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Abstract— Integrating measurements and historical data can
enhance control systems through learning-based techniques,
but ensuring performance and safety is challenging. Robust
model predictive control strategies, like stochastic model pre-
dictive control, can address this by accounting for uncertainty.
Gaussian processes are often used but have limitations with
larger models and data sets. We explore Bayesian neural
networks for stochastic learning-assisted control, comparing
their performance to Gaussian processes on a wastewater
treatment plant model. Results show Bayesian neural networks
achieve similar performance, highlighting their potential as
an alternative for control designs, particularly when handling
extensive data sets.

I. INTRODUCTION

Optimal, flexible, safe, and reliable control close to the
feasibility boundary is becoming increasingly important to
achieve many processes’ economic, energy-efficient, and
sustainable operation. Optimization-based control, such as
model predictive control (MPC) [1], [2], is, in principle, well
suited to achieve these objectives, as it allows the formulation
of elaborate control goals while incorporating state and input
constraints. However, the MPC performance heavily depends
on the quality of the underlying process model [1], [3], as it
is employed to predict the system’s behavior and determine
the optimal control action. This brings forward the ques-
tion of counteracting inevitable model-plant mismatch and
measurement uncertainties in real systems. Though nominal
MPC exhibits inherent robustness properties [1], [4] through
repeated optimization in the closed loop, uncertainties de-
grade its performance and can potentially lead to constraint
violations or stability loss [1].

Learning-supported MPC approaches aim to reduce the
uncertainty in model dynamics by augmenting it with data-
driven parts. However, process uncertainty and stochasticity
are often not considered in the MPC formulation if combined
with learning approaches; one assumes that the learned part
adjusts and compensates for these uncertainties.

In contrast, robust and stochastic MPC approaches [1], [5],
[6] are explicitly designed for such a scenario, incorporating
the information on model uncertainties directly into the MPC
formulation. These formulations typically trade off some
performance for guaranteeing constraint satisfaction under
assumptions on the uncertainty, which is especially important
in safety-critical scenarios.

Combining the two strategies — robust model predictive
control strategies and learning — has been a subject of recent
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work [7], [8], [9], [10], [11]. The learned model is often
expected to provide some measure of the uncertainty, which
is then delivered to the robust or stochastic MPC. Gaussian
processes (GPs) have been widely employed in this role,
as they explicitly yield a posterior variance along with the
regression mean [12]. Though GPs are generally easy to
tune, their computational complexity grows cubicle with the
dataset size, restricting their application to relatively small
sets [12]

An alternative is the use of Bayesian neural networks
(BNNs) designed to provide a measure of uncertainty besides
the regression [13]. Belonging to the family of deep learning
models, it is computationally efficient, especially as most
of the computational effort is spent offline during training.
However, compared to other deep learning methods, BNNs
are not yet as widely researched — it is generally challenging
to infer the distributions analytically. Instead, one relies on
posterior approximations [13].

In this work, we aim to determine the suitability of
BNNs for (stochastic) predictive control applications, with a
particular focus on comparing them to state-of-the-art GPs.
BNNs have been used in combination with model predictive
control, e.g., [14] employs BNNs in combination with a
hierarchical MPC approach for the control of a surgical robot
to reduce the uncertainty. Here, the kinematics and dynamics
of a highly nonlinear robotic system were modeled with
the help of BNNs. The uncertainty information provided by
the BNN is used in a hierarchical MPC scheme, achieving
superior performance. In [15], a learning-based adaptive-
scenario-tree model predictive control (MPC) approach is
used to achieve probabilistic safety guarantees using BNNs
to learn the model uncertainty.

We produced all results in this work using the open-
source Python toolbox HILO-MPC1 [16]. In a simple-to-use
way, the toolbox allows combining (robust) predictive, and
optimization-based control and estimation approaches with
methods from machine learning, such as Gaussian processes
and Bayesian neural networks. 2

II. PROBLEM FORMULATION AND METHODS

We consider dynamic systems which can be described by

xk+1 = f(xk, uk) +B (d (xk, uk) + wk) . (1)

Here, x ∈ Rnx are the dynamical states, u ∈ Rnu are
the inputs to the system and B ∈ Rnx×nd is a known

1https://www.ccps.tu-darmstadt.de/
research ccps/hilo mpc/

2The case study used as an example, including all code, will be made
freely available in HILO-MPC.
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matrix. The function f : Rnx × Rnu → Rnx describes the
known part of the system dynamics, while the function
d : Rnx × Rnu → Rnx describes an unknown or difficult
to model effect. This unknown effect will be learned using
specific machine learning algorithms. The variable w ∈ Rnd
is assumed to be zero-mean normally distributed process
noise w ∼ N (0,Σw) with the variance matrix Σw =
diag

([
σ2

1 . . . σ2
nd

])
. We focus on Gaussian processes and

Bayesian neural networks to learn the unknown effect, which
we briefly introduce in the following.

Gaussian Process: We briefly review the main concepts
of Gaussian processes. For a more detailed introduction to
GPs, we refer to [12]. A GP is a stochastic supervised
machine learning algorithm used in regression and classi-
fication tasks. GPs are less prone to overfitting and naturally
provide uncertainty measures on predictions. We formulate a
regression task as a mapping ψ : Rnχ → R : χ→ ϕ (χ) + ν
with the input vector χ ∈ Rnχ , the output ψ ∈ R and
the zero-mean normally distributed noise ν ∼ N

(
0, σ2

)
affecting the output. The unknown function ϕ is assumed
to be normally distributed ϕ (χ) ∼ N (m (χ) , k (χ, χ)),
with the mean function m : Rnχ → R and covariance
function k : Rnχ × Rnχ → R. These functions are assumed
to depend on hyperparameters, that are determined by GP
training procedure, resulting in scalar-valued predictions. For
simplicity, multiple outputs are handled as separate one-
dimensional GPs independently.

Bayesian Neural Network: As a second learning
method, we consider Bayesian neural networks [17], which
can also provide a measure of uncertainty similar to GPs.
In contrast to GPs, computational complexity of BNNs does
not grow with the number of data points. Unlike traditional
feed-forward NNs, BNNs learn distributions over the output
instead of single value predictions. To accomplish this task,
the weights of conventional neural networks are replaced
by distributions over the weight in each layer. Thus, BNNs
extend the class of NNs to estimate posterior distributions
instead of most likely values, cf. Fig. 1.

A common way of implementing the weights W as dis-
tributions is to assume that they are independently Gaussian
distributed with zero mean and some arbitrary variance λ
[13] as follows

p(W) =

L∏
l=i

Vl∏
i=0

Vl−1+1∏
j=1

N (wi,j |0, λ−1). (2)

Here L denotes here the number of layers in the network
and Vl the nodes in each layer l. The likelihoods with regard
to the network weights are given by

p(y|W,Z) =

M∏
i=1

N (yi|d(zi|W), γ−1), (3)

where γ is the precision and Z is the collection of nodes
zi. Now we can estimate the posterior distribution over the
weights given the data via Bayes’ rule

p(W|D) =
p(y|W,Z)p(W)

p(y|Z)
, (4)
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Fig. 1: a) Bayesian neural network with two features (inputs),
one hidden layer, and one label (output). b) Single neuron.

where we can calculate the marginal likelihood via

p(y|Z) =

∫
p(y|W,Z)WdW. (5)

In reality, the marginal likelihood and equation (5) cannot be
calculated, it becomes intractable because of the nonlinear-
ities in the network caused by the activation d(·,W). This
results in the need to approximate the posterior distribution.
This is a common challenge in the Bayesian inference
domain, and different methods exist to approximate the
needed posterior. The most popular are Markov chain Monte
Carlo (MCMC), Laplace approximation (LA), probabilistic
backpropagation (PBP), and variational inference (VI), for a
survey see [18] and [19].

Nominal Model Predictive Control: As a comparison
and baseline, we consider a nominal model predictive con-
troller, which solves a finite-horizon optimal control problem
at the sampling times [1], [2] based on the nominal model3:

min
{uk}

J({xk}, {uk}) (6a)

s.t. xk+1 = f (xk, uk) , x0 = x̃j , (6b)
xk ∈ X , uk ∈ U , (6c)

where J({xk}, {uk}) =
∑N
k=0 L (xk, uk) + E (xk) is the

cost function, N is the control horizon, L : Rnx ×Rnu → R
is the stage cost, E : Rnx → R is the terminal cost, X and U
are the feasible input and state sets. The first input u?k of the
obtained optimal input sequence is applied. The optimization
problem is repeated at every sampling time updating xk with
the measured state x̃j .

Stochastic Model Predictive Control: To exploit the
stochastic uncertainty information of the model, we use
stochastic MPC. Compared to the nominal case, we consider
chance constraints, allowing for a violation of the constraints

3In principle the nominal MPC could also use the learned ”nominal”
model part, which would be the mean of the predicted state for case of the
GP model. This is avoided here, due to space limitations.



with a certain probability [5]. Assuming a cost that contains
the expected value of the now stochastic state and control
variables minimizing a sequence of optimal policies Π(x) =
{π0(x), ..., πN (x)} instead of the optimal open-loop inputs,
one obtains the following stochastic optimal control problem

min
Π (x)

E [J({xk}, {uk})] (7a)

s.t. xk+1 = fprob (xk, uk) , x0 = x̃j , (7b)
p (xk ∈ X ) ≥ px, ∀k ∈ 0, . . . , N, (7c)
p (uk ∈ U) ≥ pu, ∀k ∈ 0, . . . , N, (7d)
uk = π (xk) . (7e)

with fprob defining the probabilistic model of the system, px
and pu are the probabilities with which the chance constraints
are allowed to be violated and k describes the time steps of
the discrete model.

Since the stochastic optimal control problem is generally
intractable, we reformulate and approximate it to make it
tractable and include the learning-based hybrid model. The
problem’s intractability results from the fact that we need to
consider infinitely many state trajectories if we solve for an
optimal sequence of policies Π.

The reformulations and approximations are based on the
approximation presented in [9] and the theory of reachable
sets presented in [8]. We omit the necessary assumptions for
the sake of brevity and state the derived outcome: the system
state, control input, and uncertainty dynamics, that is to be
learned by a GP or a BNN, are jointly Gaussian distributed:

N (µk,Σk) = N
([

µxk
µuk
µdk

]
,

[
Σxk Σxuk Σxdk
Σuxk Σuk Σudk
Σdxk Σduk Σdk+Σωk

])
. (8)

Furthermore, we assume that the chance constraints are
tightening around the mean of our input and state variables
µx and µu, which are defined by the assumed Gaussian
distributions. With these assumptions, we can formulate of
tractable stochastic optimal control problem of the following
structure (as we only want to show the basic structure and
due to limited space, we omit introducing all symbols)

min
µuk

E [J({xk}, {uk})] (9a)

s.t. µxk+1 = f̂ (xk, uk, k) +Bdµ
d
k, (9b)

Σxk+1 =
[
∇f̂ (µxk, µ

u
k)Bd

]
Σ
[
∇f̂ (µxk, µ

u
k)Bd

]T
, (9c)

µx0 = x̃j , µ
d
k = µd (µxk, µ

u
k) ,Σx0 = 0, (9d)

Σk = according to eq. (8), (9e)

µxk∈Z
(
Σxk+1

)
, µuk ∈V

(
Σxk+1

)
, ∀k∈0, . . . , N (9f)

This reformulation and approximation allow fast solutions.
It is implemented in HILO-MPC [16] allowing to use GP
and BNN models. A more detailed discussion of the case of
GPs can be found in [11].

TABLE I: Parameters used in the simulations [20].

parameters values parameters values parameters values
Kd 0.0131 µmax,con 0.9297 µmax,mon 0.6275
Y 0.2116 B 0.4818 KS 443.1
V 5 − − − −

III. CASE STUDY: WASTEWATER TREATMENT PLANT

We want to compare the suitability of hybrid GP and
BNN models for model-based control using stochastic MPC.
To do so, a wastewater treatment plant is considered, as
introduced in [20], which can be described by

Ẋ(t) = µ(X,S)X(t)− F (t)

V
X(t)−KdX(t) + wX(t),

Ṡ(t) =
F (t)

V
(Sf (t)− S(t))− µ(X,S)

Y
X(t) + wS(t).

Here, the states (X,S) denote the total biomass (mg/L) and
the substrate concentrations (mg/L). The mapping µ(X,S)
determines biomass growth rate, while Kd denotes its death
rate. The in- and outflow rate is defined by F (t) (L/d) over
the reactor volume V (L), and the substrate is fed with the
concentration of Sf (t) (mg/L). The dimensionless parameter
Y denotes the substrate yield coefficient. Furthermore, nor-
mally distributed process noise is acting on each state, i.e.,
wX ∼ N (0, 1) and wS ∼ N (0, 1). The reactor is controlled
by adjusting the flow rate directly, i.e., u(t) = F (t). The real
specific growth rate µ is defined by the Contois equation

µcon (X,S) =
µmax,conS

BX + S
, where µmax,con is the maximum

growth rate and B is the kinetic saturation coefficient.
For the control model, the growth rate is assumed to

be a Monod equation leading to a model-plant mismatch.

The Monod equation is given by µmon =
µmax,monS

KS + S
,

with the half-velocity constant KS . Furthermore, we as-
sume a mismatch in the process parameters KS and
µmax,mon of +10% and −20%, respectively, from the nom-
inal parameters. All parameters used in the true plant
and the nominal controller model are given in Table
I. The influent substrate concentration Sf (t) is modeled
as a time-varying parameter, as typically is the case in
real world wastewater plants. For Sf , we assume it un-
derlies a smooth and random but bounded disturbance
Sf (t) = 5500 + 100 (sin (wtt) + sin (wππt) + sin (weet)) ,
with e being Euler’s number and wt ∼ N (0.3, 0.01) +
N (−0.3, 0.01) , wπ ∼ N (0.01, 0.01) + N (−0.01, 0.01) ,
we ∼ N (0.08, 0.01) +N (−0.08, 0.01) .

All simulations were run on a MacBook Pro with an Apple
M2 chip and 24 GB memory using the operating system
macOS Ventura (version 13.2.1). CasADi [21], which is
used internally by HILO-MPC, was installed with its most
recent version (version 3.5.5). Additionally, the linear solver
HSL MA97 from the HSL package [22] was used.

Data Generation & Training: The true plant model
and the nominal control model were used to gener-
ate the data for the training of both, the GP and the
BNN. To do so, we created a nominal MPC design
according to (6). The stage cost L and the terminal



cost E are defined as L (xk, uk) = ‖xk − xref‖2Qs +

‖uk − uref‖2Rs + ‖uk − uk−1‖2Rc , E (xk) = ‖xN − xref‖2Qt ,
with the reference values xref =

[
Xref Sref

]
=[

1046.28 101.615
]
, uref = Fref = 0.714286, and the

weights Qs = Qt = [ 10 0
0 10 ] , Rs = 1, Rc = 5 · 103.

The reference of the flow rate Fref translates to a hydraulic
retention time of τ = 7 d, i.e., the average time a volume of
wastewater will remain in a particular part of the plant, and
lies within the range of hydraulic retention times referenced
in [20]. The reference values of the biomass concentration
Xref and the substrate concentration Sref are the steady states
of the open loop simulation using the chosen reference flow
rate Fref. The initial conditions of the states were X0 = 0.2
and S0 = 0, and both states were constrained to be at least
zero over the whole process time. Furthermore, the input
was constrained to lie within the range 0 ≤ F (t) ≤ 2. The
sampling interval was ∆t = 0.125 d and the length of the
control horizon was N = 80, which translates to a time
of 10 d. The influent substrate concentration was calculated
using (III) and was kept constant over the control horizon.

We ran six closed loop simulation using this nominal MPC
for a simulation time of Tsim = 70 d for each simulation,
which ensured that the steady state was reached in each
simulation. Additionally, we sampled the reference states
for each simulation from a uniform distribution around
the actual reference states to gain a sufficient distribu-
tion of data in the state space region of interest X̃ref ∼
U (0.9Xref, 1.1Xref) , S̃ref ∼ U (0.9Sref, 1.1Sref) . Both states
are assumed to be measured at all times and serve as the
features of the machine learning models. The discrepancy
between the true plant model and the nominal control model,
the d part of (1)), is used as the label for the machine learning
models. Overall, 2800 data points were assembled and split
between training and test sets with the ratio 0.8 : 0.2.
The data was scaled to zero-mean and standard deviation
to improve training performance.

Gaussian Process: Since the training of a GP is com-
putationally expensive, a sparser subset of training data was
generated. This was done by iterating through all observa-
tions in the training data and disregarding all the observations
that have an Euclidean distance to the current observation
below a certain threshold. This way we were able to obtain
more observations from regions that have been observed
very little and disregard observations from well-observed
regions in the state space. Since the data was normalized, the
threshold was set to 0.2. The new training data set obtained
using this threshold amounts to 92 data points.

As the model of the wastewater treatment plant has two
states, we trained two GPs. The noise variance of each
GP was fixed to σ2

X = 0.1 and σ2
S = 0.01, respectively.

We chose a squared exponential kernel with automatic rel-
evance detection as the covariance function for both GPs

k (χi, χj) = σ2
f exp

(
− (χi − χj)2

2`2

)
, where σf is the

signal variance and ` are the length scales. The mean function
was assumed to be zero for both GPs, as is typically done

TABLE II: Hyperparameters of the trained GPs.

length scales ` signal variance σ2
f

GPX

[
2.35425 2.91528

]
5.86936

GPS

[
2.82233 2.44933

]
10.493
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[23]. The hyperparameters of the trained GPs can be found in
Table II. The length scales of both GPs are relatively close to
each other, indicating that every input to the GPs is equally
important. Fig. 2 shows the resulting predictive standard
deviation for GPX in the top row. Its model uncertainty is
small in the region around the training data points. In regions
where there are no observations available, it predicts a very
high uncertainty. Fig. 3 shows the calibration curves of both
GPs [24]. The calibration curve for GPX is very close to
the ideal calibration line, indicating reliable predictions of
the model-plant mismatch dX for the biomass concentration.
This can also be shown by calculating the miscalibration
area, i.e., the area between the curve and the ideal calibration
line. The closer the calibration curve is to the perfect
calibration line, the lower the miscalibration area, resulting in
higher prediction reliability. The resulting miscalibration area
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TABLE III: Root-mean-square error (RMSE), negative log
likelihood (NLL) and micalibration area of the trained GPs
and BNNs. Bold indicates the lowest value for each metric.

RMSE NLL Miscalibration area
GPX 0.173 −0.277 0.117
BNNX 0.165 0.478 0.107
GPS 0.205 0.148 0.135
BNNS 0.264 0.043 0.101

is listed in Table III. The calibration curve for the GP trained
on the model-plant mismatch in the substrate concentration
(GPS) is a further away from the ideal calibration line,
leading to a higher miscalibration area (see Table III). This
indicates a lower prediction reliability of GPS compared to
GPX . Two additional metrics, the root-mean-square error
(RMSE) as well as the negative log-likelihood (NLL), are
listed in Table III. The RMSE reflects the correctness of
the predictions, and the NLL is another indicator of the
predictions’ reliability. Both metrics respectively show that
GPX has higher accuracy and reliability in the forecasts
compared to GPS , as both values are lower for GPX .

1) Bayesian Neural Network: In this work, we used prob-
abilistic backpropagation [25] to approximate the posterior
distribution (4) of the BNN, which is a closed-form approxi-
mation based on the assumed density filtering approach [26].
Its full derivation is beyond the scope of this work, so we
refer the reader to [25] for details. In contrast to our work,
[14] and [15] employ variational inference to approximate
the posterior distribution.

In probabilistic backpropagation, the prior precision λ and
the noise precision γ are assumed to be Gamma distributed
hyperpriors p (i|αi, βi) ∼ Γ (αi, βi) where αi are the shape
parameters and βi are the inverse scale parameters. Here,
we specified the weight hyperpriors with shape αλ = 6 and
inverse scale βλ = 6 for both outputs. The noise hyperpriors
were αγ,X = βγ,X = 40 and αγ,S = βγ,S = 6, respectively.
As with the GPs, the BNNs also need to be trained for each
output individually. Both BNNs had one hidden layer with
50 nodes and the ReLU activation function [25]. The BNNs
were trained for 10 epochs each.

Fig. 2 shows the resulting predictive distribution for
BNNX in the bottom row. Similar to GPX , it predicts a
very low uncertainty in the regions where the training data
are located. Unlike GPX , BNNX centers its posterior on the
best observed region, shows higher uncertainty in regions
with fewer observations, but lower uncertainties in regions
without observations. The calibration curves of both BNNs
are also very close to the ideal calibration line, indicating
high reliability in the predictions. Overall, BNNs and GPs
show competitive performance, which is also reflected when
comparing the metrics (RMSE, NLL, miscalibration area —
see Table III).

Open Loop Simulation of Hybrid Models: Given the
trained GPs and BNNs, we generated the respective hybrid
models. To illustrate their recovery of the model-plant mis-
match, we compared open loop step response versus the
true plant model and the nominal control model without the
process noise. The result for a the step response is shown

TABLE III: Root-mean-square error (RMSE), negative log
likelihood (NLL) and micalibration area of the trained GPs
and BNNs. Bold indicates the lowest value for each metric.

RMSE NLL Miscalibration area
GPX 0.173 �0.277 0.117
BNNX 0.165 0.478 0.107
GPS 0.205 0.148 0.135
BNNS 0.264 0.043 0.101

indicates a lower prediction reliability of GPS compared to
GPX . Two additional metrics, the root-mean-square error
(RMSE) as well as the negative log-likelihood (NLL), are
listed in Table III. The RMSE reflects the correctness of
the predictions, and the NLL is another indicator of the
predictions’ reliability. Both metrics respectively show that
GPX has higher accuracy and reliability in the forecasts
compared to GPS , as both values are lower for GPX .

1) Bayesian Neural Network: In this work, we used prob-
abilistic backpropagation [25] to approximate the posterior
distribution (4) of the BNN, which is a closed-form approxi-
mation based on the assumed density filtering approach [26].
Its full derivation is beyond the scope of this work, so we
refer the reader to [25] for details. In contrast to our work,
[14] and [15] employ variational inference to approximate
the posterior distribution.

In probabilistic backpropagation, the prior precision � and
the noise precision � are assumed to be Gamma distributed
hyperpriors p (i|↵i,�i) ⇠ � (↵i,�i) where ↵i are the shape
parameters and �i are the inverse scale parameters. Here,
we specified the weight hyperpriors with shape ↵� = 6 and
inverse scale �� = 6 for both outputs. The noise hyperpriors
were ↵�,X = ��,X = 40 and ↵�,S = ��,S = 6, respectively.
As with the GPs, the BNNs also need to be trained for each
output individually. Both BNNs had one hidden layer with
50 nodes and the ReLU activation function [25]. The BNNs
were trained for 10 epochs each.

Fig. 2 shows the resulting predictive distribution for
BNNX in the bottom row. Similar to GPX , it predicts a
very low uncertainty in the regions where the training data
are located. Unlike GPX , BNNX centers its posterior on the
best observed region, shows higher uncertainty in regions
with fewer observations, but lower uncertainties in regions
without observations. The calibration curves of both BNNs
are also very close to the ideal calibration line, indicating
high reliability in the predictions. Overall, BNNs and GPs
show competitive performance, which is also reflected when
comparing the metrics (RMSE, NLL, miscalibration area —
see Table III).

Open Loop Simulation of Hybrid Models: Given the
trained GPs and BNNs, we generated the respective hybrid
models. To illustrate their recovery of the model-plant mis-
match, we compared open loop step response versus the
true plant model and the nominal control model without the
process noise. The result for a the step response is shown
in Fig. 4. Both hybrid models significantly improve the
nominal control model, especially substrate concentration.
The performance improvement compared to the nominal
control model is substantial, while the mismatch in the
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steady states of the biomass concentration of a true model is
negligible if process noise were considered.

Closed Loop Control: Finally, learning-supported
stochastic MPC for both learning approaches is evaluated.
Box constraints of the nominal MPC augmented with a
time-varying constraint that ensures survival of the biomass
despite disturbed substrate concentration Sf . This constraint
is realistic for practical applications that assume model-plant
mismatches, since drastic drops in Sf could wash out the
biomass and drastic increases of Sf could lead to unmodeled
behavior, e.g., cell aggregation. Hence, we demand the
biomass concentration to be within once the steady state is
reached X(t) 2 [(Xref � 20)bl, (Xref + 20)bu]. For t = 30 d
after the steady state is reached, the parameters bl and bu are
set to bl (t) = tanh (0.1t + 0.01), bu (t) = tanh (0.1t + 1) .
For the stochastic MPC we reformulated the constraint into a
chance constraint with an acceptance probability of 99%. In
order to ease the computational burden, the control horizon
was shortened to N = 32 time steps.
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showing its inability to guarantee constraint satisfaction.

Fig. 4: Open loop step response of the true plant model.

in Fig. 4. Both hybrid models significantly improve the
nominal control model, especially substrate concentration.
The performance improvement compared to the nominal
control model is substantial, while the mismatch in the
steady states of the biomass concentration of a true model is
negligible if process noise were considered.

Closed Loop Control: Finally, learning-supported
stochastic MPC for both learning approaches is evaluated.
Box constraints of the nominal MPC augmented with a
time-varying constraint that ensures survival of the biomass
despite disturbed substrate concentration Sf . This constraint
is realistic for practical applications that assume model-plant
mismatches, since drastic drops in Sf could wash out the
biomass and drastic increases of Sf could lead to unmodeled
behavior, e.g., cell aggregation. Hence, we demand the
biomass concentration to be within once the steady state is
reached X(t) ∈ [(Xref − 20)bl, (Xref + 20)bu]. For t = 30 d
after the steady state is reached, the parameters bl and bu are
set to bl (t) = tanh (0.1t+ 0.01), bu (t) = tanh (0.1t+ 1) .
For the stochastic MPC we reformulated the constraint into a
chance constraint with an acceptance probability of 99%. In
order to ease the computational burden, the control horizon
was shortened to N = 32 time steps.
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Fig. 5 shows the closed loop behavior of the control

designs. The difference between the approaches is mainly



present in the vicinity of the constraints. Disturbances in sf
lead to learning-supported MPC violating lower constraint,
showing its inability to guarantee constraint satisfaction.
In contrast, the learning-supported stochastic MPC designs
satisfy the constraints.
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Fig. 6: Comparison of the total computation time.
Fig. 6 compares the computation time for both stochastic

MPC controllers. Multiple GPs were trained and run in the
closed loop control setup, varying the number of training
points. One can see the increase in total computation time of
the corresponding stochastic MPC, and around 130 training
data points it surpasses the computation time of the stochastic
MPC using the BNN.

IV. CONCLUSION AND OUTLOOK

State-of-the-art learning-supported stochastic MPC re-
quires uncertainty prediction, often using Gaussian pro-
cesses. However, their computational complexity increases
with data set size. We explored Bayesian neural networks
(BNNs) for hybrid models in learning-supported stochastic
MPC, comparing their performance to Gaussian processes.
BNNs achieved similar performance, minimized model-plant
mismatch in open-loop simulations, and proved effective in
closed-loop simulations. BNNs offer a valuable alternative,
efficiently handling large data sets. All results used the open-
source Python toolbox HILO-MPC [16].

Future research will investigate BNNs for more complex
models and provide strict stability and performance guaran-
tees for specific model classes.
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