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Distributed Online Generalized Nash Equilibrium
Tracking for Prosumer Energy Trading Games

Yongkai Xie, Zhaojian Wang, John Z.F. Pang, Bo Yang, and Xinping Guan

Abstract—With the proliferation of distributed generations,
traditional passive consumers in distribution networks are evolv-
ing into ‘“‘prosumers”, which can both produce and consume
energy. Energy trading with the main grid or between prosumers
is inevitable if the energy surplus and shortage exist. To this
end, this paper investigates the peer-to-peer (P2P) energy trading
market, which is formulated as a generalized Nash game. We
first prove the existence and uniqueness of the generalized Nash
equilibrium (GNE). Then, an distributed online algorithm is
proposed to track the GNE in the time-varying environment.
Its regret is proved to be bounded by a sublinear function of
learning time, which indicates that the online algorithm has an
acceptable accuracy in practice. Finally, numerical results with
six microgrids validate the performance of the algorithm.

Index Terms—Generalized Nash equilibrium, online optimiza-
tion, time-varying game, P2P energy trading market.

I. INTRODUCTION

The explosive growth of distributed generation in distri-
bution networks together with the advancement of commu-
nication and control technology at the consumer level have
gradually transformed the traditionally passive consumers into
“prosumers”, which can both produce and consume energy [|1]].
Then, energy trading with the main grid or between prosumers
is inevitable since energy surplus and shortage are bound to
exist [2]. In this situation, the peer-to-peer (P2P) market, which
operates in a distributed manner, is more popular due to the
ever-increasing number of prosumers, in which the various
prosumers can be self-organized to operate economically and
reliably under a given market mechanism [3|]. In addition,
the increasing penetration and an aggravating volatility of
renewable generation calls for online market clearing methods.
In this paper, we intend to investigate the distributed online
energy trading market for prosumers.

For such P2P energy trading markets, they are usually
formulated as generalized Nash games, where each prosumer
maximizes its profit with coupling constraints, e.g., global
power balance [1]], [2]], [4]-[7]. Then, clearing the resulting
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P2P market corresponds to finding the generalized Nash equi-
librium (GNE) of the energy trading game. For example, in [[1]],
the energy sharing game among prosumers is formulated with
full information, and [2]] further designs a fully distributed
algorithm based on Nesterov’s methods to seek the GNE
with only partial-decision information. In [4], a P2P energy
market is formulated as a generalized Nash game, where the
prosumers who share payments are mutually coupled and
influenced. Following this, [S]] and [6] further consider system-
level grid constraints. Lastly, in [7], a P2P energy market of
prosumers is formulated as a generalized aggregative game
with global coupling constraints. The aforementioned works
have made great progress in the distributed GNE seeking for
the P2P energy trading market. However, they usually focus on
only one time section and provide offline solutions to solve the
game. Due to the volatility of renewable generations and the
complexity of load profiles, both current and future operation
status changes much more over time, requiring much faster
algorithms, i.e., online GNE tracking.

In this paper, we formulate a P2P energy trading market
among prosumers in the distribution network and propose a
distributed online algorithm to track the GNE of the market.
The major contributions are as follows.

o A P2P energy trading market is modeled as a generalized
Nash game with both individual and coupled time-varying
constraints. Moreover, we prove the uniqueness of the
GNE of this market at any time section.

o A novel distributed online algorithm is proposed to track
the GNE, where each prosumer can make decisions only
using local variables and neighboring information. This
reduces the communication burden and makes it easier to
implement in practice.

o We prove a sublinear regret bound, i.e., that the regret of
the online algorithm can be bounded by a sublinear func-
tion of learning time, indicating that the online algorithm
suffers minimal “loss in hindsight”.

The rest of this paper is organized as follows. In Section
II, the P2P energy trading game is formulated. Section III in-
troduces and analyzes the performance of a distributed online
algorithm to track the GNE of the game in a time-varying
environment. Numerical results are presented in Section IV to
verify the effectiveness of our algorithm. Finally, Section V
concludes the paper.

Notations: In this paper, R} is the n-dimensional (nonpos-
itive) Euclidean space. For a column vector x € R™ (matrix
Apxn € R™X™) its transpose is denoted by x'(AT). For a
matrix A, [A]; ; stands for the entry in the ¢-th row and j-th



column of A. For vectors z,y € R”, 27y = (x,%) is the inner
product of x,y, while ® represents the Kronecker product.
|lz|| = V&Tx is the Euclidean norm. The identity matrix with
dimension n is denoted by I,,. Sometimes, we also omit n
to represent the identity matrix with the proper dimension.
0,,1, are all zero and all one vectors with dimension n,
respectively. The Cartesian product of the sets Q2;,7=1,--- |n
is denoted by [, Q;. Given a collection of y; for ¢ in
a certain set Y, the vector composed of y; is defined as
y = col(y;) == (y1,%2, -+ ,yn)". The projection of = onto
a set ) is defined as Pq(z) := arg minyeq ||z — y||.

II. PROBLEM FORMULATION
A. Network model

We consider a distribution network with a group of pro-
sumers, denoted by the set N' = {1,2,...,N}. For each
prosumer, its load demand can be satisfied by its own gen-
eration and trading with the main grid or its neighboring
prosumers. The trading edge is denoted by £ C N x N.
For a prosumer 4, the set of its neighbors is denoted by
Ni = {NL, . NN Y with |N;| = Ny, If j € A, prosumers
1 and j can trade and communicate directly. Otherwise, direct
trading and communication are not allowed. Then, the trading
network is modeled as an undirected graph G = (N, E). The
adjacency matrix of G is denoted by W with elements wj ;. If
j € N;, the weight w; ; satisfies w; ; = w;; > 0. Otherwise,
w;,; = wj; = 0. The Laplacian matrix of the communication
graph is denoted by L and we have 17L = 0, where 1 is
an all-one vector. Moreover, the graph G is assumed to be
connected. For the weights, we have the following assumption,
which implies that every row sum of W is identical.

Assumption 1. The weight w; ; > 0 and de/\/ w; 5 = wo >
0 for all i € V.

B. Prosumer model

The scenario is that each prosumer is equipped with dis-
patchable generation, a non-dispatchable load, and an energy
storage system (ESS). To maintain power balance, it can
generate electricity, charge or discharge from the ESS, and/or
trade with the main grid or neighboring prosumers. In this
paper, we focus on the time horizon 7 = {1,2,...,7}. Here,
we will introduce them in detail.

Dispatchable generation: The power generated by dispatch-
able generation units of prosumer i at time ¢, denoted by p? (¢),
is limited by

pImT <Pl < P!, VieNteT (D)

g,min g,max

where p; and p; are minimum and maximum local
generation, respectively. Its generation cost is as follows.

£ () = a? (1 (1)) + bIp(t) )

where af > 0 and b are constants.
Energy Storage Systems (ESS): The ESS profile is con-
strained by the following dynamics.

0<pi(t) <py™™, VieN,teT 3)

0<pd(t) <pd™*, VieNteT 4)
At 1
si(t+1) = s;(t) + ~cap (nfpf(t) — Mp?(t)) (5)

ST < gi(t) < sTPOT Ve T ©6)

where p$(t), pi(t), and s;(t) are the charging, discharging
power, and state of charge (SoC) of the ESS 17, respectively.
At, e, n¢ and nd are sampling time, ESS maximum
storage capacity, and (dis)charging efficiencies, respectively.
Moreover, sm”‘ and s, with 0 < smm < s <1,

denote the minimum and maximum SoC, while pf A% and

P> denote the maximum (dis)charging power.

Each prosumer might also minimize the usage of its ESS
to reduce its degradation. Depending on the efficiency of a
storage unit, there are losses based on usage that usually grow
quadratically in power. For simplicity, we disregard the effects
due to SoC levels. As defined in [[8]], the corresponding cost

function is

€es C 2
(P (1) p{ (1) = af (P (1) +af (V)" (D
where a$ and a are both positive constants.
Trading with the main grid: Let p.'?(t) be the power
purchased from the main grid at time ¢ and p™9(t) =
col {p;"?(t)};cpr- Similar to [9], we set grid cost as

awrem) = (X, 00)  ®

where ¢;"? is a time-varying cost coefficient, since the energy

production varies along the time period according to the energy

demand and the availability of distributed energy sources.

Then the cost assigned to prosumer ¢ is
mg ( t)

fimg (pmg (t)) — mc& (pmg(t))

=My, om0 O

Moreover, the total power exchanged with the main grid is
limited, i.e.,

mg,mzn < §
zEN

Trading with neighbors: The trading cost with neighboring
prosumers of prosumer ¢ is

P ®Y) = 2 o (0 (6) + dipln 1)

JEN;

< pmg,m(u

VteT  (10)

Y

where pf’"j (t) is the power purchased from prosumer j at time
t, di"; = d¥; > 0 is the price and a'" is a small positive
constant, which represents the tax cost incurred by using the
energy sharing platform.

Disregarding loss on the power lines, the sum of the trading

power of prosumer ¢ and j at time ¢ should be 0.

pi(t) +pjs(t) =0, V@j)e&teT  (12)
Furthermore, trade between prosumers is limited by
P < D) <P, Vi) €EET  (13)

tr,min

where p;’; < 0 and p?}m” > 0 are the minimum and



maximum tradeable power between prosumers ¢ and j.
Denote by p(t) the undispatchable load demand, and the
local power balance for each prosumer 7 is

P = pi(t) + oI () + P70 + D p() =)

(14)

C. Energy trading game

Before giving the game model, we first simplify notations.
The decision variable of prosumer ¢ is denoted by

xi(t) == col (p? (1), p5 (t), pi(t), pi"o (1), pi; (1)) € R™

where n; =4+ N; and )\ 1y = n.

Define a sparse matrix F;, where the rows of E; correspond
to every trading edge in £ one by one. Let the k-th row of E;
corresponds to (I, Jy) in &, then the elements [E;],; of E;
are assigned as follows.

1, If {Ik,Jk} = {Z',./\[il} and I, < J.

[Ei]k,l =<¢ -1, If {Ik,Jk} = {i,Ml} and I, > Ji.
0, Otherwise.
Let
-1 (1]
Ai = | Opixs 1 OT
OZiEN Ni Ei
) ) T
mg,min mg,min T
bi - {_p N : N OzieNNI}
gi(xi(t)) = Ajzi(t) —b;, VieN,teT

where m = 243, N;. Then coupling constraints (I0) and
(I2) can be reformulated as

> st <0

In (I3), the sparse matrix E; is designed to address the
equality constraint (I2) by transforming it into two equivalent
inequality constraints.

Similarly, let

Gi=[1 -1 1 1 1%]

gi(x 5)

Then equality constraint can be reformulated as
Gixi(t)—pﬁ»(t):O, ViEN,tET
Moreover, the domain set of z;(¢) is denoted by

= a0la) sists ©.@.8.8.8.03)
Q; = xi N {z;i(t)]|z(t) satisfies (T6)}

X = H Q; N {xz(t)|z(¢) satisfies (13}

where x; is the set of all of the local inequality constraints, {2;
considers the reformulated power balance constraint of @,
while X includes coupling constraints.

In the energy trading game, each prosumer intends to
minimize its cost while maintaining the global power balance.
The optimization problem of each prosumer is

min. Jit (zi(t), z—i(t) = f{ (P! (D) + f£* (05 (2), P (1))
+ @MW) + £ ({p0})

(16)

(17a)

S.t. {,Ei(t) S Xl({E,Z(t))

(17b)
where z_;(t) = col(z1(t),...,xi—1(t), xiy1(t), ..., zn(¢))
and X;(z_i(t)) := {z:(t) € Ll (zs(t), z_4(t)) € X}

In summary, the energy trading game is represented as

o Player: all prosumers, denoted by N = {1,2,..., N}.

o Strategy: decision variable z;.

o Payoff: the disutility function J; ; (x;(t),x_;(t)).
Due to the global coupling constraints (T3)), it is a generalized
Nash game. The corresponding GNE is defined as

z7(t) € argmin Ji (z;(t), 27 ,(1)) ,s.t. 2i(t) € X, (2

> (1)
Regarding the game (T7), we have following assumptions.

Assumption 2. x; is a non-empty, compact and convex set.

i(t), problem is feasible.

Since the constraints of problem are all affine, the
commonly assumed Slater’s condition is simplified to only
require feasibility, and therefore Assumption [3] suffice.

Assumption 3. Given any x_

D. Uniqueness of the GNE
The pseudo-gradient of {J; ;};cnr is defined as

Fi(z) = col ({Vau, Jit(xi,2-4)})
2alp? +b?

il
—col | 0 PO g (18)
Ct (2]91' + Zjej\/ j#i Pj )
col ({Qa”pfrj +df; }]e/\/-)
Define a9 = mina?, @ = max a?, with a®, @, a?, @ defined
ieN ieN
similarly. In addition, ¢™9 = min ¢;"?, €9 = max ¢;"?. Then,

teT teT
we can prove that the pseudo-gradient is strongly monotone

and Lipschitz continuous.

Lemma 1. For V¢ € 7T, the pseudo-gradient F(x) has
following properties:
1) Fy(x) is strongly monotone with parameter 0 < 1 <
min {249, 2a%, 2a%, ¢™9,2a'" }, i.e., (Fy(z)— Fy(y),z—
y) = nllz —ylf3:
2) Fi(x) is 0—Lipschitz continuous, ie.,
[ Fi(z) = Fe(y)ll; < Olle:  — wyllz  with
0 > max {2a?, 2a“, 2a%, Ne™9,2a'" }.

Proof. For 1), taking any two variables z*, 22, then

(Ft(xl) — Ft($2),l‘1 —z?%)
2 2
_ g |{|,,9-1 9,2 cll,.cl c,2
721’6/\/20% bio b H +ZieN2ai bi =P ‘2
d1 d,2
> 2|t - H + BT H
2
tr,1 tr,2
+Zi€NZ]€M a' \\pis =i H (19)

where h = col (pm% p:"92) and H = Iy + Lyxn.
Since the m1n1ma1 elgenvalue of H is 1, we have hT Hh >

mg?H Then (Fy(z!) — Fy(22), ' —22) >

’LEN ‘



77||gc1 —xQHE with 0 < 7 < min {249, 2a%, 2a%, ¢™9,2a'"}.

Therefore, F;(x) is strongly monotone with parameter 7).
Similarly, the second assertion could be obtained, which is

omitted due to the space limit. O

A GNE with the same Lagrangian multipliers for all the
agents is called variational GNE (v-GNE) [10]], which has the
economic interpretation of no price discrimination [[11]]. For
Vt € T, every solution z*(t) € X to the following variational
inequality is a v-GNE of game (17).

(F(z*(t),z —2*(t)) <0, VYzreX  (20)

Theorem 1. For the generalized Nash game (T7), there exists
a unique v-GNE.

Proof. Following [12]], since J; ¢ (x;(t), z_;(t)) is differen-
tiable and convex with respect to z;(t) for any z_;(t), if
Assumption 2] and [3| hold, the v-GNE of exists. Moreover,
by the strong monotonicity of F}(z), the uniqueness of v-GNE
is guaranteed. O

III. ONLINE ALGORITHM

In this section, we first propose an online distributed algo-
rithm based on a consensus algorithm and primal-dual strategy
to solve the problem (I7). Then, we prove that the regret of
the proposed algorithm is bounded by a sublinear function of
the learning time.

A. Algorithm design

Recalling the objective function (T7a), f;"¢ (p™9(t)) is as-
sociated with decisions of all of the other prosumers. To solve
game , full information is needed, i.e., one prosumer needs
to communicate with all of the other prosumers. However,
this is difficult to realize in practice due to communication
limits. This section designs a distributed algorithm with only
partial-decision information, where the prosumers only need
to exchange information with its neighbors. To this end, we
endow each prosumer with an auxiliary variable z‘(¢) that
provides an estimate of the decisions of other prosumers at
time ¢. Moreover, jj(t) represents prosumer 7’s estimate of

j’s degision and z° ,(t) = col ({j;(t)}gej\/l) Clearly, we
have Z%(t) = x;(t).
Firstly, note that the Lagrangian of problem is

Lig (2 (t), Ni(t), pa(t); 2—i(t)) = Jie (2i(t), v—i(t))
NN almt) + w®) (G - 1) @)

where \;(t) and p;(t) are Lagrange multipliers.

The iterative process of z;(t), ' ,(t) and dual variables
(Ai(t), p1s(t)) is shown in Algorithm [1} where 0 < p(t) < 1 is
a stepsize or the so-called learning rate, which decreases over
t,and ¢ = w%)

The update for x;(¢) in Algorithm |1| employs the projected
primal-dual gradient decomposition method combined with
the consensus approach [13]-[15]]. The update of z* ,(¢) can
be regarded as a discrete-time integration for the consensus
error of the local estimation [16]]. At each sampling time £,

prosumer i gets V., J; ¢ (z;(t), z_;(t)) by using z;(t), 7", (¢)

Algorithm 1 Online Algorithm for P2P Energy Trading
(0) € R*™ ™, X;(0) = 0,

Initialization: z;(0) € y;, °,;
1i(0) =0
fort=1to T do
zi(t+1) = (1 — p(t))zi(t)
+ )Py, {2i(t) — p(t) [V, Jit (i (1), 25 (1))
+ p(t) (AT Xi(t) + GT a(t))

e it - #)} (22a)
Tt 1) =30 ,(t)

—ep) Y] Wi (:zi () — i(t)) (22b)
M) =Pap{ =) S

o) [As (224(t + 1) — 2(8)) — b } (220)
palt 1) = (1= p(0) (1)

+p(t) [Gi (2mi(t+1) —as(1)) — pi(1)]  (22d)

end for

and updates z;(¢t + 1) with (22a). Meanwhile, the estimation
z',(t + 1) is updated by communication with neighboring
prosumers by (22b). Then, dual variables (\;(t), p;(t)) are
updated using the latest updated local information x;(t + 1)

with and (22d), respectively.

Remark 1. Algorithm [1]is fully distributed with only partial-
decision information. Each prosumer makes a decision only
based on local information and communication with its neigh-
bors, which is easy to implement in practice. Compared with
the existing work [17] only considering the time-varying
objective function, we further include the time-varying con-
straints. Moreover, compared with the algorithm in [/18]],
the update is much simpler without the need of solving an
optimization problem at each iteration, which reduces the
computation cost.

B. Regret analysis

In this subsection, we will prove that the regret of Al-
gorithm (1| is bounded by a sublinear function of the learn-
ing time. First, we give some notations. Under Assump-
tion B (121, [lg:(@o)ll. Ve, Jie(@s, o). |V, 3(:)| and
|Giz; — pﬁ(t)“ are bounded. Then, for Vi € N and Vt € T,
we define

s s

K1 = SUDg, ey, [|Till, K2 = sup,, ey, llgi(zi)]]

kg = sup |V, Jit(zi,z—i)|l, ka = sup [|[Va,gi(z:)|
TiEXi TiEXi

ks = sup ||Giz; — ph(t)||, ke =max sup [|Gzi
X €N g1

We use the dynamic regret to evaluate the performance of
the online algorithm, which is defined as follows.

RiT) = 3" [or (walt). o™ (0) = Ji (2" (0))]  23)



Fig. . Communication and trading graph G for the case study.

where z*(t) = col(z}(t)) is the v-GNE of at time ¢.
An online algorithm is generally considered to perform well
if the regret increases sublinearly [18], [19], i.e.,

i(T ‘

lim Ri( ):07 Vie N (24)
T—o0

However, it would be impossible to keep the re-

gret (23) increasing sublinearly if the v-GNE sequence
{z*(0),2*(1),...,2*(N)} of ([7) fluctuates drastically.
Therefore, motivated by [20] and [21]], we adopt the following
accumulation to describe the difficulty of tracking the v-GNE
sequence:

=3 e+ 1) = ()]

Sublinear regret is only possible when @ is small.
The next result shows that by implementing decreasing p(t),
the regret of Algorithm|l|is bounded by @7 and ZtT:l Vp(t).

(25)

Theorem 2. Suppose that Assumption ] and [2] hold, for Vi €
N, the regret of Algorithm [I]is bounded by

R(T) <O <\/T <¢T(;)1 - Z; \/@D (26)

P2

The proof of Theorem [2]is given in the appendix.

Remark 2. From Theorem 2] we can get the sublinearly
bounded dynamic regrets of Algorithm [I] To this end, take
p(t) = Grype Witha,b>0,0< K <land0<a < 3. If
& is sublinear with 7'~ %, then R;(T) is sublinear with 7.
Note that the sublinearity of @ is a general assumption, which
is widely adopted in online optimization and online game [[17]],
[18], [21]. In the P2P energy market, it mainly limits the
fluctuation of the undispatchable load demand, which results
in a GNE sequence with limited deviation.

IV. CASE STUDIES

In this section, numerical simulation on a case with six pro-
sumers (microgrids) is introduced to verify the effectiveness
of the proposed algorithm. Each prosumer communicates and
trades with its neighboring prosumers via a connected graph
G, which is shown in Fig. [I] The adjacency matrix W is set
to be wi; = wj; = wp and Yy ow;; = 1 for Vi € V.
The time interval is set to be At = 1 min and T = 1440,
which indicates that the optimization period is 24 hours. The

. . 3 5
learning rate is set to be 0.8/ 57775-
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Fig. 2. Load and PV generation of prosumer 1.
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Fig. 3. The trajectories of the average regrets of each prosumer. Note log-scale
on y-axis for the inlay figure.

We assume that prosumer 1, 3, 4, and 6 are equipped with
PVs and pl(t) of these prosumers is equal to the difference be-
tween their loads and PV generations, while p!(¢) of prosumer
2 and 5 only have a load demand. The minute-sampled profile
of PV generation is obtained from [22], which is collected in
Utah, from the U.S.. We use the data on 16th September 2013.
Since each prosumer is located in the same area, we assume
that the photovoltaic generation curves of different prosumers
are the same, but with different amplitudes. The profiles of
the daily power consumption of each prosumer are from [23].
Fig. [2] depicts the load and PV generation of prosumer 1 from
6:00 am to 6:00 pm.

Fig. [3] shows the trajectories of the average regrets of each
prosumer from 6:00 am to 6:00 pm. We set t = 0 at 6:00 am
here and therefore the length of the learning period is 720.
As shown in Fig. [3| R;(¢)/t, i € N approximately decays to
zero after ¢ = 120 (i.e., after two hours). The downtrend of
the logarithm of R;(t)/t, i« € N also validates this property,
which is consistent with the result in Theorem

V. CONCLUSION

In this paper, we propose a distributed online algorithm to
track the GNE of the P2P energy trading game in a time-
varying environment. We prove that by an appropriate choice



of the decreasing learning rate, the regret of the proposed
algorithm is bounded by a sublinear function of learning time.
Simulation results with six prosumers verify the effectiveness
of the proposed algorithm. In future work, we may focus on the
effect of communication delay on the performance of online
algorithms.

APPENDIX
PROOF OF THEOREM

We start with a lemma.
Lemma 2. If Assumption |I|holds, we have 0 < € < 1, where
€= max {|1—cp( )si|} with 0 =51 < s9<--- < sy as

teT s>
N elgenvalues of L.

Proof. Let d* = max {ZjeN wu} By Assumption , d* =
wp. From [24, pp. 31], since sy is the maximal eigenvalue
of L, we have d* < sy < 2d*. Therefore, wg < sy <
2wp. Recall 0 < p(t) < 1 and ¢ = w%) we have —1 <
1 —c¢p(t)sy < 1. Thus, for V ¢t € T and s; > 0, we have

—1<1—cp(t)sy <1—cp(t)s; <1.Thus, 0 <e<1l. O

The estimation error of prosumer i is defined as e;(t) =
col (e} (t),...,elN(t)) with el (t) = @] (t) — z;(t). Based on
Lemma [2| we now present the bound of e;(t).

Lemma 3. Under Assumption [T] and ] for Vi € N and 2 <
t < T, we have

les(®)ll < & lesll +2VNm 3
Proof. By @ we have
dt+1) =2 (t+1)— 2t +1)
=# (0 — o)), wiy (F0) —2H0)) — it +1)
= (1) = wilt) — (wilt +1) — 2(t))
—ep(t) Y, wis (B0 —20) — (@)~ 2i0)|
=el(t) —ep®) Y, wiy ((t) — k1))
— (@ilt +1) — (1))
Let Az;(t) = z;(t + 1) — x;(t), then
ei(t+1) =e;i(t) —cp(t) (LRI)e;i(t) — (In @ I) Ax;(2)

By ([22a) and the definition of k1, we have |[Axz;(¢)]|
21 p(t). Thus, by Lemma [2] we have

p(t —k — 1)

27)

les(t +1)|| <elles(t)]| + 2V Nkip(t), Vie N (28)
Based on the recursion relation (28), we have
t-1 =2 &
llea(®)ll < e Hles(Il +2VNR1 Y e"p(t —k —1)
This completes the proof. O

Note that 0 < ¢ < 1 and p(t) is decreasing with lim p(t) =

0, we have lim e'~! =0and Jim Ek o Erp(t— k 1) Thus,
thm llei(t )H = O and it 1mphes ‘the estimation will converge
—00

to the actual value.

Then, a result on the bounds of the dual variables could be
obtained.

Lemma 4. Under Assumption [2] for Vi € A" and V¢ € T,

Vo) M@ < 3V Nk (292)
V t) |14 (t)|| < 3V Nrs (29b)

Proof of Lemma {4 is similar to that of lemma 1 in [17],
which is omitted here due to the space limit. The next lemma
provides an upper bound of the accumulated error between the
v-GNE z*(t) and x(t) obtained from Algorithm

Lemma 5. Under Assumption 2] the accumulated error be-
tween z*(¢) and x(t) is upper bounded, i.e.,

S Nl — ) <
2K1 T 1 . )
o 2t 70 2 I D =@
+ %Zt RYZORE:S DD S 1G]
sy, 0D e
% tT_l p%(t) (Zie/\/ [li(t) — (t)HQ
i, (t+ 1)IIZ) (30)

where
7 =N (6x 4 6,)> + 4N (k1 + £3) (Ox + 0,) + 4NK3
mo = 2V N(c+ 0) [2k1 + 2k3 + O + 5,.]
=N +VNe+ VNeb? + 62
with §, = 114(3\/]v/12 +19>\), 0y = 116(3\/]V/<;5 +19H), ¥y =

sup [|A7(¢)] and 9, = sup [|ui(0)].
iENET iENLET

Proof. Similar to (29) to (32) in [17], by @2a) and the
definition of x;, we have the following two results.

Do llzi(t+1) =i+ DIF < D flaalt +1) — i ()]

ieN ieN
+4“12 | (t+1) — 2 (1)) (31)
Dot +1) =2 @) < 0) Y ast) — x5 (1))
ieN ieN
o) D2 P (€)= P (€2(1) ||2 (32)
where
& (1) = i(t) — ( [V Jio (T (1))
ROICENORYATOESS DI CIOREAC)]
X (t) = i (t) = p(t) [V, Jio(z* (1))
+p(t) (AN (1) + GT i (1))]
For simplification, denote
¢ = xi(t) — 27 (1), ¢F = Vi, Jio(T'(1)) = Vi, Jie(2* (1))
07 = AT Xi(t) — AT AL (1), o7 = GT pa(t) — GT i (#)



¢; = CZjeN} (:(t) — 7 (1)),

and use p to replace p(t) in the remaining proof. By the non-
expansive property of projection, we have

[Py (€1(E) — P ()| < |61 (1) — 2(1)]
= [lo}I* + o2 [le2” + o* (21 + 1ot 1”) + o2 2]

—2p(p}, 87) — 20% (B, 7)) — 20% (87, 1) — 2p(d;, )
+20% (67, 03) + 20° (7, #7) + 297 (87, ¢7)
+ 20862, 67) + 2% (67, 67) + 2% (7, 67) (33)

Before continuing the proof, results on the bounds of the

norm of ¢}, ¢2,--- ,¢? are given.
i1 < llza@)ll + N7 (Bl < 261 (34)
l62) = |lo7" + 072 < 62| +20s @9
where ¢7"' = V., Jit(T(t)) — Va,Jis(z(t)) and ¢7? =
Va, Jig(@(t)) = Va, Jii (" (1))
Vol < |AT (VoxiE)] + Vo [[ATN @)

< 3V Nkoky + K4y = Oy (36)

where the second inequality holds based on Lemma [4] and the
fact that p < 1. Similarly, we have

Vo il < du (37)
By the definition of €/ (¢) and e;(t), we have
6 = ][5y, 10
<ed ol t)H <eVNle®| (38

Thus, the sum of quadratic items in (33)) is upper bounded
by

10217 + ot (6217 + 1621) + o 1621
2

< ([ o

e (t)]I*

Note that other items in (33)) are also upper bounded, i.e.,

ot H + 4m§> + 0% (63 +62)

+ Nc2p? (39)

— 20(9},0) < 2| = 20008, 072)

< 4pm |[677]| - 20001, 67) (40a)

20° (01, 97) — 20 (i, ¢7)

< 2p* loill (Vo lle?ll +valisth

< 4k1p? (O +0,,) (40b)
—2p(¢;, 67) < 2p||¢; (1) (40c)

Similarly, we have

20%(62,0%) < 20007 (|07 + 205) (“1a)
20%(02, 01) < 26,0% (|| 677]| + 265 (41b)
20%(6%,67) < 2eVN 2 les(0)l] (|07 +203)  @10)

2087, ¢7) < 2030, 41d)
20°(67, 07) < 26V Noxp? [lei (1) (dle)
20% (07, 07) < 20V NG |lei(t)| (41)
Substituting (39), @0), @) into (32), we have
* 2
Sl 1) a0
<Y e~ 2O + N (0 +6,)° o
+ 4Nk (65 + 0, + k3) p° + 4Nk (85 + 6,.) p?
+2VNcp® 261 + (2'% +0x +64) Pl ZZ_GN lles (2)]]
+Nc2p? Z llei(t)
2/) 2 2 ) 4 e Z 2 1 H
+ 2p? [2k1 4+ (263 + 05 +0,) p) Zl (152’1H
3 2,1
+ 2V Nep Zz‘e/\/ - H (42)

Then, by Lemma [T} results on the upper bounds of the last
four items in (@2) are given as follows.
Due to the Lipschitz continuity of F;(z), we have

I G DI LOREL]
ﬂ (Z | () - m<t>||) <6 W Sl () — ()]
iEN iEN

0 NS O SOR Y el @)
and
S e e ewr @
Based on (44), we have
Sl <3, (lai+ 6]
S+ el @)

Moreover, since F(z) is n—strongly monotone, we have

SY 6L 6 = —(alt) — (). Fu(a(t) - B (1)
< —nla(t) — 2" ()] (46)
Substituting @3) ~ (@6) into @2), we have
DN AR VRO S EIORSHOI
— 2 |l (t) — 2" (&)||” +7T1/02+7T2/)2Z le: @
+msp® Y lleit) (47)
Substituting (@7) into (]3:1'[) yields (30). O
Finally, we can prove Theorem [2]
Proof. Following [17], by Lemma [3] we have
Zt 12 el <o (Zt 1p(t)) (48a)



(48b)

) D lleatt)

1EN

T
<o o)

Using the fact that p(t + 1) < p(t) and |z;(t) —
(Lo ()| + [l (B)[1)* < 453, we have

t=1

* 2
()" <

T

1 * 2
> G (e o0 — 0
D iew
iy Do V) = 1D
1
~ T 2w
T 1 1
X [ e
—p*(T)

Moreover, by the definition of @7 and the monotonic descend-
ing of p(t), we have

T 1
2 1p2(t)z'
pQT S ey -2
07 Sy VN I (1) =2 )]

:@
p*(T)
Substituting @8), @9) and (30) into (B0) yields

ZtT_l l(t) — 2" (1) < iﬁ”)l (®r+ VN1 )

Zf VP +7T22f 1216/\/”1
Y 03 el
<o (T + XL, Vi)

Therefore, by the definition of k3, we have

Jos(t +1) = 23 (¢ + DI

— 2} (T + 1|

5| e 0 - 10

(49)

|z:(T + 1)

7 (E + 1) = 27 ()|

(50)

(51

Ry(T) =

This completes the proof. O
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