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Abstract— Stackelberg games have been widely used to model
interactive decision-making problems in a variety of domains
such as energy systems, transportation, cybersecurity, and
human-robot interaction. However, existing algorithms for solv-
ing Stackelberg games often require knowledge of the follower’s
cost function or learning dynamics and may also require the
follower to provide an exact best response, which can be difficult
to obtain in practice. To circumvent this difficulty, we develop
an algorithm that does not require knowledge of the follower’s
cost function or an exact best response, making it more
applicable to real-world scenarios. Specifically, our algorithm
only requires the follower to provide an approximately optimal
action in response to the leader’s action. The inexact best
response is used in computing an approximate gradient of
the leader’s objective function, with which zeroth-order bilevel
optimization can be applied to obtain an optimal action for the
leader. Our algorithm is proved to converge at a linear rate
to a neighborhood of the optimal point when the leader’s cost
function under the follower’s best response is strongly convex
and smooth.

I. INTRODUCTION

Stackelberg games have recently been used as a mathemat-
ical formulation for a number of tasks in energy systems [1],
[16], [18], [19], transportation [20], [23], cybersecurity [14],
and human-robot interaction [11], [13], [17]. In a two-player
Stackelberg game, one player, which is commonly referred
to as the leader, is trying to minimize her cost assuming the
other player, which is commonly referred to as the follower,
is taking his optimal action after observing the leader’s
action. In other words, the follower chooses a best response
to the leader’s action. The Stackelberg game can also be
viewed as a special case of bilevel optimization [3].

Many learning algorithms for Stackelberg games or, more
generally, bilevel optimization, require knowing the fol-
lower’s cost function. For example, Fiez et al. [7] developed
a learning algorithm for two-player Stackelberg games that
locally converges to an optimal solution. In their algorithm,
both the follower and the leader use the gradient descent
algorithm, in which the leader uses an inexact gradient that
depends on the first-order and second-order information on
the follower’s cost function. Chen et al. [2] made the same
assumption that the follower’s cost function is known and
speeded up the algorithm by Fiez et al. by adding a predictive
term to the follower’s learning dynamics.

When the follower’s cost function is unknown, existing
algorithms require knowledge of the follower’s learning

The authors are with the Department of Electrical and Computer
Engineering, University of Illinois Chicago, Chicago, IL 60607. Email:
{yli340,hanshuo}@uic.edu. This research was supported by the Army
Research Office under grant number W911NF-22-1-0034.

dynamics. For example, Conn et al. [4] designed a learning
algorithm for bilevel optimization that does not require first-
order information on the follower’s cost function. However,
they also designed the follower’s learning dynamics so that
the follower is capable of providing an inexact best response.
The inexact best response from the designed learning dy-
namics can be used by the leader to update her action.
There are many ways to design the follower’s dynamics
that yield an inexact best response; see [10], [22]. There
are also algorithms for bilevel optimization that do not
rely on designing the follower’s dynamics. However, those
algorithms assume specific forms of either the follower’s
optimization problem (e.g., a linear program [21]) or the
leader’s problem (e.g., a least-squares problem [6]).

Assumptions of a known cost function or known learning
dynamics are often made to the follower in previous works
on Stackelberg games. However, these assumptions do not
hold in many cases. For instance, in human-robot interaction,
the follower is a human agent, whose cost function may not
be known, and whose learning dynamics may not follow
what is given by existing learning algorithms. Furthermore,
humans do not always provide a best response, such a
phenomenon is known as bounded rationality. Therefore,
it is important to consider and relax these assumptions to
effectively design autonomous systems that can collaborate
with human agents. Existing work on Stackelberg games with
a human follower typically assumes that the follower’s cost
function is given or attempts to learn the cost function by,
e.g., inverse reinforcement learning [8], [15]. Some results do
not assume knowing the follower’s cost function but assume
that the follower always provides an exact best response [11],
[12].

Contribution: In this paper, we make an initial attempt
to relax the current assumptions on the follower when solving
two-player Stackelberg games. In particular, our problem
setup makes the following assumptions:

1) The follower’s cost function is unknown and does not
follow a specific form.

2) The follower’s learning dynamics are unknown and
cannot be designed by us.

3) The follower only gives an inexact best response that
is ε close to the exact best response (to be defined
formally in Section III-A).

Our end result is a gradient-based learning algorithm that
is guaranteed to converge to a neighborhood of the optimal
point at a linear rate, where the size of the neighborhood
depends on the inexactness ε of the best response oracle. Our
algorithm is tested numerically for quadratic cost functions,

ar
X

iv
:2

30
3.

06
19

2v
1 

 [
m

at
h.

O
C

] 
 1

0 
M

ar
 2

02
3



and the numerical simulation results are consistent with our
theoretical analysis.

II. BACKGROUND: STACKELBERG GAMES

We consider a two-player Stackelberg game, where x ∈
Rn is the leader’s action, and y ∈ Rm is the follower’s
action. The goal of the leader is to minimize her cost f1
assuming that the follower will take the best response, i.e.,
the follower’s action is optimal with respect to the follower’s
cost function given a leader’s action. Mathematically, the
leader attempts to solve the following bilevel optimization
problem:

min .
x∈Rn

f(x) , f1(x, r(x)), (1)

where r(x) = arg miny∈Rm f2(x, y) is the best response of
the follower. In this paper, we assume that the minimizer
of f2(x, ·) is unique for each x to ensure that the best
response function r is well-defined. We denote Djfi(·, ·) as
the derivative mapping of fi on the j-th argument, where
i = 1, 2 and j = 1, 2. The derivative mapping of the best
response r is denoted as Dr. The optimal solution of (1) is
denoted as x?.

The Stackelberg game formulation (1) can be used for
modeling a variety of tasks. For example, in human-robot
collaboration, the robot is modeled as the leader and the
human as the follower. With a human follower, we typically
have access to the exact zeroth-order and first-order infor-
mation of the leader’s cost function f1, but the follower’s
cost function f2 and best response function r are typically
unknown. We adopt these settings on f1, f2, and r together
with the following assumptions:

Assumption 1. D1f1(x, ·) is Lxf1 -Lipschitz, and D2f1(x, ·)
is Lyf1 -Lipschitz for any x.

Assumption 2. The best response function r is differen-
tiable, and ‖Dr(x)‖ ≤ R1 for any x.

Assumption 3. The best response function r is R2-smooth,
i.e., Dr is R2-Lipschitz continuous.

Throughout this paper, we use ‖ ·‖ to denote the L2-norm
for vectors and the induced L2-norm for matrices.

Assumption 1 is a common assumption in bilevel opti-
mization and Stackelberg games; see [3] and [7]. Assump-
tions 2 and 3 imply that the follower does not change his
action rapidly when the leader’s action changes.

III. PROPOSED FRAMEWORK

In this section, we give a gradient-based algorithm in Sec-
tion III-A that uses an inexact gradient derived in Section III-
B to solve (1). Computing the inexact gradient requires that
the follower give an inexact best response to the leader’s
action, as defined in Section III-A.

A. Inexact Best Response

Our algorithm relies on the simple fact that the inexact
best response should be close to the exact best response. A
formal definition is given as follows.

Definition 1. A follower’s action y is called an ε-inexact best
response (ε-IBR) to a leader’s action x if ‖y − r(x)‖ ≤ ε.

If the follower uses gradient descent to compute an ε-
IBR when the leader’s action x is fixed, i.e., yt+1 = yt −
βD2f2(x, yt), where β is a stepsize, then condition ‖yt −
r(x)‖ < ε can be verified by the quantity ‖yt − yt−1‖ if
f2(x, ·) is strongly convex for any y.

We choose to avoid defining the inexact best response
as a function y : Rn → Rm such that for some constant
ε > 0, the function y satisfies ‖y(x) − r(x)‖ ≤ ε for any
x. For tasks in HRI, this would imply that the human’s
actions follow a function of the robot’s actions. In other
words, each robot’s action would correspond to a specific
and deterministic action of the human, thus imposing a strong
assumption on the human’s behavior.

Our gradient-based algorithm is given by

xk+1 = xk − αgxk , (2)

where k = 1, 2, . . . is the index of iteration. The stepsize
α is a fixed constant that should be chosen small enough;
the specific choice of α will be discussed in Section IV-
C. The term gxk is an inexact gradient at xk. From the
decomposition of the exact gradient mapping

∇f(x) = D1f1(x, r(x)) +D2f1(x, r(x))Dr(x),

an estimation gx is given by

gx = D1f1(x, y) +Dψ̂x, (3)

where D1f1(x, y) approximates D1f1(x, r(x)), and Dψ̂x
approximates D2f1(x, r(x))Dr(x). The follower’s action y
is an ε-IBR of the leader’s action x. The computation of
Dψ̂x only requires an inexact best response of the follower.
Detail will be given in Section III-B.

B. Computing an Inexact Gradient

Throughout this subsection, we denote the point where we
perform gradient estimation as x0, i.e., we would like to use
gx0 as an estimate of ∇f(x0). First, define

Df1(x, y) , D1f1(x, y) +D2f1(x, y)Dr(x).

Thus, we can approximate ∇f(x0) based on the above
formula to obtain

∇f(x0) = Df1(x0, r(x0)) ≈ Df1(x0, y0)

= D1f1(x0, y0) +D2f1(x0, y0)Dr(x0).

The part D1f1(x0, r(x0)) can be approximated by
D1f1(x0, y0), where y0 is an ε-IBR of x0. Similarly, to ap-
proximate the second part, define ψ(x) , D2f1(x0, y0)r(x).
Note that the definition of ψ(x) depends on (x0, y0).
Since D2f1(x0, y0)Dr(x0) = ∇ψ(x0), we can approximate
D2f1(x0, r(x0))Dr(x0) by a finite-difference approximation
of ψ, which requires evaluating ψ at points near x0. However,
an exact evaluation of ψ is not possible, since we do not
have the exact best response r. To circumvent this issue, we



approximate ψ(x) by ψ̂x , D2f1(x0, y0)y, where y is an
ε-IBR of x. Define each xi as

xi = x0 + δvi, i = 1, 2, . . . , p, (4)

where vi’s is a positive basis of Rn. (See [5, Sec-
tion 2.1] for the definition of a positive basis.) Our
goal is to approximate D2f1(x0, r(x0))Dr(x0) from
{(x0, y0), (x1, y1), . . . , (xp, yp)}, where each yi is an ε-IBR
of xi. Our approximator Dψ̂x0

for D2f1(x0, r(x0))Dr(x0)
is given by

Dψ̂x0 = arg min
Dψ̂

∥∥∥∥[ ψ̂x0

Ψ̂x0

]
−
[
1p+1 M

] [ ψ̂x0

Dψ̂

]∥∥∥∥
= arg min

Dψ̂

‖Ψ̂x0
−MDψ̂‖,

where Ψ̂x0 = (ψ̂x1 , . . . , ψ̂xp)>, and

M =

[
0
δV

]
, V = [v1, . . . , vp]

>.

IV. MAIN RESULTS

In this section, we show that (2) converges at a linear
rate. The difference between (2) and the standard gradient
descent is that the gradient (3) used in (2) is inexact. Thus,
if the inexact gradient (3) is close to the true gradient, a
convergence result similar to the standard gradient descent is
expected. In Section IV-A, we adopt the proof in [5, Theorem
2.13] to show that the difference between the inexact gradient
computed by (3) and the true gradient is upper bounded. The
upper bound relies on a function that can be further upper
bounded by a function of ‖∇f(x)‖ based on Assumption 4.
The meaning of Assumption 4 will be discussed in detail
in Section IV-B. By using the upper bound constructed in
Section IV-A, we establish a similarity between (2) and the
standard gradient descent and give a proof of convergence
for (2) in Section IV-C.

A. Upper Bounding the Error of the Inexact Gradient

The following proposition shows that the error of the
inexact gradient is upper bounded.

Proposition 1. Suppose f1 and f2 satisfy Assumptions 1, 2,
and 3. The inexact gradient gx defined in (3) satisfies

‖∇f(x)− gx‖ ≤ ϕ(x) (5)

for all x, where

ϕ(x) , aε+ b‖D2f1(x, r(x))‖ (6)

with a = Lyf1R1 + Lxf1 + bLyf1 and b =
√
p+ 1(δ2R2 +

ε)‖M†‖/2.

Proof. By definition, at any point x0

‖∇f(x0)− gx0
‖

≤ ‖D1f1(x0, r(x0))−D1f1(x0, y0)‖
+ ‖D2f1(x0, r(x0))Dr(x0)−Dψ̂x0

‖.
(7)

The first part of the right-hand side of (7) can be bounded
as

‖D1f1(x0, r(x0))−D1f1(x0, y0)‖ ≤ Lxf1‖r(x0)− y0‖
≤ Lxf1ε. (8)

Define Ψx0 = (ψ(x1), . . . , ψ(xp))
>, where each xi is

defined in (4). The second part of the right-hand side of
(7) is bounded by

‖D2f1(x0, r(x0))Dr(x0)−Dψ̂x0
‖

≤ ‖D2f1(x0, r(x0))Dr(x0)−D2f1(x0, y0)Dr(x0)‖
+ ‖D2f1(x0, y0)Dr(x0)−Dψ̂x0

‖. (9)

The first part of (9) can be bounded by

‖D2f1(x0, r(x0))Dr(x0)−D2f1(x0, y0)Dr(x0)‖
≤ ‖D2f1(x0, r(x0))−D2f1(x0, y0)‖‖Dr(x0)‖
≤ Lyf1R1ε. (10)

The second part of (9) can be bounded by

‖D2f1(x0, y0)Dr(x0)−Dψ̂x0
‖

= ‖∇ψ(x0)−Dψ̂x0
‖

≤
∥∥∥∥[ ψ(x0)
∇ψ(x0)

]
−Dψ̂x0

∥∥∥∥
=

∥∥∥∥[ ψ(x0)
∇ψ(x0)

]
−M†Ψ̂x0

∥∥∥∥
≤
∥∥∥∥[ ψ(x0)
∇ψ(x0)

]
−M†Ψx0

∥∥∥∥+ ‖M†Ψx0
−M†Ψ̂x0

‖.

To bound
∥∥∥∥[ ψ(x0)
∇ψ(x0)

]
−M†Ψx0

∥∥∥∥, define

h ,M

[
ψ(x0)
∇ψ(x0)

]
−Ψx0

. (11)

Thus,

|hi| = |ψ(x0)− ψ(xi) + 〈∇ψ(x0), xi − x0〉|

=

∣∣∣∣∫ 1

0

〈∇ψ(x0)

− ∇ψ(x0 + t(xi − x0)), xi − x0〉 dt|

≤ ‖xi − x0‖
∫ 1

0

‖∇ψ(x0)−∇ψ(x0 + t(xi − x0))‖ dt

≤ ‖xi − x0‖‖D2f1(x0, y0)‖

·
∫ 1

0

‖Dr(x0)−Dr(x0 + t(xi − x0))‖ dt

≤ ‖xi − x0‖2‖D2f1(x0, y0)‖R2

∫ 1

0

t dt

=
δ2R2‖D2f1(x0, y0)‖

2
.

From (11),∥∥∥∥[ ψ(x0)
∇ψ(x0)

]
−M†Ψx0

∥∥∥∥ = ‖M†h‖.



Also,

‖M†h‖ ≤ ‖M†‖‖h‖

≤
√

dim(h)
δ2R2

2
‖M†‖‖D2f1(x0, y0)‖

=

√
p+ 1

2
δ2R2‖M†‖(‖D2f1(x0, r(x0))‖+ Lyf1ε).

(12)

Finally, we can bound ‖M†Ψx0
−M†Ψ̂x0

‖ by

‖M†Ψx0 −M†Ψ̂x0‖
≤ ‖M†‖‖Ψx0 − Ψ̂x0‖

≤
√
p+ 1

2
‖M†‖‖D2f1(x0, y0)‖ε

≤
√
p+ 1

2
ε‖M†‖(‖D2f1(x0, r(x0))‖+ Lyf1ε). (13)

Combine (8), (10), (12), and (13) to obtain

‖∇f(x0)− gx0
‖

≤ Lxf1ε+ Lyf1R1ε

+

√
p+ 1

2
δ2R2‖M†‖(‖D2f1(x0, r(x0))‖+ Lyf1ε)

+

√
p+ 1

2
ε‖M†‖(‖D2f1(x0, r(x0))‖+ Lyf1ε)

= Lxf1ε+ Lyf1R1ε

+

√
p+ 1

2
‖M†‖(δ2R(‖D2f1(x0, r(x0))‖+ Lyf1ε)

+ ε(‖D2f1(x0, r(x0))‖+ Lyf1ε))

= Lxf1ε+ Lyf1R1ε+

√
p+ 1

2
(δ2R2 + ε)‖M†‖

· (εLyf1 + ‖D2f1(x0, r(x0))‖).

Since x0 is arbitrary, the proof is finished.

The value of ‖M†‖ in the upper bound given in Propo-
sition 1 can be calculated once a positive basis is chosen.
The following corollary gives an expression of ‖M†‖ under
the positive basis that consists of the standard basis and the
negative standard basis.

Corollary 1. Choose each vi as the positive basis defined
as

V = [ v1 v2 . . . v2n ]> =
[
In −In

]
.

In this case,

M =

 0
δIn
−δIn

 .
We have ϕ(x) = aε+ b‖D2f1(x, r(x))‖ with a = Lyf1R1 +

Lxf1 + bLyf1 and b =
√

4n+ 2 (ε/δ + δR2) /4.

Proof. Denote by σmax(·) and σmin(·) the maximum and
minimum singular values of a matrix, respectively. Notice
MTM = 2δ2I . This implies σmin(M) =

√
2δ. Use the fact

σmax(M†) = 1/σmin(M) to obtain ‖M†‖ =
√

2/(2δ).

B. Bounded Sensitivity

The only non-constant term in the upper bound given in (6)
is ‖D2f1(x0, r(x0))‖. To upper bound this term, we make
the following assumption.

Assumption 4 (Bounded sensitivity). There exists a constant
κ > 0 such that ‖D2f1(x, r(x))‖ ≤ κ‖∇f(x)‖ for any x.

With Assumption 4, this term can be further bounded
by κ‖∇f(x0)‖, after which techniques for analyzing the
standard gradient descent algorithm can be applied (see
Section IV-C). This subsection will discuss the practical
implications of Assumption 4.

Recall that the exact gradient of (1) is defined as

∇f(x) = D1f1(x, r(x)) +D2f1(x, r(x))Dr(x).

Under Assumption 4 and Assumption 2,

‖D2f1(x, r(x))‖
≤ κ‖D1f1(x, r(x)) +D2f1(x, r(x))Dr(x)‖
≤ κ(‖D1f1(x, r(x))‖+ ‖D2f1(x, r(x))‖R1).

Rearrange the above equation to obtain

1

κ
≤ ‖D1f1(x, r(x))‖
‖D2f1(x, r(x))‖

+R1 (14)

when κ 6= 0 and ‖D2f1(x, r(x))‖ 6= 0. The ratio
‖D1f1(x, r(x))‖ / ‖D2f1(x, r(x))‖ characterizes the sensi-
tivity of the leader’s cost to the follower’s action relative
to the leader’s action when the follower chooses the best
response. Based on (14), a smaller κ implies that the leader’s
cost is less sensitive to the follower’s action. The existence
of κ implies that the sensitivity is bounded, hence the name
bounded sensitivity assumption for Assumption 4.

Another intuitive way to understand the bounded sensitiv-
ity assumption is to consider fully collaborative Stackelberg
games, where f1 = f2. In this setting, when the follower
takes the best response, the leader’s cost is only affected
by her own action, which implies κ = 0. Formally, since
r(x) is the follower’s best response to x, the optimality
condition of the follower’s optimization problem is given by
D2f2(x, r(x)) = 0. When f1 = f2, the optimality condition
implies D2f1(x, r(x)) = 0, allowing one to choose κ = 0
to satisfy Assumption 4.

C. Convergence Analysis for Strongly Convex and Smooth
Cost

Under Assumption 4 and Proposition 1, we can prove
formally that our algorithm converges linearly to a neigh-
borhood of x? by using a similar technique for analyzing
standard gradient descent with strongly convex and smooth
functions [9].

Theorem 1. Suppose the follower gives an ε-IBR in every
step, and the leader uses stepsize α < 1/Lf . Also, assume
that f is µf -strongly convex and Lf -smooth, and f1 and f2
satisfy Assumptions 1, 2, 3, and 4. Let a = Lyf1R1 + Lxf1 +

bLyf1 , and b =
√
p+ 1(δ2R2 + ε)‖M†‖/2. The algorithm



given by (2) and (3) converges to a neighborhood of f? with
the following property:

lim sup
k→∞

(f(xk+1)− f?) ≤ (2abκε+ a2ε2)

2µf (1− b2κ2 − 2abκε)

if

b2κ2 + 2abκε− 1 < 0. (15)

Proof. By the Lipschitz continuity of ∇f , we have

f(xk+1)− f(xk) (16)

≤ 〈∇f(xk), xk+1 − xk〉+
Lf
2
‖xk+1 − xk‖2

= −α〈∇f(xk), g(xk)〉+
α2Lf

2
‖g(xk)‖2

By (5),

ϕ(xk)2 ≥ ‖∇f(xk)− g(xk)‖2

= ‖∇f(xk)‖2 + ‖g(xk)‖2 − 2〈∇f(xk), g(xk)〉.

Rearrange the above inequality to obtain

− 2〈∇f(xk), g(xk)〉
≤ ϕ(xk)2 − ‖∇f(xk)‖2 − ‖g(xk)‖2. (17)

Substituting (17) into (16) gives

f(xk+1)− f(xk)

≤ −α
2
‖∇f(xk)‖2 +

(
α2Lf

2
− α

2

)
‖g(xk)‖2

+
αϕ(xk)2

2
. (18)

From (18),

f(xk+1)− f(xk)

≤ −α
2
‖∇f(xk)‖2 +

αϕ(xk)2

2

≤ −α
2
‖∇f(xk)‖2 +

α

2
(aε+ bκ‖∇f(xk)‖)2

= −α
2

((1− b2κ2)‖∇f(xk)‖2 − a2ε2

− 2abκε‖∇f(xk)‖).

Since b2κ2 + 2abκε− 1 < 0, if ‖∇f(xk)‖ ≥ 1

f(xk+1)− f(xk)

≤ −α
2

((1− b2κ2)‖∇f(xk)‖2

− 2abκε‖∇f(xk)‖2) +
αa2ε2

2
≤ µfα(b2κ2 + 2abκε− 1)(f(xk)− f?)

+
αa2ε2

2
,

else if ‖∇f(x)‖ ≤ 1, we have

f(xk+1)− f(xk)

≤ −α
2

(‖∇f(xk)‖2 − b2k2‖∇f(xk)‖2)

+
α

2
(2abκε+ a2ε2)

≤ µfα(b2k2 − 1)(f(xk)− f?)

+
α

2
(2abκε+ a2ε2).

Rearrange and subtract f? on each side of the above formula
to obtain

f(xk+1)− f? ≤ (1 + µfα(b2κ2 + 2abκε− 1))

· (f(xk)− f?) +
α

2
(2abκε+ a2ε2).

Note that α ≤ 1/Lf ≤ 1/µf . Thus, 1 > 1 + µfα(b2κ2 +
2abκε − 1) ≥ 0. Take f(xk) − f? as a Lyapunov function
V (xk) finishes the proof.

The theorem shows that the algorithm in (2) converges to
a neighborhood of x? linearly. Because b2κ2 + 2abκε − 1
is an increasing function of ε, condition (15) can always be
satisfied if ε is small enough. We will discuss more on the
effect of ε in Section V.

V. NUMERICAL SIMULATION

In this section, we test our algorithm when both players
use a convex quadratic cost. Formally, we define fi : Rn ×
Rm → R for i = 1, 2 such that

fi(x, y) =
1

2

[
x
y

]> [
Pi Qi
Q>i Ri

] [
x
y

]
,

where [
Pi Qi
Q>i Ri

]
is positive definite. We adopt the same positive basis defined
in Corollary 1 to compute the inexact gradient gx defined
by (3). Note that

∇f(x) =
(
P1 −Q1R

−1
2 Q>2 +Q2R

−1
2 R>1 R

−1
2 Q>2

)
x

and D2f1(x, r(x)) =
(
P1 −Q1R

−1
2 Q>2

)
x. Thus, κ can be

computed by

κ =
σmax

(
P1 −Q1R

−1
2 Q>2 +Q2R

−1
2 R>1 R

−1
2 Q>2

)
σmin

(
P1 −Q1R

−1
2 Q>2

) ,

where σmax(·) and σmin(·) are the maximum and minimum
singular values of the corresponding matrix. Also, we re-
strict our simulation to the case that P1 − Q1R

−1
2 Q>2 +

Q2R
−1
2 R>1 R

−1
2 Q>2 is positive definite to match the strong

convexity assumption made in Section IV-C.



A. The Effect of Inexact Best Response

We chose the sampling radius δ as δ = 0.1, the stepsize α
as α = 0.01, and the total number of iterations as 1000.
For the problem instance and the parameters we chose,
condition (15) is satisfied for ε < 0.447. Fig. 1 shows
‖x − x?‖, the distance between our iterate and the optimal
point, versus the number of iterations under different choices
of ε. As the plot shows, the algorithm converges to a
neighborhood of x? at a linear rate. Also, for a larger ε,
the steady-state error becomes larger.

For ε = 0.01, 0.025, and 0.04, the result that the steady-
state error increases with ε is consistent with the upper bound(

2abκε+ a2ε2
)

2µf (1− b2κ2 − 2abκε)
(19)

given in Theorem 1, which is an increasing function of ε
when condition (15) is satisfied. However, the numerical
experiment suggests that condition (15) given in Theorem 1
may not be necessary for convergence, as shown in Fig. 1
when ε = 0.1 and 0.2.
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Fig. 1. Effect of ε on the convergence of (2). The steady-state error
increases as ε increases.

B. Tightness of Error Bound

In this subsection, we will investigate the tightness of
the theoretical error bound (19) given in Theorem 1 when
condition (15) is satisfied. We calculated the gap between
the theoretical error bound and the actual error, i.e.,(

2abκε+ a2ε2
)

2µf (1− b2κ2 − 2abκε)
− (f(xT )− f?) (20)

under different choices of ε, where T represents the total
number of iterations.

It is easy to verify that (19) tends to 0 as ε tends to 0,
which implies that the error bound is tight for ε = 0, i.e.,
when the follower gives the exact best response. However,
our numerical experiment suggests that the theoretical upper
bound is loose when ε > 0, as shown by the relationship
between the gap (20) and ε given in Fig. 2. In addition, the
gap (20) increases as ε increases, which suggests that the
theoretical upper bound (19) in Theorem 1 becomes more
conservative as ε increases.
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Fig. 2. Effect of ε on the tightness of the theoretical error bound when δ =
0.1. The theoretical error bound becomes more conservative as ε increases.

VI. CONCLUSIONS

This paper presents an algorithm for solving Stackelberg
games that relaxes several common assumptions in the
literature on the follower. Unlike previous work that requires
knowledge of the cost function or learning dynamics of the
follower, our algorithm only requires the follower to provide
an approximate best response under any action played by the
leader. This is particularly relevant to interactive decision-
making problems in which the follower deviates from ra-
tionality and/or has an unknown cost function, for example,
when the follower is a human agent. We have shown both
theoretically and numerically that our algorithm converges
to a neighborhood of the optimal solution at a linear rate.
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