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Abstract— This paper presents a controller design and opti-
mization framework for nonlinear dynamic systems to track a
given reference signal in the presence of disturbances when the
task is repeated over a finite-time interval. This novel frame-
work mainly consists of two steps. The first step is to design a
robust linear quadratic tracking controller based on the existing
control structure with a Youla-type filter Q̃. Secondly, an extra
degree of freedom: a parameterization in terms of Q̃, is added
to this design framework. This extra design parameter is tuned
iteratively from measured tracking cost function with the given
disturbances and modeling uncertainties to achieve the best
transient performance. The proposed method is validated with
simulation placed on a Furuta inverted pendulum, showing
significant tracking performance improvement.

I. INTRODUCTION

Robust tracking control of nonlinear systems has been
extensively studied in the literature using various robust
techniques, such as H∞ control [1], [2] and sliding mode
control [3]. These methods are in general the worst-case
design, which would ensure the stability under the worst-
case disturbances. On the other hand, optimal performance
such as a linear quadratic form has been the focus of the
design in industry applications. However, it is usually hard
to analyze the performance for nonlinear dynamics. One of
the key reasons to contribute this difficulty comes from the
the analysis tool used in stability analysis. Lyapunov direct
method [4] has been used to provide sufficient conditions to
guarantee the stability of nonlinear dynamics. The optimal
control for nonlinear dynamics requires to solve the Hamil-
ton–Jacobi–Bellman (HJB) equation, which is a nonlinear
partial differential equation with respect to a given cost.
Solving this HJB equation is computational costly.

In contrast, both robust and optimal control designs have
been extensively investigated for linear time-invariant (LTI)
dynamic systems [5]–[8]. In particular, a robust controller
design with a Youla-type filter Q̃ [8], [9] has been proposed
recently, which is motivated by the generalized internal
model control (GIMC) proposed in [6]. The robust controller
with Q̃ provides automatic robustness recovery in the linear
quadratic Gaussian (LQG)/H2 control [8]. Its key idea is to
use the Q̃ filter to balance the optimal performance without
consideration of the disturbance and robust performance
using the techniques such as H∞ control. Since the filter
Q̃ is driven by the residual signal indicating the mismatch
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between the nominal model and the true system, Q̃ is only
activated when there exists unmodelled dynamics or external
disturbances, such that this kind of controller design can
lead to a high performance in the presence of disturbances
and uncertainties. This technique is quite different from the
traditional mixed H2/H∞ control, a trade-off design [10]–
[12].

This work proposes to utilizes the robust controller with
Q̃ in [8] to systematically design the feedback control for a
nonlinear dynamic system via its linearization. The proposed
framework is used to generate optimal tracking performance
for a class of nonlinear dynamic systems to track a given
reference trajectory. More specifically, the proposed frame-
work first presents a robust linear quadratic tracking (LQT)
controller design based on the filter Q̃. Then by introducing
an extra gain factor in terms of Q̃, which can be treated as
the balance between the LQT performance and the robust-
ness with respect to disturbances and uncertainties coming
from linearizations and other external signals, an updating
law is generated to tune this gain factor to minimize the
tracking cost in the presence of modeling uncertainties and
disturbances. The choice of the gain factor does not affect the
local stability properties of the closed-loop nonlinear system,
while it improves the tracking performance. In this work,
the data-driven extremum seeking (ES) approach [13]–[16],
which is a model-free optimization method, is adapted to
find this optimal gain factor. Alternatively, other model-free
optimization techniques such as reinforcement learning can
also be considered [2], [17].

The effectiveness of the proposed framework is validated
with simulation placed on a Furuta inverted pendulum. It has
been shown that this optimal parameter is dependent on the
nonlinear dynamics, the type of the reference trajectories,
as well as the type of disturbances. The obtained optimal
gain can achieve much better transient tracking performance
compared with the standard LQT controller and the robust
controllers such as H∞.

The remainder of this paper is organized as follows. Sec-
tion II formulates the tracking problem for nonlinear systems
of interest. Section III presents a design procedure of LQT
controller with Q̃. Section IV further presents a controller
design for nonlinear systems where performance is further
optimized via ES. Section V provides simulation results on
an inverted pendulum. Finally, Section VI concludes this
work.
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II. PROBLEM FORMULATION

Nonlinear systems of the following form are considered:

ẋ = f(x, u, w), x(0) ∈ Rn

y = g(x,w), (1)

where x ∈ Rn is the state of system, y ∈ Rp is the
measurement output, u ∈ Rm is the control input, and
w ∈ Rnw is a disturbance signal representing external
disturbances and/or modeling uncertainties. The nonlinear
mappings f : DX ×DU ×DW → Rn and g : Rn ×DW →
Rp are continuously differentiable functions. Here DX , DU ,
and DW are compact sets in Rn, Rm, and Rnw respectively.
Moreover, it is assumed that f(0, 0, 0) = 0, indicating the
origin is in the set Ω = DX ×DU ×DW .

The linearization of system (1) around (x = 0, u = 0, w =
0) becomes the following LTI system:

ẋ = Ax+B1w +B2u, (2)
y = C2x+D21w, (3)

where

A =
∂f

∂x

∣∣∣∣
x,u,w=0

, B1 =
∂f

∂w

∣∣∣∣
x,u,w=0

, B2 =
∂f

∂u

∣∣∣∣
x,u,w=0

,

C2 =
∂g

∂x

∣∣∣∣
x,w=0

, D21 =
∂g

∂w

∣∣∣∣
x,w=0

.

The following assumption is standard to stabilize the lin-
earized system (2) by output feedback using the output signal
in (3).

Assumption 1: (i) (A,B2) is stabilizable, and (ii) (C2, A)
is detectable.

The control objective of this work is to design an appro-
priate controller such that the output

ỹ = Ex, E ∈ Rp1×n, (4)

can track a desired (reference) trajectory r that is known a
priori. Specifically, we seek to find an optimal control input
to minimize the following finite-time quadratic cost function:

J(u) =
1

T

∫ T

0

[(ỹ − r)′Q(ỹ − r) + u′Ru]dt, (5)

where Q is positive semi-definite and R is positive definite.
In this paper, we use “′” to represent the transpose of a
matrix.

We propose to solve the formulated tracking problem for
nonlinear systems (1) by two steps. The first step is to design
a robust linear quadratic tracking (LQT) controller based on a
Youla-type filter Q̃ proposed in [8] , which will be detailed in
the next section. The second step is to introduce an extra gain
factor to the filter Q̃ and use the data-driven optimization
algorithm such as extremum seeking (ES) [13]–[16] to tune
this factor.

III. ROBUST LINEAR QUADRATIC TRACKING CONTROL
WITH Q̃

This section presents a robust LQT controller design based
on the filter Q̃ in [8], which balances the robustness with
respect to disturbances and the LQ optimal tracking control,
for the LTI systems taking the same form as the linearized
system (2) and (3).

A. Preliminaries of the controller structure with Q̃

The structure of the controller with Q̃ is presented in Fig.
1 (see more discussions in [8]). It contains some performance
related variable z defined as

z = C1x+D12u, (6)

an observer, and the filter Q̃(·) satisfying Q̃(0) = 0. The
input of the filter Q̃ is the residual signal f = ŷ − y, which
is the deviation of estimated and actual sensor outputs. It
reflects the mismatch between the nominal model and the
true system. As shown in [8], the output of the filter Q̃(·)
is designed for robustness recovery, reducing the effect of
disturbances. For example, the H∞ design method can be
used.

The control input u consists of two parts : ul and uf .
The first part ul is a nominal control, which is to design the
stabilizing controller with the help of the observer without
consideration of w(t). The matrices (F,L) are the state
feedback and observer gains, respectively, such that A+B2F
and A + LC2 are Hurwitz by Assumption 1. The second
part uf is the output of the filter, i.e., uf = Q̃(f). If
w(t) = 0,∀t ≥ 0, the residual signal f is zero and produces
uf = Q̃(f) = 0. Hence the role of this filter is to enhance
the robustness. One admissible filter Q̃ is of the following
form [8]:

Q̃ : ẋq = Aqxq +Bqf, uf = Fqxq. (7)

Matrices Aq , Bq and Fq can be obtained by the standard
H∞ techniques [5], [18] for the augmented system with state
(x, e), with e = x− x̂, and Aq is Hurwitz.

Fig. 1. The diagram of the controller with Q̃.

Following this controller structure, next will introduce the
LQT controller design, followed by the robust controller
using Q̃.



B. Linear Quadratic Tracking (LQT)

Consider the nominal case of the LTI system (2) and (3),
i.e., w = 0 and the initial state x(0) is known:

ẋ = Ax+B2u, x(0) given. (8)

This reduces to a state feedback control problem. The
following proposition provides the optimal solution to min-
imizing (5) by using the Hamilton-Jacobi-Bellman equation
[7, Chapter 2]; see also [7, Chapter 4].

Proposition 1: Considering the system consisting of (8)
and (4), for a given reference trajectory r and the given
performance index (5), the optimal control u∗ is given by

−ḃ = (A+B2F )′b+ E′Qr, b(T ) = 0, (9)

u∗ = Fx+R−1B′2b, (10)

where F = −R−1B′2P , and P is the solution of the
following differential Riccati equation:

−Ṗ = PA+A′P−PB2R
−1B′2P + E′QE. (11)

In practice, to simplify the design of LQT controller,
the algebraic Riccati equation instead of differential Riccati
equation (11) can be considered, such that a time-invariant
stabilizing control gain F is obtained. For convenience,
the feed-forward control law in (10) is denoted as ur :=
R−1B′2b. The diagram of control system with LQ optimal
tracking is shown in Fig. 2.

Fig. 2. The diagram of LQ optimal tracking control.

C. Design of LQT with Q̃

Now we design the LQT controller with Q̃ to robustify the
feedback system. To do this, we redefine the performance
variable z in (6) as

z = C1(ỹ − r) +D12u, (12)

such that it coincides with the tracking cost in (5). We can
let C ′1C1 = Q, D′12D12 = R and C ′1D12 = 0 to reduce the
weighing matrix parameters. To design the filter Q̃, set the
reference signal r to be zero such that ur = 0 and introduce
an observer gain L such that A+LC2 is Hurwitz. Then the
design procedure of Q̃ can be the same as in [8], i.e., (7).
More specifically, the filter Q̃ is designed according to the
following H∞ performance criterion:

‖Tzw(s)‖∞ < γ, (13)

where γ > 0 is a prescribed value and Tzw(s) is the closed-
loop transfer function from w to z. See [8] for more details.

By combing the LQT controller, the observer gain L and
the filter Q̃ designed using H∞ technique, the diagram of
the robust LQT with Q̃ is shown in Fig. 3.

Fig. 3. The diagram of robust LQT with parameterized Q̃.

Remark 1: The transfer functions from ur to u ,y, and ỹ in
the closed-loop system are independent of the filter Q̃. These
transfer function are the same as those in the LQT design.
Therefore, the proposed tracking design scheme allows us
to select Q̃ to attenuate disturbances without affecting the
tracking capability in the LQT design.

IV. PERFORMANCE OPTIMIZATION FOR NONLINEAR
SYSTEMS VIA EXTREMUM SEEKING

We propose to solve the formulated optimal tracking
problem based on the linearized model (2) and (3). How-
ever, the performance of the robust LQT controller with
Q̃ designed in the previous section cannot be guaranteed
for nonlinear systems due to the existence of linearization
errors. Moreover, this linear controller cannot give an optimal
control input minimizing the performance index (5) for our
tracking problem for nonlinear systems (1). In the sequel,
we will design an optimal control input by introducing an
extra gain factor α ∈ R to the filter Q̃ and then optimize
this factor by the data-driven ES algorithm.

A. An extra gain factor for Q̃

To deal with linearization errors and unmodeled distur-
bances, a gain factor α ∈ R for the output of the filter Q̃ is
introduced as an extra degree of freedom, such that a new
Q̃ denoted by Q̃α is obtained:

Q̃α : ẋq = Aqxq +Bqf, uf = αFqxq. (14)

When α = 0, it leads to an optimal tracking controller as
indicated in Proposition 1 while α = 1 leads to the LQT
controller with Q̃ shown in Fig. 3. Intuitively, the choice
of this α reflects some balance between the LQT and the
robustness. This leads to a closed-loop nonlinear system with
the LQT controller with Q̃α shown in Fig. 4.

Now the tracking performance index J(u) in (5) can be
written as a function of α, i.e.,

J(α) =
1

T

∫ T

0

[(ỹ − r)′Q(ỹ − r) + u′Ru]dt, (15)

and we seek to find an optimal α parameter to minimize
the above cost function. Before solving the α optimization
problem, we present the following result about the local
stability properties of such a closed-loop nonlinear system.

Theorem 1: Let the origin (x = 0, u = 0, w = 0) be an
equilibrium point for the nonlinear system (1) and let system



Fig. 4. The diagram of robust LQT control with parameterized Q̃α for
nonlinear systems.

(2) and (3) be the linearization of (1) about the origin. Then
for any α ∈ R, the origin of the closed-loop nonlinear system
in Fig. 4 is locally exponentially stable.

Proof: Let xc :=
[
x′q x̂′

]′
. Then it follows from the

design of the LQT controller with Q̃ shown in Fig. 3 and the
expression of Q̃α in (14) that we have the following linear
tracking controller:

ẋc = Acxc +Bcy +Brur, u = Fcxc + ur, (16)

where

Ac =

[
Aq BqC2

αB2Fq A+B2F + LC2

]
, Bc =

[
−Bq
−L

]
,

Br =

[
0
B2

]
, Fc =

[
αFq F

]
.

Hence, by a linear transformation, it can be shown that the
closed-loop matrix for the linearized system (2) and (3) has
the following triangular form

Ā = Ā(α) =

 A+B2F αB2Fq B2F
0 Aq BqC2

0 0 A+ LC2

 . (17)

Since A+B2F , A+LC2 and Aq are all Hurwitz, Ā is Hur-
witz. It can be verified that the origin (x = 0, xc = 0, w = 0)
is an equilibrium point of the closed-loop nonlinear system.
Thus, we can conclude the local exponential stability of the
closed-loop nonlinear system in Fig. 4 at the origin for any
α ∈ R [4, Section 12.2].

Theorem 1 shows that the choice of α does not affect
the local stability properties of the closed-loop nonlinear
system presented in Fig. 4 while it affects the performance, in
particular, the transient performance. This work tries to find
an optimal α to tracking control for nonlinear systems. In
the sequel, the data-driven extremum seeking (ES) [13]–[16]
will be used tune the parameter α for a given disturbance w.

B. Performance optimization via extremum seeking

It is highlighted that in the linearized model consisting
of (2) and (3), the disturbances coming from two parts: one
is unmodelled uncertainties coming from the linearization
residue and unmodelled dynamics. Such uncertainties are
related to the size of compact sets DX , DU , and DW . The
other is other types of deterministic and random noises. In
this paper, our focus is the unmodelled uncertainties and

deterministic noises that are repeatable when the nonlinear
dynamics run over a fixed time interval [0, T ]. Thus, the
disturbance can be re-written as w = w(t, x, u).

Assumption 2: It is assumed that for a deterministic and
repeatable disturbance w(t, x, u), t ∈ [0, T ], for any x ∈ DX ,
and u ∈ DU , there exists a unique optimal α∗ ∈ R such that
the cost function defined (15) can reach a minimum.

Under this assumption, the ES algorithm presented in [13]
is used to tune the parameter α for a given disturbance
w(t, x, u) by repeatedly running the closed-loop nonlinear
system consisting of (1) with the control law (16) over the
finite time [0, T ]. ES is a model-free optimization method
which uses only input–output data to see an optimal input
with respect to a given cost [13]. The ES algorithm adopted
here works for the iteration domain, which is the same as
the one used in [14]:

ζ(k + 1) = −hζ(k) + J(α(k)),

α̂(k + 1) = α̂(k)− δβ cos(ωk)[J(α(k))− (1 + h)ζ(k)],

α(k + 1) = α̂(k + 1) + β cos(ω(k + 1)), (18)

where k is the iteration number, 0 < h < 1, ζ(k) is a scalar, δ
is the step size, and β is the perturbation amplitude. Stability
and convergence are mainly influenced by the values of δ and
β. The modulation frequency ω is chosen such that ω = aπ,
where a satisfies 0 < a < 1. The overall ES α tuning scheme
is summarized in Fig. 5. The local convergence analysis of
such ES algorithm when Assumption 2 holds locally can be
found in [19]. Using the similar analysis techniques as in
[15] for the continuous-time systems, non-local convergence
can be achieved when Assumption 2 holds.

The design procedure of the proposed robust optimal
tracking control scheme can be summarized as the following
three steps.
• Step 1: Obtain the linearized model around the origin

(x = 0, u = 0, w = 0) from nonlinear system (1);
• Step 2: Design the LQT controller with Q̃α as in Fig.

3 in which Q̃ in (7) is replaced by Q̃α in (14);
• Step 3: Tune α via the ES algorithm (18) for a given

disturbance w(t, x, u), shown in Fig. 5.

Fig. 5. The overall ES α tuning scheme. The ES algorithm updates the
parameter α(k) in the filter Q̃α to minimize the cost J(α).

Remark 2: It is noted that the focus of this work is to
ensure that the transient behaviour of the closed-loop system



presented in Fig. 5 over the finite time interval [0, T ] can be
improved over iteration when the disturbance w is repeatable
over iteration. If Assumption 2 holds, the ES algorithm in
(18) can ensure that the cost function (15) decreases over
iterations for appropriately tuned parameters (a, δ, β, h) in
(18). The decrease of the cost function has been verified in
simulations.

V. SIMULATION RESULTS

In order to verify the effectiveness of the proposed robust
tracking control in Fig. 5, a simulation example on a Fu-
rula inverted pendulum (the Quanser QUBE Servo 2 rotary
pendulum [20]) is presented.

A. Linearization and design parameters

The Furuta inverted pendulum is an under-actuated (un-
stable) nonlinear system with the state variable x =[
θ1 θ2 θ̇1 θ̇2

]′
, consisting of the base arm angle θ1

and the vertical arm (pendulum) angle θ2, as well as the
corresponding angular velocities. When the pendulum is in
the upright position, x =

[
0 0 0 0

]′
. The nonlinear

equations of motion for the pendulum system in disturbance-
free case are [20]:

Mθ̈1 =mplrθ̈2 cos θ2 − Jpθ̇1θ̇2 sin 2θ2 −mplrθ̇
2
2 sin θ2

− br θ̇1 + τ,

Jpθ̈2 =mplrθ̈1 cos θ2 + 0.5Jpθ̇
2
1 sin 2θ2 +mpgl sin θ2

− bpθ̇2, (19)

where M = Jr + Jp sin2 θ2 and τ = km/Rm(u− kmθ̇1) is
the applied torque at the base of the rotary arm with u the
control input/voltage.

Following the 3-step design procedure in the previous
section, we need to linearize the nonlinear system first. The
origin (x = 0, u = 0) is an equilibrium point for pendulum
system (19), leading to the following linearization model
with assumed disturbance/noise w

A =


0 0 1 0
0 0 0 1

0
m2

pl
2rg

Jt
−JpbrJt

− k2mJp
RmJt

−mplrbp
Jt

0
Jrmpgl
Jt

−mplrbr
Jt
− k2mmplr

RmJt
−JrbpJt

 ,

B2 =


0
0

kmJp
RmJt
kmmplr
RmJt

 , B1 = diag{0.012, 0.012, 1, 1},

C2 =

[
1 0 0 0
0 1 0 0

]
, D21 =

[
0 0 0.0001 0
0 0 0 0.0001

]
.

where Jt = JpJr−m2
pl

2r2. The values of system parameters
of the rotary pendulum are presented in Table I. Since
w is considered as linearization errors and deterministic
unmodelled disturbances, the disturbance matrices B1 and
D21 above are chosen by trial and error. Let

ỹ =
[

1 0
]
y, (20)

such that E =
[

1 0 0 0
]
, meaning that the base arm

angle θ1 needs to track a reference signal and the vertical
pendulum needs to be balanced in the upright position.

TABLE I
SYSTEM PARAMETERS OF THE ROTARY PENDULUM.

Parameter Description Value Unit
Rm Terminal resistance 8.4 Ω
km Motor back-emf constant 0.042 V·s/rad
r Length of the base arm 0.085 m
2l Length of the pendulum 0.129 m
mp Mass of the pendulum 0.024 Kg
g Gravity constant 9.81 N/Kg
br Damping on the rotary arm 0.0005 N·m· s/rad
bp Damping on the pendulum 0.0001 N·m· s/rad
Jr Inertia of the rotary arm 2.3060× 10−4 N·m · s2/rad
Jp Inertia of the pendulum 1.3313× 10−4 N·m · s2/rad

The weighting matrices for the performance variable z
in (6) and for the tracking performance (15) are selected
as C1 =

[
15 0

]′
, D12 =

[
0
√

2
]′
, R = C ′1C1

and Q = D′12D12. Then according to Step 2, we need to
design the LQT controller with Q̃α. The LQT controller
in Proposition 1 is first designed for the linearized pen-
dulum system, in which the closed-loop poles are located
at (−16.55 ± j12.80,−21.20 ± j1.76). The observer gain
L is chosen such that the eigenvalues of A + LC2 are
(−59.40 ± j80.54,−61.04 ± j76.24). The filter Q̃ is then
designed to satisfy the H∞ performance (13) [8], where
γ = 0.21. Following Step 3, we shall tune α via the
ES algorithm (18) in simulation under different disturbance
signals, shown in the next subsection.

B. Simulation results

We consider that the disturbance signal w is injected
into the control voltage u and the measurement output y
is perturbed by white noise. In particular, two different
disturbance signals are considered: a square wave with the
amplitude of 2 and frequency of 0.5Hz, denoted by w1, and
a kind of vanishing signal w2(t) = 5e−0.1t. Two different
references are considered: Case A tracks a square wave with
amplitude of 20 degrees and frequency of 0.05Hz while Case
B tracks a sinusoidal signal r = π

3 sinπt. In the simulation,
the initial value of ES is selected as α(0) = 1, indicating the
local H∞ performance at the first iteration.

For all simulations, the quadratic cost function J(α) in
(15) is used with T = 20s and the parameters a, h and β in
the ES algorithm (18) are set to

a = 0.8, h = 0.1, β = 0.015.

The choice of the step size δ in the ES algorithm depends
on a specific disturbance signal and reference signal. The
optimal α tuned via ES is denoted as α∗.

Now we tune α for disturbances w1 and w2. Table II
summarizes the α∗ values in which minimum costs are
reached for Case A and Case B in the presence of w1 and
w2. Figs. 6 and 7 show that ES minimizes the cost function
(15) with convergence to the parameter α that produces
a minimum for Case A and Case B in the presence of
w1 respectively. It can be seen that the controller with α∗



obtained from ES tuning yields a much better closed-loop
performance in terms of transient behaviours compared with
the cases when α = 0 (LQT performance) and α = 1
(H∞ performance). Figs. 6 and 7 show the effectiveness of
the proposed ES algorithm when dealing with deterministic
uncertainties and linearization errors. Similar results are
observed when dealing with w2.

TABLE II
α∗ FOR DISTURBANCES w1 AND w2 .

w1 w2

Case A α∗ = 1.20 α∗ = 1.21
Case B α∗ = 1.38 α∗ = 1.47

 

                                       (a)                                                                                   (b) 

 

                                       (c)                                                                                   (d) 

 

 
Fig. 6. Case A: ES α tuning for w1 illustrated by (a) the evolution of the
cost function and (b) the parameter α during ES tuning of the closed-loop
system with w1. The lower plots present (c) the output signal θ1 and (d)
the control input signal u.

 

                                       (a)                                                                                   (b) 

 

                                       (c)                                                                                   (d) 

 

 Fig. 7. Case B: ES α tuning for w1 illustrated by (a) the evolution of the
cost function and (b) the parameter α during ES tuning of the closed-loop
system with w1. The lower plots present (c) the output signal θ1 and (d)
the control input signal u.

VI. CONCLUSION

In this paper, we develop a novel tracking control scheme
for a classe of nonlinear systems in the presence of distur-
bances based on the robust controller with a Youla-type filter

Q̃ and the data-driven ES technique. A key point is that a
gain factor α is introduced to the filter Q̃, which allows
an extra degree of freedom to be optimized for tracking
performance. It has been shown from the simulation results
that the proposed tracking controller with a tuned α via ES
can achieve an optimal tracking performance for nonlinear
systems with disturbances.
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