑
s=0

M−1∑
m=0

E
[
∇fn(wkn,s,m)

∣∣∣∣θk]〉

+
δ2L

2N2
E
[∥∥∥∥ N∑

n=1

1kn
pkn

S−1∑
s=0

M−1∑
m=0

vkn,s,m

∥∥∥∥2∣∣∣∣θk]

= f(θk)− δ
S−1∑
s=0

M−1∑
m=0

E
[〈
∇f(θk),

1

N

N∑
n=1

∇fn(wkn,s,m)

∣∣∣∣θk〉]

+
δ2L

2N2
E
[∥∥∥∥ N∑

n=1

1kn
pkn

S−1∑
s=0

M−1∑
m=0

vkn,s,m

∥∥∥∥2∣∣∣∣θk] (A.20)

In the second equality, we use the fact that E[1kn|θk] = E[1kn] = pkn and E[vkn,s,m|θk] = E[∇fn(wkn,s,m)|θk]

By using (A.16) and plugging back into (A.20), we have:

E[f(θk+1)|θk] ≤ f(θk)− δ
S−1∑
s=0

M−1∑
m=0

E
[〈
∇f(θk),

1

N

N∑
n=1

∇fn(wkn,s,m)

∣∣∣∣θk〉]

+
LSMδ2

2N

N∑
n=1

1

pkn

S−1∑
s=0

M−1∑
m=0

E
[∥∥∥∥vkn,s,m∥∥∥∥2∣∣∣∣θk] (A.21)

Applying total expectation on both sides of (A.21) we have:

E[f(θk+1)] ≤ E[f(θk)]− δ
S−1∑
s=0

M−1∑
m=0

E
[〈
∇f(θk),

1

N

N∑
n=1

∇fn(wkn,s,m)

〉]

+
LSMδ2

2N

N∑
n=1

1

pkn

S−1∑
s=0

M−1∑
m=0

E
[∥∥∥∥vkn,s,m∥∥∥∥2]. (A.22)

By using (A.17), it follows from (A.22) that

E[f(θk+1)] ≤ E[f(θk)] +
δ3L2(M − 1)

2N

[
N∑
n=1

S−1∑
s=0

M−1∑
m=0

m−1∑
m′=0

E
[∥∥∥∥vkn,s,m′∥∥∥∥2]

]
− δSM

2
E
[∥∥∥∥∇f(θk)

∥∥∥∥2]

+
LSMδ2

2N

N∑
n=1

1

pkn

S−1∑
s=0

M−1∑
m=0

E
[∥∥∥∥vkn,s,m∥∥∥∥2] (A.23)

Dividing both sides of equation over 1
K . Then summing both sides from k = 0 to k = K − 1. We have the

following:

1

K

K−1∑
k=0

E
[∥∥∥∥∇f(θk)

∥∥∥∥2] ≤ 2

δKSM
(E[f(θ0]−E[f(θk]))+

δ2L2(M − 1)

KSMN

[
K−1∑
k=0

N∑
n=1

S−1∑
s=0

M−1∑
m=0

m−1∑
m′=0

E
[∥∥∥∥vkn,s,m′∥∥∥∥2]

+
δL

KN

K−1∑
k=0

N∑
n=1

1

pkn

S−1∑
s=0

M−1∑
m=0

E
[∥∥∥∥vkn,s,m∥∥∥∥2]

]
(A.24)

1

K

K−1∑
k=0

E
[∥∥∥∥∇f(θk)

∥∥∥∥2] ≤ 2

δKSM
(f(θ0)− f?) +

δ2L2(M − 1)

KSMN

[
K−1∑
k=0

N∑
n=1

S−1∑
s=0

M−1∑
m=0

m−1∑
m′=0

E
[∥∥∥∥vkn,s,m′∥∥∥∥2]

]

+
δL

KN

K−1∑
k=0

N∑
n=1

1

pkn

S−1∑
s=0

M−1∑
m=0

E
[∥∥∥∥vkn,s,m∥∥∥∥2] (A.25)

Which concludes the proof.

	I Introduction
	II Preliminaries
	III Problem statement
	IV Federated learning with variance reduction
	V Convergence analysis
	VI Numerical Simulations
	VII Conclusions
	References
	Appendix

