
Integrative Modeling and Analysis of the Interplay Between Epidemic
and News Propagation Processes

Madhu Dhiman, Chen Peng, Veeraruna Kavitha, and Quanyan Zhu

Abstract— The COVID-19 pandemic has witnessed the role
of online social networks (OSNs) in the spread of infectious
diseases. The rise in severity of the epidemic augments the
need for proper guidelines, but also promotes the propagation
of fake news-items. The popularity of a news-item can reshape
the public health behaviors and affect the epidemic processes.
There is a clear inter-dependency between the epidemic pro-
cess and the spreading of news-items. This work creates an
integrative framework to understand the interplay. We first
develop a population-dependent ‘saturated branching process’
to continually track the propagation of trending news-items
on OSNs. A two-time scale dynamical system is obtained by
integrating the news-propagation model with SIRS epidemic
model, to analyze the holistic system. It is observed that a
pattern of periodic infections emerges under a linear behavioral
influence, which explains the waves of infection and reinfection
that we have experienced in the pandemic. We use numerical
experiments to corroborate the results and use Twitter and
COVID-19 data-sets to recreate the historical infection curve
using the integrative model.

I. INTRODUCTION

Fake news becomes increasingly prevalent with the rise
of online social networks (OSNs) [1], [2]. It is often gen-
erated for marketing or political purposes by social bots
to manipulate public opinions and decisions. It’s impact
has gone beyond the influence on opinions and affected
the behaviors of the people. COVID-19 is an example of
this outcome; for example during the pandemic, the fake
news regarding vaccination has spread widely among social
networks and caused an adverse effect on the prevention and
mitigation of COVID-19 infection. Further, the deterioration
of the pandemic has in turn accelerated the creation and
propagation of fake news-items.

Thus the spreading of fake news and the epidemic pro-
cesses are interdependent. There is a need to understand
the interplay between the two processes. There are several
works discussing the relationship between information and
epidemic propagation, including [3], [4], [5], [6]. They have
focused on the impact of decisions and awareness on the
propagation of epidemic, assuming that individuals take the
same preventive measures once they receive the disease-
related information. Very few works have explicitly modeled
the dynamics of news propagation to scrutinize its inter-
dependency with the spreading of infectious diseases.

We propose an integrative model to capture and study the
interplay between the propagation of trending news-items
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(fake as well as authentic) and the epidemic. We first develop
population-dependent branching process with saturation, to
model the propagation of news-items on OSN and their re-
placement by newer topics. This part is inspired by the latest
work on total-population-size-dependent branching processes
considered in [7], [8]. The epidemic-related posts on OSNs
can either get viral (i.e., a large number of the copies are
shared) or become extinct. A news-item stops trending when
its propagation saturates (i.e., it is no longer forwarded), and
then is replaced by another news-item on the similar topic.
We use stochastic approximation based approach to capture
the dynamic life cycles of news propagation.

Secondly, we use a Susceptible-Infectious-Recovered-
Susceptible SIRS compartmental model to study the spread-
ing of infectious diseases (e.g., [9]). The infection rate de-
pends on the population behavior, which may be influenced
by the circulating news-items. We consolidate the news prop-
agation model into the SIRS model to create an integrative
framework that captures their mutual influences. We create a
two-timescale dynamic process in which news-items spreads
faster than the epidemic; this is justified by the fact that the
online news-items evolve at a much faster rate than physical
human contacts. Furthermore, the slower process, in this
case, depends on the evolution of the faster process over a
window of time, which calls for a different type of two-time-
scale process. The two-time-scale consolidated framework
describes how news propagation can reinforce the spreading
of epidemic (without interventions).

We analyze the dynamical system properties of the cou-
pled system under different behavioral influences by the news
content. In particular, we observe that a pattern of periodic
infections emerge under a linear behavioral influence, arising
from the existence of limit cycles of the dynamical system.
It explains the waves of infection and reinfection that we
have experienced in the pandemic. We use Twitter and
COVID-19 datasets to validate the proposed model. We
successfully recreate the historical infection curve by fitting
and identifying the timing of news influences across the 2-
year period of the COVID-19 infection.
Organization: In section II, we introduce the OSN content
propagation model. SIRS model is considered in section III.
In section IV, we discuss the interplay between the two
and analyze the dynamical system under different behavioral
patterns. Section V presents numerical results.

II. NEWS PROPAGATION MODEL

Consider that there are M epidemic-related tweets, posts,
or news-items on the OSN. We are interested in tracking their
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influence, which can affect the ongoing epidemic. When a
post is designed by a content provider, she shares it with an
initial set of users called seed users. Each recipient shares
it with all or a subset of their friends, depending on the
interest generated by the post. Let ηm be the attractiveness
factor of m-th post, i.e., the probability that a typical recipient
forwards the m-th post to each of her friends, independently
of others. A friend of each recipient, upon reading the post,
can again forward the post (with probability ηm). The post
propagation continues in this manner.

At any instance of time, among the copies for-
warded/shared by then, some recipients might not have read
the post; we refer such copies as live copies, while the
rest are referred to as dead copies. Once a user reads the
news-item, it is unlikely that she would be interested in the
same news-item again. Thus, only the users with the live
copies are responsible for sharing the post and continuing
the propagation. Let Ψm,k be the number of live copies of
the m-th news-item, immediately after the k-th user forwards
the post. Further, let the total copies, including both live and
dead ones, of the m-th news-item be represented by Θm,k.
Then, the propagation of the m-th news-item can be captured
as follows: for every m≤M,

Ψm,k+1 = Ψm,k−1+ξm,k+1 and Θm,k+1 = Θm,k +ξm,k+1. (1)

In the above, each live copy is considered to be a parent,
which can generate multiple additional copies ξm,k+1 of the
same topic, analogous to a random number of offsprings in
the branching process.

OSN users seldom read and forward the same news-item
the second time. When a user forwards the news-item to
her friends, some of them might have already received the
post in the past. Thus the number of effective news forwards
(i.e., the offsprings) depends on the number of people
who have already received a copy of the same news-item,
i.e., the total copies. Hence, we require a population-size
dependent branching process to model the news-propagation
processes accurately (as in [8], [7]). Furthermore, unlike the
models considered in the literature, we require the branching
processes whose offspring’s depend on the total population.
Such branching processes have been considered recently in
[8], [7] and we consider a simpler modification of the same.

We analyze the discrete-time dynamics corresponding to
the embedded chain, the chain obtained by observing the
system immediately after the transition epochs. To be precise,
we study the ratios related to Ψm,k and Θm,k given in (1).
We refer to these epochs as wake-up epochs, as these
are the instances at which a user visits its timeline, reads
and forwards the news-items. The influence of the top M
posts (that affect the ongoing epidemic) is captured by the
following ratios: denote the ratio of the number of live copies
to the number of times the news-items is being forwarded
and that corresponding to the total copies respectively by:

ψm,k =
Ψm,k

k
, and θm,k =

Θm,k

k
, for any k ≥ 1.

Recall that ξm,k+1 is the effective number of friends to whom
the m-th news-item is forwarded by the k-th user. From (1),

it is clear that the above quantities can be rewritten in the
following iterative manner with εk := 1/k:

ψm,k+1 = ψm,k + εk+1
(
ξm,k+1−1−ψm,k

)
θm,k+1 = θm,k + εk+1

(
ξm,k+1−θm,k

)
.

(2)

It takes the form of a stochastic approximation-based iterative
scheme ([10]). It is important to note here that we ignore the
time scale of the news-propagation system and that the time
scale does not play a role when analyzing (1) defined above.

We now construct an appropriate stochastic iterative
scheme in the following, that captures the news-propagation
dynamics accurately using (2)– it has to capture regular news
propagation updates, replacement of a news-item by a newer
one and continual tracking of the news-items.

There are two kinds of updates related to Ψm,k. The first
kind of update arises from the regular news propagation,
i.e., driven by user forwards. The second kind of update
occurs when a news-item stops spreading and a fresh news-
item (of the similar topic) emerges. It happens when the
effective-forwards related to an old news-item diminish as
the total-copies reach a saturation level; as the number of
forwards {ξm,k} diminish, the live-copies {Ψm,k} reduce (see
(1)), while the total copies {Θm,k} saturate; thus saturation is
reached at k-th epoch if Ψm,k ≤ δψ and Θm,k ≥ δθ , for some
appropriate δθ ,δψ . Hence the saturation point is captured
by regime E 2

m,k given below. Here, E 1
m,k represents the first

regular news-item-update regime.
E j

m,k = {(ψm,k,θm,k) ∈R j}, for j = 1,2, where

R2 = {(ψ,θ) : 0≤ ψ ≤ δψ and θ ≥ δθ}, R1 = (R2)c.

We are interested in the tracking performance, and thus
εk has to be replaced with a constant ε > 0 in (2) (e.g.,
[10]). Towards saturated news-item replacement, we intro-
duce extra or fictitious iterates that replace the news-item
with a new one1; once an old news-item saturates (say m),
i.e., 1E 2

m,k
= 1, the additional iterates (using constant −C

in (3) given below) keep reducing the corresponding total
population till it reaches close to zero (i.e., below δθ ). Hence
the overall update equation is given by (for each m):

ψm,k+1 = ψm,k + ε

(
Jm,k

(
ξm,k+1−1−ψm,k

)
−J

′

m,k(ψm,k)
)
,

θm,k+1 = θm,k + ε

(
Jm,k

(
ξm,k+1−θm,k

)
−J

′

m,k(Cθm,k)
)
,

where Jm,k = 1E 1
m,k

and J
′

m,k = 1E 2
m,k
. (3)

ODE approximation
The dynamics of news-items related to various

channels/trending-topics is independent of each other.
Hence, it is sufficient to analyze the propagation of
each post independently of the others. Fix any m. Let
Fk := σ ((ψm,s,θm,s) : s≤ k) be the sigma algebra generated
by the m-th post dynamics till epoch k. Observe that the
corresponding conditional expectation is given by:

Ek

[
Jm,k

(
ξm,k+1−1−ψm,k

)
+J

′

m,k(−ψm,k)
]

(4)

= Jm,k

(
M (θm,k)−1−ψm,k

)
+J

′

m,k(−ψm,k), (5)

1We assume that the social network supports a number of simultaneous
posts, and there is always a newer post that can replace a just saturated one.



where Ek[ξm,k+1] := M (θm,k). We immediately have the
following ODE approximation result applying the theory of
stochastic approximation under the following assumptions:
A.1 For any λ ∈ [0.5,1], there exists a constant ρ such that
|M (θ)−M (θ ′)| ≤ ρ|θ −θ ′|λ .

A.2 P(ξk+1 ≤ ρ|θk) = 1 for any θk and for some ρ < ∞.

Theorem 1: Assume A.1-A.2. Let φ
(ε)
m,k := (ψm,k,θm,k)

represent the news-propagation trajectory (3) at ε and let
φ(τ) := (ψ(τ),θ(τ)) be the solution of following ODEs:
•
ψm(τ) = Jm(φ)

(
M (θm)−1−ψm(τ)

)
+J

′
m(φ)(−ψm(τ)),

•
θ m(τ) = Jm(φ)

(
M (θm)−θm(τ)

)
+J

′
m(φ)(−Cθm(τ)),

J ′
m(φ) = 1{θ>δθ , ψ<δψ}, and, Jm(φ) = 1−J ′

m(φ). (6)

For any m, as ε→ 0, trajectory (3) converges to the solution
of above ODE in the following sense: for any finite time T ,

P

(
sup

k≤T/ε

∣∣∣φ (ε)
m,k−φ(εk)

∣∣∣> δ

)
→ 0 as ε → 0, (7)

when the initial conditions are equal, φ(0) = φ
(ε)
0 .

Proof is in Appendix. �
To capture the saturation effect because of re-forwards

discussed earlier, we consider the following linear model:

M (θ) = η−aηθ = η(1−aθ), (8)

where (1− aθ) represents the reduction in the expected
number of effective forwards. The conversion factor a is
clearly specific to an OSN, and it is the same for all the
posts.

ODE Solutions and the influence of a viral post
From (6), it is not difficult to show that ψm(t)→ 0; i.e.,

the post vanishes immediately, when M (0) = η < 1. The
post explodes and gets viral (i.e., the number of copies grow
significantly), only when M (0)> 1. We derive the solution
of the ODE (6) in the following, to capture its possible
influence on the epidemic. The RHS of the ODE (6) is piece-
wise continuous (in two regimes), and hence the solution is
in the extended sense (i.e., it satisfies the ODE for almost
all τ). We first derive the solutions in individual regimes,
connect them together by appropriate initial conditions, and
then derive the asymptotic behavior of the solution.

Suppose that regular update regime (while J (φ) = 1)
is concluded at τ1; this happens when ψ goes below δψ .
Thus the initial conditions for the next (replacement) regime
are, ψ(0) = δψ and θ(0) = θ(τ1). Now, ψ̇(τ) = −ψ(τ) and
θ̇(τ) = −Cθ(τ). Thus, the solution is, ψ(τ) = δψ e−τ and
θ(τ) = θ(0)e−Cτ .

The next regime starts with θ(0) = δθ and ψ(0) = ψ(τ2), as
the replacement regime is concluded when θ drops below δθ

(and say at τ2). From (6) and (8), ψ̇(τ)=η−aηθ(τ)−1−ψ(τ)

and θ̇(τ) = η−aηθ(τ)−Cθ(τ). By solving these equations,
ψ(τ) = −κ1e−(aη+1)τ +κ2e−τ +κ3, κ1 = η− (aη +1)δθ ,

κ2 = ψ(0)+aη
2− (aη +1)δθ +1, and κ3 = η−1−aη

2,

θ(τ) =

(
δθ −

η

aη +1

)
e−(aη+1)τ +

η

aη +1
.

This solution converges to a limit cycle alternating between
two regimes (see Fig.2). By solving appropriate fixed-point
equations, with initial conditions (δψ ,θ(0)) for regime 1 and
(ψ(0),δθ ) for regime 2, we can obtain the limit cycle at the
limit (see details in the Appendix).

We assume that the epidemic is influenced by news-
propagation over a window of time, and we capture this
influence via the maximum value attained by the total pop-
ulation fraction at limit cycle, which is given by equation
(26) in the Appendix:

θ
∗
∞(η) := lim

k→∞
max

τ ′∈LCk

θ(τ ′)≈ η

aη +1
, (9)

where LCk is the k-th cycle.

III. EPIDEMICS MODEL: DISEASE PROPAGATION

We consider an epidemic population with three types of
sub-populations, the infected (I), the recovered (R), and
the susceptible (S). People who can be infected when in
contact with any infected individual, are the susceptible sub-
population, while people who recover from the infection and
are immune to the disease are members of the recovered sub-
population (remain recovered till they lose immunity).

We consider a SIRS compartmental model that captures
the dynamics of the relevant sub-populations. Let i(t), s(t),
and r(t) be the normalized size of the infected, the suscep-
tible and the recovered population, respectively, at time t.
Note that i(t)+ s(t)+ r(t) = 1, for all t ≥ 0.

The infectious disease spreads at rate β̄ , while the infected
get recovered at rate α . In addition, we consider that a frac-
tion pr of the recovered is immunized, while the recovered
(and the immunized) sub-population can lose immunity at a
rate li. Thus the dynamics are described as follows:

di
dt

= i
(
β̄ (1− i− r)−α

)
,

dr
dt

= (iα pr− rli) . (10)

In the following, we obtain the asymptotic behavior of
the above dynamics (proof is in Appendix) for any initial
condition (i.c.) (i0,r0) ∈ B(2) := {(i,r) ∈ [0,1]2 : i+ r ≤ 1}.

Theorem 2: The sub-population sizes (i(t),r(t)) given by
(10) converge to a unique limit for any i.c., in B(2):

(i) When β̄ < α , then the disease is eradicated eventually,
i.e., (i(t),r(t))→ (0,0) as t→ ∞;

(ii) When β̄ > α , the disease is not eradicated, i.e.,
(i(t),r(t))→ (i∗,r∗), where

i∗ =
β̄ −α

β̄cr
i

and r∗ =
α pr

li
i∗, where, cr

i := 1+
α pr

li
. � (11)

Thus the sub-population sizes converge to a unique vector
(disease-free if the limit is (0,0)) when the dynamics are
driven only by the epidemic. However, this is not always the
case under the influence of circulating news-items. We will
see the existence of limit cycles, multiple limits, etc.

IV. INTEGRATIVE TWO-TIMESCALE SYSTEM

The infection rate β̄ in (10) represents the number of
susceptible individuals who become infected by one infected
individual per unit time (e.g., [11]). This rate is considered
as a constant in classical SIRS models. In reality, this rate is



time-varying and is strongly dependent on human activities.
For example, it depends upon the frequency of contacts and
the precautions taken by the individuals. Furthermore, β (t)
(rate at time t) heavily relies on the information available
at time t. For example, the viral news-items that spread
misinformation about the precautionary measures (e.g., social
distancing, mask wearing, or the ones that downplay the
severity of disease), can result in a higher β (t) (as they
promote reckless behaviors). Likewise, the health policies
from the government agencies (e.g., recommendations to stay
home) can make people more cautious and lower β (t).

On the other hand, an increase in the infection level can
breed panic in the population. As a result, people will seek
more proactively for relevant news and information. Hence it
is clear that the attractiveness factor η of (8) can depend on
i(t), the size of the infected subpopulation or the infection
level at time t. The main aim of this paper is to study these
interactions and analyze the resultant asymptotic outcome.

The life cycle of news-items is often significantly shorter
than that of an infectious disease. The epidemic is more aptly
influenced by the behaviour of people who seek the news
and information on OSN over a period of time. To model
such interactions, we consider a different type of two-time-
scale system by connecting the two dynamical processes
using ODEs; the (slow) epidemic-ODE is influenced by
limit cycles (9) of (fast) news-propagation ODE as explained
below. Let τ be the time index for the fast timescale of news
propagation and t be the one for epidemic.

We assume that the influence on epidemic at any time
instance depends upon the outcome of the just concluded
trending topics (e.g., the viral news-items). As the news-
items propagate at a faster time-scale, one can capture the
above influence using the maximum of the total population
fraction at limit cycle, θ ∗∞(η) given in (9) of the latest
trending topics. Note that we allow this fast time-limit to
depend on the state of the epidemic at time t, via η .

Varied interest toward news-items can be captured by mod-
elling that ηm, and hence, the expected effective forwards
depend on i (see (8)), Mm(θ ; i) = ηm(i)−aηm(i)θ .

The response of the population clearly depends on the
content of the news. In addition, it depends on the level
of infection prevailing in the area. This aspect is captured
via sensitivity parameters {wm(i)}; in all, the infection
rate is added with an amount, wm(i)θ ∗∞(η(i)), due to the
propagation of m-th news-item. For a post that spreads mis-
information, wm(i) is positive, it is negative for authentic
content. The overall rate of infection at time t is (see (9)):

β (t) = β (i(t)) = β̄ +
M

∑
k=1

wm(i(t))θ∗∞(η(i(t))),

= β̄ +
M

∑
m=1

wm(i(t))
ηm(i(t))

aηm(i(t))+1
. (12)

As observed above, β (t) is time dependent only via i(t) and
henceforth we refer it as β (i). We assume that the news-item
attraction factors are of two levels, i.e., ηm ∈ {η , η̄} for any
m. Either a particular news-item generates a lot of interest
and becomes viral (i.e., when ηm = η̄), or it gets extinct

without making an impact (i.e., when ηm = η). Thus the
influence of a post is nonzero, is captured by (9), only when
ηm = η̄ . So,

w̄(t) :=
M

∑
m=1,ηm=η̄

wm(i(t)) = w̄(i(t)), (13)

is the (infection-level-dependent) integrated influence of all
the viral posts at a given instance of time. We assume that
this factor is deterministic2, and it depends only on i. It is
possible that fake and authentic news-items can co-exist and
co-propagate at the same instance of time, with the former
adversely influencing the disease propagation, and w̄(i) in
(13) is the overall influence.

By incorporating the above-mentioned factors into (10),
we obtain a consolidated ODE that captures the interplay
between the two processes:

di
dt

= i(β (i)(1− i− r)−α) (14)

dr
dt

= (iα pr− rli) , with, β (i) = β̄ + w̄(i)
η(i)

aη(i)+1
.

This consolidated ODE is instrumental in analyzing a variety
of scenarios. We present a number of important scenarios in
the following. We begin with a case in which the population’s
interest in news-items increases with infection level. Prior to
this, we provide a few definitions.
Asymptotic behavior: We would analyze the consolidated
ODE (14) to understand the time-limiting behavior using the
results of two-dimensional ODEs. We observe different types
of asymptotic behavior, when the dynamics start in B(2), i.e.,
for any initial condition (i.c.), (i0,r0) ∈ B(2):

Local attractor (LA): We refer a point (i∗,r∗) as a
local attractor, if there exists a neighbourhood N such that
(i(t),r(t))→ (i∗,r∗) for all i.c. (i0,r0) ∈N .

Global Point Attractors (GPA) In this regime, as t→∞,
the solution of ODE (i(t),r(t)) converges to an equilibrium
point in B(2), depending upon the i.c.; at maximum there are
two equilibrium points, one of them is (0,0).

Closed Orbits or Point limits (CoP) Here, (i(t),r(t))
converges to one of the two point limits (one of them is
disease free and a saddle point; the other is an LA) or to a
closed orbit (limit cycle), depending upon the i.c.

Predominantly Closed orbits (PCo): For some set of
i.c.s, (i(t),r(t)) converges to disease-free state (0,0), which
is a saddle point. For the rest, the dynamics either converge
to a closed orbit around an unstable equilibrium point, or to3

the unstable equilibrium point itself.

A. Increasing Interest in News (I3N)

Interest in reading and forwarding relevant news or infor-
mation increases with an increase in infection level, i. In this
case, η(i) increases with i, and hence we let attractiveness
factor take a linear form, i.e., η(i) = η̄(pi+q), with p,q≥ 0.
We let the response to the news independent of i; i.e.,
w̄(i)≡ w̄. The consolidated model (14) for this case is:

2The number of trending topics, M, is large, and one can justify this
assumption using the law of large numbers.

3We strongly believe it does not converge to the unstable point (also well
understood in literature, e.g., [12]), but require certain technical conditions
to complete this proof and are on the way to proving the same.



di
dt

= i
((

β̄ + w̄
η̄(pi+q)

aη̄(pi+q)+1

)
(1− i− r)−α

)
. (15)

Let β0 := β (0) = β̄ + w̄η̄q/(aη̄q+1) represent the infection
rate at i= 0. The asymptotic analysis of this scenario depends
upon β0 as given below (see the proof in the Appendix):

Theorem 3: Consider the I3N case given in (15).
(i) When β0 < α , the disease-free state (0,0) is an LA. If in
addition, either w̄< 0 or β̄a+w̄−αa< 0, the dynamics settle
to disease-free GPA regime with (0,0) as the only limit.
(ii) When β0 > α , the dynamics settles to the CoP regime
with (0,0) and (i∗,r∗) as the two possible limits, where

i∗ =
cb +

√
c2

b−4cacc

−2ca
, r∗ =

α pr

li
i∗ with,

cb = (β̄a+ w̄−αa)η̄ p− cr
i (β̄a+ w̄)η̄q− cr

i β̄ ,

ca =−cr
i (β̄a+ w̄)η̄ p,and, cc = (β̄a+ w̄−αa)η̄q+ β̄ −α. �

Remarks: When authentic posts get viral (w̄< 0), the disease
can be curbed more easily: consider that β0 <α , but that α <
β̄ ; then by Theorem 2, the disease is not cured under SIRS
dynamics; however, it is curbed in presence of authentic news
as confirmed by part (i).

Similarly, with fake posts spreading misleading informa-
tion, the diseases can prolong further (e.g., if β0 > α > β̄ ).

The limit infection levels are different with and without
considering the influence of content.

In part (ii), the dynamics settle to the CoP regime, and
here (i∗,r∗) is an LA. Technically one can also converge to
a limit-cycle or (0,0) (which is a saddle point); however, we
notice through several numerical examples (see Fig. 1) that
the dynamics always converge to (i∗,r∗). We do not observe
periodic behaviors for the I3N scenario.

Fig. 1. Trajectory settles to (i∗,r∗)

B. Increasing Behavioral Influence by News (IBIN)

When an individual reads news about the epidemic, the
response can depend on the infection level. For example,
posts that promote mask wearing can positively influence
individuals by encouraging them to wear masks when the
infection level i(t) is high. The same individual may not
follow the recommendation when the infection level is small.
Similarly, the response to fake news can be different. Thus
the behaviors of the individuals can depend on the infection
level. Here, we consider a scenario, in which, the popula-
tion’s interest in news-items is constant, but their behaviors
are influenced by the news. Such scenarios can be captured
by letting η(i) ≡ 1 (and a = 0) and with w̄(i) = ui (linear
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influence). The constant u is negative when the news-items
are predominantly authentic; it is positive otherwise. The
consolidated ODE (14) in this scenario is given by:

di
dt

= i
((

β̄ +ui
)
(1− i− r)−α

)
, and

dr
dt

= (iα pr− rli) . (16)

We have the following result with proof in the Appendix.
Theorem 4: [Limit-Cycle and Reinfections] Consider

the consolidated ODE (16) under the IBIN scenario.
(i) When β̄ < α , (0,0) is an LA. Further if u < αcr

i , we have
the disease-free GPA regime with (0,0) as the only limit.
(ii) When β̄ > α , the disease need not be eradicated and,

(a) If u(1− i∗− cr
i i
∗) ≤ β̄ + li/i∗, we have the CoP regime

with possible limits from {(0,0),(i∗,r∗)} where:

i∗ =
(u− β̄cr

i )+
√

(β̄cr
i −u)2 +4ucr

i (β̄ −α)

2ucr
i

and r∗ =
i∗α pr

li
,

(b) If u(1− i∗− cr
i i
∗) > β̄ + li/i∗ we have the PCo regime,

where (i(t),r(t)) eventually follows a periodic path or
settles to (0,0) or (i∗,r∗). �

Remarks: In the CoP regime, using the well-known Bendix-
son’s criterion, one can prove the absence of the limit cycles
when additionally max{u/2,α}< β̄ < α + li. In fact, as in I3N
case, no limit cycles are observed, and the dynamics converge
only to the LA (i∗,r∗), in all our numerical studies .

The possibility to eradicate the disease remains the same
when interest in the news does not change with infection
levels (see Theorems 2 and 4). Disease free state (0,0)
is an LA iff β̄ < α , irrespective of whether u < 0 (i.e.,
authentic news is predominant) or u > 0 (i.e., fake news is
predominant).

However, if the disease survives, the limit cycles exist
when the population-activities are significantly influenced by
the news (see Theorem 4 with u(1− i∗−cr

i i∗)> β̄ + li/i∗). This
result explains the waves of infections (see also Fig. 3): a)
when people become reckless and if this reckless behavior
increases with infection level under the influence of fake
news-items (u> 0), the infection rises sharply to a high value
and soon susceptible sub-population becomes negligible;
b) then the infection starts to reduce and some recovered
fraction also begins to lose immunity; however, c) once
the susceptible sub-population reaches a reasonable level,
the infection rises sharply, again due to people’s reckless
activities induced by circulating fake news-items.



C. Increased Interest and Behavioral Influence (IBIN&I3N)

We now consider a scenario in which the population seeks
news more proactively and its behavior is also influenced by
the news when the infection level increases. The consolidated
ODE (14) for this case takes the following form:

di
dt

= i
((

β̄ +(w̄+ui)
η̄(pi+q)

aη̄(pi+q)+1

)
(1− i− r)−α

)
.

One can have limit points as well as limit cycles as in the
IBIN case. We consider one such example in Fig. 3, where
we further illustrate the differences between IBIN (p = 0)
and IBIN&I3N (p = 0.5) scenarios, when η̄IBIN&I3N = η̄IBIN q =

η̄ and when w̄IBIN&I3N = w̄η̄/(aη̄ + 1). When the rest of
the parameters are the same, both models converge to the
same limit cycle. In other words, the asymptotic outcome is
not dependent on whether people consume content with an
increased interest or not, once the parameters are balanced
appropriately.

V. NUMERICAL EXPERIMENTS

In this section, we utilize the historical Twitter and in-
fection datasets of COVID-19 to validate the relationships
between the news and epidemic propagation. The real-life
COVID-19 situation changes over time and is non-stationary.
Building on the proposed framework, we first use the dy-
namics of the I3N scenario to mimic the trajectory of the
COVID-19 infection level from Jan. 1, 2020 to March 15,
2022. We inject authentic or fake news-items with different
influence factors at discrete times and obtain the trajectory of
influence factors {w̄}. Let η̄ = 10, p = 0.7,q = 0.2,a = 1.2,
β̄ = 0.0002,α = 0.0001, i(0) = 0.00001, pr = 0.2, li = 0.01.
Fig. 4(a) shows that we successfully imitate the historical
infection levels. Fig. 4(b) illustrates the influence factors of
the news injected at different times.

From Fig. 4(a), we observe that the COVID-19 epidemic
propagates with a slow start from Jan. 15, 2020, to March
10, 2020. Then, COVID-19 bursts, and the infection level
increases faster. It spawns a large amount of epidemic-related
news. Due to the abrupt spreading of the epidemic and the
nature of the panic-stricken population, many news-items are
fake and produce a significant influence on the epidemic
during the period from March 10, 2020, to May 1, 2020,
in Fig. 4(b). Once the infection level increases to a notable
level, public health agencies make efforts to spread authentic
news, including advertising the precautionary measures and
reporting the epidemic situation. Authentic news helps re-
duce the growth rate of the epidemic and produces a negative
influence factor on the epidemic. The competition between
fake and authentic news lasts for multiple cycles, shown
in the time range from May 1, 2020, to Jan. 10, 2021,
in Fig. 4(b). After the authentic news dominates for the
period from Jan. 10, 2021, to Nov. 10, 2021, in Fig. 4(b),
the public becomes accustomed to the epidemic and ignores
the protective measures, rekindling the wide propagation of
the epidemic and further producing more fake news in the
following period from Nov. 10, 2021, to Jan. 1, 2022. The
step-wise behavior of the influence depicted in Fig. 4(b) also

implies a time-scale separation between the dynamics of the
epidemics and the news spreading.

(a) Historical and fitted infection levels (b) Influence factors by fitting

Fig. 4. Total cases versus time: Fitting the historical COVID datasets

We analyze the COVID-related Twitter datasets from Sept.
1, 2020, to Feb. 1, 2021, and obtain the percentage of fake
news using a BERT-based approach to corroborate the results
on the interplay between the epidemic and fake news. Fig.
5 shows that the percentage of fake news on Twitter is
positively correlated with the historical infection rate. The
red stars indicate the percentage of fake news on Twitter
at discrete time points. The blue line shows the historical
infection rate. When the epidemic becomes severer, it gener-
ates public panic and promotes the spreading of fake news.
Hence, the percentage of fake news on Twitter increases.
However, when the epidemic becomes less aggressive, the
percentage of fake news decreases.

The understanding of the integrated dynamics enables a
short-range prediction despite the non-stationarity in the long
run.

Fig. 5. Relationship between the historical infection rate and the percentage
of fake news on Twitter. Red stars indicate the percentage of fake news on
Twitter and the blue line shows the historical infection rate.

VI. CONCLUSIONS

In this work, we have presented a two-timescale integrative
epidemic model that consolidates the propagation of online
social network (OSN) news-items into the compartmental
epidemic models; the aim is to study the impact of fake news
on the spread of infectious disease. We have analyzed the
equilibrium behavior of the coupled dynamic system under
different behavioral responses to fake news. We found a pe-
riodic pattern of the epidemic when the behavioral response
is linearly dependent on the infection level. Our model
explains multiple waves of infection and reinfection as seen
in the COVID-19 pandemic. We use Twitter and COVID-19
datasets to validate the proposed model. Posting appropriate
authentic information can help eradicate the severe spreading
of the disease. Misinformation can prolong the epidemic. The
successful fitting of the proposed model with the historic
COVID-19 dataset shows that the incorporation of human
behaviors into the epidemic model provides a promising
approach to predicting the trends of the epidemic processes
and evaluating public health policies. Motivated by this
observation, our future work would focus on the optimal



design of intervention mechanisms and policies to mitigate
the impact of the pandemic.

We have witnessed many pandemic diseases in the past
(including COVID-19), and they exhibit natural period be-
havior due to the time-varying characteristics of the new
mutants. However, the existence of OSNs which facilitate the
rapid transfer of information across the globe in the current
pandemic has a different impact and the goal of the paper
is to capture this aspect. More precisely, the paper proves
the existence of infections and reinfections even without
the changes in the characteristics of the mutants, which are
predominately influenced by the circulating information.
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APPENDIX

Proof of Theorem 1: We consider the general system, (3),
where assumptions A.1 and A.2 are satisfied. We show that
the equations given by (3) can be approximated by the
solution of the ODE (6). We prove this result using [10,
Theorem 9, pp. 232].

Assumption required by [10, Theorem 9, pp. 232] To
this end, we need to show that the relevant assumptions are
satisfied, which are reproduced below as B.1-B.4, in our
notations. Consider a stochastic iterative scheme of the type:

φk+1 = φk + εH(ξk+1,φk). (17)

If the above scheme satisfies B.1-B.4, then [10, Theorem 9,
pp. 232] is applicable.

B.1 There exists a family Pφ of transition probabilities
Pφ (ξ ,A) such that, for any Borel subset A, we have

P[ξn+1 ∈ A |Fn] = Pφn(ξn,A), (18)

where Fn = σ(φ0,ξ0,ξ1, . . . ,ξn) is a sigma-algebra.
This in turn implies that the tuple (ξk,φk) forms a
Markov chain.

B.2 For any compact subset Q of D, there exist constants
C1,q1 such that for all φ ∈ Q we have

‖H(ξ ,φ)‖ ≤C1(1+ |ξ |q1). (19)

B.3 There exists a function h1 on D, and for each φ ∈ D a
function νφ (·) such that

a) h1 is locally Lipschitz on D.
b) (I − Pφ )νφ (ξ ) = H(ξ ,φ) − h1(φ), where I is the

identity matrix of the same order as the one of Pφ .
c) For all compact subsets Q of D, there exist constants

C2,C3,q2,q3 and λ ∈ [0.5,1], such that for all φ ,φ ′ ∈
Q, following is true:

i. ‖νφ (ξ )‖ ≤C2(1+ |ξ |q2),
ii. ‖Pφ νφ (ξ )−P′

φ
ν ′

φ
(ξ )‖ ≤C3(1+ |ξ |q3)‖φ −φ ′‖λ .

B.4 For any compact set Q in D and for any q > 0, there
exists a µq(Q) < ∞, such that for all n and ξ ,φ ∈ Rd ,
following is true:

Eξ ,φ{I(φk,ξk ∈ Q,k ≤ n)(1+‖ξn+1‖q)}
≤ µq(Q)(1+‖ξn‖q), (20)

where Eξ ,φ represents the expectation taken with initial
conditions (ξ0,φ0) = (ξ ,φ).

Assumptions : We now prove that the above assumptions
are satisfied by (3). First observe that (3) has the same form
as in (17), with φ = [ψ,θ ]T and,

H(ξ ,φ) =

[
Jφ (ξ −θ)+(1−Jφ )(−Cθ)

Jφ (ξ −ψ−1)+(1−Jφ )(−ψ)

]
. (21)

We now prove the required assumptions one after the other.
(i) The offsprings ξk+1 depend only upon the total popu-

lation θk and hence assumption B.1 is satisfied with

Pφn(ξn,A) = Qθn(A), where,
Qθn(A) := P(ξn+1 ∈ A|θn).

(ii) It is direct from (21) that for any compact Q

‖H(ξ ,φ)‖ ≤ sup
φ∈Q
‖φ‖(1+ |ξ |) (22)

B.2 is satisfied with q1 = 1 and C1 = supφ∈Q ||φ || .
(iii) We will show that assumption B.3 is satisfying by

setting νφ (ξ ) := H(ξ ,φ) and

h1(φ) := (Pφ )νφ (ξ ), where

(Pφ )νφ (ξ ) =
∫

H(y,φ)(Qφ )dy,

Observe that under A.1-2, we have:

h1(φ) =

[
Jφ (M (θ)−θ)+(1−Jφ )(−Cθ)

Jφ (M (θ)−1−ψ)+(1−Jφ )(−ψ)

]
. (23)



We will now prove all the sub-assumptions B.3.a-c in
the following:
a. From equation (23), under A.2, we have:

|h1(φ)−h1(φ
′)|

≤ (C+1)|θ −θ ′|+2|ψ−ψ ′|+ |M (θ)−M (θ ′)|
a
≤ (C+1+2ρ)|θ −θ ′|+2|ψ−ψ ′| (24)
≤ D|φ −φ ′|, with D := max{C+1+2ρ,2},

where ‘a’ hold true as λ ≤ 1. Thus, h1 is locally
Lipschitz.

b. The definitions of h1(φ) and H(ξ ,φ) make this
obvious.

c. i.) This proved along with B.2, as

νφ (ξ ) = H(ξ ,φ).

ii.) From (24) and definition of h1(φ), this assump-
tion is satisfied.

(iv) For proving B.4, consider any compact Q, then we can
upper bound the LHS of (20) as below:

Eξ ,φ{I(φk,ξk ∈ Q,k ≤ n)(1+‖ξn+1‖q)}
≤ Eξ ,φ{I(φn,ξn ∈ Q)(1+‖ξn+1‖q)}

≤ sup
φ∈Q

∫
(1+ yq)Q(φ ,dy)

= sup
φ∈Q

E[1+ξ
q
n+1|θn = θ ]

a
≤ 1+ρ

q

≤ (1+ρ
q)(1+ ||ξn||q)

for any q > 0, where equality ‘a’ follows from assump-
tion A.2. Then, B.4 hold with µq(Q) := 1+ρq.

Now, using [10, Theorem 9, pp. 232], the result is proved.
�
ODE Solution and the Derivation of (9): We consider the
system (3) and the corresponding ODEs are given in (6).

Say, we start in regime R1, and say with ψ(0) = δψ and
some θ(0)> δθ . Then, the solution is given by

ψ(τ) = δψ e−τ and θ(τ) = θ(0)e−Cτ .

And then, there exists a time epoch (say τ1 = ν1) such that

θ(ν1) = δθ (say θ01) and let ψ(ν1) := ψ01.

Regime R2: Let ∆ = aη +1. The solution after time epoch
τ1, with initial conditions φ(τ1) = (ψ01,δθ ), is given by:

ψ(τ + τ1) = ∆θ(τ + τ1)+(ψ01−δθ ∆+aη
2 +1)e−τ −aη

2−1,

θ(τ + τ1) =
(

δθ −
η

∆

)
e−∆τ +

η

∆
.

Then, there exists epoch τ2 = ν2 + τ1, with ν2 > 0, such that

ψ(τ2) = δψ =: ψ02 and

θ(τ2) =
(

δθ −
η

∆

)
e−∆ν2 +

η

∆
=: θ02.

This completes 1-st cycle, i.e., LC1 . Now it goes back to
regime 1, with initial conditions φ(τ2) = (ψ02,θ02) and
continues this pattern. We can construct series of time epochs
τi with appropriate initial conditions, constructed from the
terminal conditions of previous regimes.

This process continues and we arrive at a periodic
asymptotic solution. This limit can be specified if the ini-
tial/terminal conditions can be identified by solving the
following fixed-point equations (recall ∆ = aη +1):

θ
∗
02 = θ(ν∗2 ) =

(
δθ −

η

∆

)
e−∆ν∗2 +

η

∆
,

ψ
∗
01 = ψ(ν∗1 ) = δψ e−ν∗1 , where, θ

∗
02e−Cν∗1 = δθ and

∆θ
∗
02 +(ψ∗01−δθ ∆+aη

2 +1)e−ν∗2 −aη
2−1 = δψ .

At the limit and in Regime 2, we have for any τ ≤ ν∗2

θ(τ + τ∞) =
(

δθ −
η

∆

)
e−∆τ +

η

∆
.

When ν∗2 is sufficiently large, one can approximate θ ∗02 ≈
η/∆. Under this approximation, the fixed-point equations are
solved by:

θ
∗
02 ≈

η

∆
, ν

∗
1 =
−1
C

ln
(

∆δθ

η

)
, ψ
∗
01 = δψ e−ν∗1 ≈ δψ

(
∆δθ

η

)1/C
.

Thus, the limit in (9) equals

θ
∗
∞(η) := lim

k→∞
max

τ ′∈LCk

θ(τ ′) = θ
∗
02 ≈

η

aη +1
. (25)

APPENDIX: PROOFS RELATED TO EPIDEMIC-ODE

It is easy to verify that global unique solutions exist
for all ODEs considered, as the Right-Hand Sides (RHS)
are Lipschitz continuous. We first show that for any initial
condition (i.c.) in B(2), the solution remains in B(2):

Lemma 1: Consider the two-dimensional ODE defined
in (14). Consider any i.c. (i0,r0) ∈ B(2), then the unique
solution (i(t),r(t)) ∈ B(2) for all t.
Proof: We will show that the flow of the ODE on the
boundary of B(2) is either inwards or on the boundary (see
Fig. 6). This provides the required result by Nagumo’s
theorem [13], which then says that any trajectory started
inside region B(2) will remain in B(2).

Fig. 6. ODE Trajectory

Consider any (r, i) ∈ ∂B(2). When the boundary point is
(r,0) (i.e., on r-axis as shown in figure), then clearly from
ODE (14), di/dt = 0 while dr/dt < 0, so the flow is directed
towards (0,0) and along the boundary line BC. Now, for
any point (0, i) on the boundary AC, again from ODE (14),
dr/dt > 0 and depending upon β (i), the ODE flow is either
upwards and towards right or downwards and towards right
(as shown in figure 6); in either case the flow is into B(2). At
the corner point A, the slope of flow is di

dr =
−αi
iα pr

= −1
pr
, whose

magnitude is greater than one (because pr is the fraction of
recovered that get immunized, and hence pr < 1), which is
hence di/dr is smaller than the slope of AB (as the slope of
line i+ r = 1 is −1). So, flow at A is also into B(2). Now
consider any point (r, i) on line AB; here i+ r = 1 and hence
the slope of the flow, di

dr = −αi
i(α pr+li)−li

, which is increasing



with i and hence di/dr for any (r, i) on AB is less than that
at A, i.e., di/dr < −1/pr. Thus the flow is inward on AB
also. Proof follows by Nagumo’s theorem [13]. �
Proof of Theorem 2: For the ODE (10), (0,0) is an
equilibrium point, we have another equilibrium point, (i∗,r∗),

i∗ =
β̄ −α

β̄ (1+ α pr
li )

and r∗ =
i∗α pr

li
. (26)

Furthermore, the Jacobian matrix at any (i,r) is:

J(i,r) =
[

β̄ (1− i− r)−α− β̄ i −iβ̄
α pr −li

]
.

Matrix J(0,0) is negative definite and (0,0) is LA iff β̄ < α .
Case with β̄ < α: For this case, from (26), i∗ < 0

for the non-zero equilibrium point. Thus there is only one
equilibrium point in B(2), which is (0,0). Further, there
cannot be a limit cycle inside B(2), as it has to enclose (0,0)
(and not touch it), see [14], and, as any trajectory (with
i.c., in B(2)) is trapped inside B(2) by Lemma 1. Thus by
Poincaré–Bendixson theorem (e.g., [14]), the limit set of any
trajectory staring in B(2) is {(0,0)}, which implies that (0,0)
is a global attractor (as it is a local attractor).

Case β̄ >α: The Jacobian matrix, J(i∗,r∗) =
[
−β̄ i∗ −β̄ i∗
α pr −li,

]
,

is negative definite (use minors). Thus (i∗,r∗) is an LA.
In Lemma 3, we have constructed a bounded region (e.g.,

ABCD in left sub-figure, Fig. 7), call it R, with flow inwards
or on boundary. On applying Nagumo’s theorem [13], any
trajectory started inside region R will remain in R. Further,
using the Bendixson criterion (e.g., [12]), there will be no
limit cycle inside the region R because of (30) in Lemma 3.

Then, by Poincaré–Bendixson (PB) theorem (e.g., [14,
Theorem 1.8]), the ODE trajectory starting in R has a unique
limit point, and as the limit point is an LA, the trajectory
converges to (i∗,r∗). Now, by the critical point criterion
([14]), any closed orbit has a critical point (which is not
a saddle point) in its interior. That means B(2)/R does not
contain any limit cycle, because any such limit cycle should
intersect4 the region R as it has to enclose (i∗,r∗), which
contradicts the fact that all points on or inside R are attracted
toward (i∗,r∗). This completes the proof. �
Proof of Theorem 3: For ODE (15), again (0,0) is an
equilibrium point and the other equilibrium points5 are:

i∗ =
−cb±

√
(cb)2−4cacc

2ca
, r∗ =

α pr

li
i∗. (27)

We now identify the ones in B(2) (equivalently i∗ ∈ [0,1/cr
i ],

for cr
i := 1+α pr/li) and further identify if they are attractors.

Consider the corresponding Jacobian matrices:

J(i∗,r∗) =
[

i∗(2i∗ca + cb) −i∗β̄
α pr −li

]
, J(0,0) =

[
β0−α 0

α pr −li

]
.

4This is not possible without touching R (as in Fig. 7, the region R
touches the boundary line {i+ r = 1} at A).

5The numerator of β (i)(1− i− r)−α , with r = α pr/lii, is the quadratic
function, cai2 + cbi+ cc.

Case I, when β0−α < 0: Begin with sub-case w̄ < 0 and
define, L(i) = η(pi+q). If β̄ + w̄ L(i)

aL(i)+1 < 0, then from ODE
(15), we clearly have:

di
dt

<−iα <−imin{α,α−β0}.

On the other hand, when β̄ + w̄ L(i)
aL(i)+1 ≥ 0, we have

di
dt
≤ i

(
β̄ + w̄

L(i)
aL(i)+1

−α

)
a
≤ i(β0−α) < −imin{α,α−β0}.

and the inequality ‘a’ holds because the function i 7→
L(i)/(aL(i)+ 1) is increasing and w̄ < 0. Thus in all, with
w̄ < 0, we have

di
dt
≤ −imin{α,α−β0}.

By standard results in ODEs, we have that (also given as
[7, Lemma 6]), i(t) ≤ i0 exp(−min{α,α−β0}t)→ 0. Also
i(t) ≥ 0 by Lemma 1. Hence, i(t)→ 0 and it is simple to
show that (0,0) is a global attractor on B(2), when w̄ < 0
(see r-ODE in (14)).

Now, consider the sub-case with β0 < α , and w̄ > 0, but
βa+ w̄−αa < 0; then one can upper bound the i-ODE as:

di
dt
≤ i
(

β +
w̄
a
−α

)
=

i
a
(βa+ w̄−αa)< 0,

and hence (i(t),r(t))→ (0,0), as before, for any i.c.
Case II, with β0−α > 0: Define the function

p1(i) = cai2 + cbi+ cc, for i ∈ [0,1/cr
i ].

Then, p1(0) = (β0−α)(aη̄q+1)> 0 and, p1(1/cr
i ) =−α <

0. Thus, by continuity, there exists a unique zero of p1(i) ∈
(0,1/cr

i ], and is one of the two values in (27).
The square root term will be

√
c2

b−4cacc > or < |cb|,
when ca is positive or negative, respectively. In both cases,
the negative sign of square root term leads to the required
root, irrespective of cb > 0 or cb < 0. Thus,

i∗ =
−cb−

√
(cb)2−4cacc

2ca
, r∗ =

α pr

li
i∗.

The corresponding Jacobian matrix J(i∗,r∗) is negative
definite, making (i∗,r∗) an LA because

2i∗ca + cb =−
(

cb +
√

c2
b−4cacc

)
+ cb =−

√
c2

b−4cacc < 0.

The proof now follows by Lemma 1 and PB theorem. �
Proof of Theorem 4: For ODE (16) using Jacobian matrix,
(0,0) is an LA iff β̄ < α . The possible nonzero equilibrium
points are given by:

i∗ =
(u− β̄cr

i )±
√

(β̄cr
i −u)2 +4ucr

i (β̄ −α)

2ucr
i

, r∗ =
i∗α pr

li
. (28)

When β̄ < α and u < αcr
i , using simple algebra6 one can

show that these non-zero equilibrium points will not lie

6When u < β̄cr
i , both the roots are negative. When β̄cr

i < u < αcr
i , then

the discriminant term = (β̄cr
i +u)2−4uαcr

i < 0, so roots are not real.



in interval [0,1/cr
i ]. Thus, by PB theorem the limit set

with respect to any i.c., inside B2, is {(0,0)}. Further since
{(0,0)} is an LA, the limit point becomes the limit and hence
the global attractor.

When β̄ > α , Define the function

p2(i) =
(
β̄ +ui

)
(1− cr

i i)−α, for i ∈ [0,1/cr
i ].

p2(0) = (β̄ − α) > 0 and p2(1/cr
i ) = −α < 0. Thus by

continuity, only one non-zero root given by (28) lies in
[0,1/cr

i ].
On following similar arguments as before,√
(β̄cr

i −u)2 +4ucr
i (β̄ −α) > or < |u − β̄cr

i |, if u is
positive or negative respectively. So the only root with
positive sign of square root will work, irrespective of the
sign of (u− β̄cr

i ).
Hence, in both cases,

i∗ =
(u− β̄cr

i )+
√

(β̄cr
i −u)2 +4ucr

i (β̄ −α)

2ucr
i

, r∗ =
i∗α pr

li
.

lies in B(2). Now, at (i∗,r∗), the Jacobian matrix is:

J(i∗,r∗) =
[

i∗(u(1− i∗− r∗)− β̄ −ui∗) −i∗(β̄ +ui∗)
α pr −li

]
. (29)

The product of eigenvalues of (29) is greater than zero
by Lemma 2, and hence (i∗,r∗) is either a source or sink.
Thus it is a negative definite iff u(1−cr

i i
∗)≤ β̄ +ui∗+ li/i∗,

otherwise, (i∗,r∗) will be a source. Thus part (ii).a follows
by PB theorem, as (i∗,r∗) is now an LA.

For part (ii).b, (i∗,r∗) is unstable. There cannot be a closed
orbit (or limit cycle) that just encloses (0,0) by the critical
point criterion (e.g., [14]), as (0,0) is a saddle point. Further,
the trajectory starting from (r,0) in B(2), will converge to
(0,0). We need to understand the remaining trajectories. The
rest of the theorem follows from PB theorem, as (i∗,r∗) is
the only other equilibrium point, and it is not a saddle point;
thus a trajectory in B(2) approaches a limit cycle enclosing
(i∗,r∗), or approaches one of the two equilibrium points. �

Lemma 2: The product term of Jacobian matrix (29) is
positive.

Proof: The product term is

i∗
(
−
(uα

K
−K

)
li +Kα pr

)
=

i∗li
K

(
cr

i K2−uα

)
,

where K := β̄ +ui∗. Now, as K = α

1−i∗−r∗ > 0, we check
the sign of

(
cr

i K
2−uα

)
term only. So, consider

4cr
i (c

r
i K2−uα)

=

(
2β̄cr

i +(u− β̄cr
i )+

√
(u+ β̄cr

i )
2−4αucr

i

)2
−4αucr

i

= 2(u+ β̄cr
i )

2−8αucr
i +2(u+ β̄cr

i )
√
(u+ β̄cr

i )
2−4αucr

i ,

is positive as (u+ β̄cr
i )

2 > 4αucr
i , because the square root

term (u+ β̄cr
i )

2−4αucr
i > 0 used for (i∗,r∗) definition. Now

as cr
i is positive, the product term is positive. This completes

the proof. �

Lemma 3: Under the assumptions of Theorem 2.(ii), one
can construct a closed, bounded region R ⊂ B(2), touching
boundary {i+ r = 1} ⊂ ∂ (B(2)) at A = (b∗,1− b∗) ∈ ∂R,
where b∗ = li/(li +α pr), such that

∂ f
∂ i

+
∂g
∂ r

=−(β̄ (2i+ r− i∗− r∗)+ li) 6= 0, where

f (i,r) = i
(
β̄ (1− i− r)−α

)
, and, g(i,r) = iα pr− lir, (30)

and such that the field ( f ,g) representing ODE (10) at the
boundary ∂R is pointing inwards or onto the boundary ∂R.
Proof of Lemma 3: Here, we will construct a bounded
region, such that the field of the ODE on its boundary is
either inwards or on the boundary of that bounded region.
Then, similar arguments will follow as lemma 1. Further, the
region can be constructed in such a way that the line given
by

β̄ (2i+ r− i∗− r∗)+ li = 0, (31)

is outside the region R (see Fig. 7). We will have three cases
the following:

A. Consider the case when α + li < β̄ and β̄ < 1+ li
α pr

At the corner point A=
(

α pr
α pr+li

, li
α pr+li

)
, the flow is down-

wards (along line AB) as dr/dt = 0 and di/dt < 0. Similarly,
at corner point B, flow is towards left (along line BC) as on
line i+r = i∗+r∗, di/dt = 0 and dr/dt < 0 is decreasing (as
iα pr < rli). Similar arguments will follow for corner points
C and D. Now, consider any point (r, i) on AB, flow will be
inwards as di/dt < 0 and dr/dt < 0 are decreasing (because
(r, i) ∈ {(r, i); i+ r > i∗+ r∗ and iα pr < rli}). Similarly, for
any point (r, i) on boundary BC, have flow upwards as i is
increasing below line (i+ r = i∗+ r∗) and r is decreasing
below line (iα pr = rli). Similar arguments will follow for
boundary lines CD and DA.

Furthermore, observe that the above arguments only re-
quire that AB is vertical (A touching the lines i+ r = 1 and
α pri = lir), both AD and BC are horizontal and CD is then
joining the points. Thus one can shift the line BC upward if
required to ensure, C does not touch the line given in (31)
(observe that 2i+ li/β = i only when β̄ < 0, which is not
true here, thus there is a gap between lines i+ r = i∗+ r∗

and the line given in (31)).

B. Consider the case when α + li < β̄ and β̄ > 1+ li
α pr

On following the similar arguments as above, one can
prove the trajectory will be confined in the ABCDE region
when started from anywhere inside the same region. Further
again, the lines 2i+ li/β +r = i∗+r∗ and i+r = i∗+r∗ have
a gap in between because β > 0.

C. Consider the case when α + li > β̄

In this scenario, by the Bendixson criterion, we don’t have
any limit cycle in the B(2) region. And further a bounded
region as in previous cases can be constructed,

This completes the proof by applying Nagumo’s theorem
[13]. �



Fig. 7. Left: α + li < β̄ , β̄ < 1+ li
α pr

, Right: α + li < β̄ , β̄ > 1+ li
α pr


	I Introduction
	II News Propagation Model
	III Epidemics Model: Disease propagation
	IV Integrative Two-Timescale System
	IV-A Increasing Interest in News (I3N)
	IV-B  Increasing Behavioral Influence by News (IBIN) 
	IV-C Increased Interest and Behavioral Influence (IBIN&I3N) 

	V Numerical Experiments
	VI Conclusions
	References
	VI-A Consider the case when + li <  and < 1 + lipr 
	VI-B Consider the case when + li <  and > 1 + lipr 
	VI-C Consider the case when + li >  


