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Abstract— We investigate the resilience of learning-based
Intelligent Navigation Systems (INS) to informational flow at-
tacks, which exploit the vulnerabilities of IT infrastructure
and manipulate traffic condition data. To this end, we propose
the notion of Wardrop Non-Equilibrium Solution (WANES),
which captures the finite-time behavior of dynamic traffic
flow adaptation under a learning process. The proposed non-
equilibrium solution, characterized by target sets and mea-
surement functions, evaluates the outcome of learning under
a bounded number of rounds of interactions, and it pertains
to and generalizes the concept of approximate equilibrium.
Leveraging finite-time analysis methods, we discover that under
the mirror descent (MD) online-learning framework, the traffic
flow trajectory is capable of restoring to the Wardrop non-
equilibrium solution after a bounded INS attack. The resulting
performance loss is of order Õ(T β) (− 1

2
≤ β < 0)), with a

constant dependent on the size of the traffic network, indicating
the resilience of the MD-based INS. We corroborate the results
using an evacuation case study on a Sioux-Fall transportation
network.

I. INTRODUCTION

The past decades have witnessed significant growth in the
Internet-based traffic routing demand, along with the rapid
development of modern Intelligent Navigation Systems (INS).
The INS infrastructures, which consists of Online Navigation
Platforms (ONP) such as Google Maps and Waze, together
with the widely adopted Internet-of-Things (IoT), including
smart road sensors and toll gates, are designed to make real-
time, efficient routing recommendations for their users. The
best-effort routing of the individuals leads to macroscopic
traffic conditions, which is encapsulated by the notion of
Wardrop equilibrium (WE) [1] in congestion games.

As transportation networks become increasingly inter-
connected, the number of attack vectors against the entire
transportation system is also on the rise. Consequently, the
well-being of the traffic networks is vulnerable to emerging
cyber-physical threats. For example, attacks on individual
GPS devices and road sensors can lead to the unavailability
of critical information and cause wide disruptions to the
infrastructure. As discussed in [2], a strategic data poisoning
attack on the ONP can lead to significant traffic congestion
and service breakdown.

In this work, we focus on a class of man-in-the-middle
(MITM) attacks on ONP systems that aim to mislead the
users to choose routes that are favored by the attackers. A
quintessential case was demonstrated in 2014, Israel, where
two students hacked the Waze GPS app and used bots to
crowdsource false location information, which misled the
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Fig. 1. Intelligent Navigation Systems (INS) are vulnerable to informational
attacks when data transmission is intercepted, yielding deteriorated traffic
flows. Mirror descent, as a non-equilibrium learning scheme, is capable of
restoring the path flow to the proposed Wardrop non-equilibrium solution.

users and caused congestion [3]. As reported in [4], the
existing real-time traffic systems are intrinsically vulnerable
to malicious attacks such as modified cookie replays and
simulated delusional traffic flows.

This class of attacks can be further categorized as infor-
mational attacks on INS. They intercept the communication
channel between individual users and the information infras-
tructure and exploit the vulnerabilities of data transmission
to misguide users and achieve an adversarial traffic condition.
While there have been efforts on preventing and detecting
attacks, it is indispensable to create resilient mechanisms that
can allow users to adapt and recover after the attack since
perfect protection is either cost-prohibitive or impractical
[5], [6]. To achieve this self-healing property, a dynamic
feedback-driven learning-based approach is essential [7], and
a non-equilibrium solution concept in contrast to the classical
Wardrop equilibrium is needed to capture the non-stationary
nature of the ante impetum and post impetum behaviors as
well as enable the time-critical performance assessment and
design for resiliency.

To this end, we investigate the notion of Non-Equilibrium
Solution (NonES) in the context of repeated congestion games.
It measures the probability of the traffic flows “enveloping”
given target sets, with the envelop volume defined by a
measurement function. The Non-Equilibrium learning does not
necessarily yield an equilibrium solution but a trajectory that
falls into the envelope with high probability. Based on NonES,
we define Wardrop Non-Equilibrium Solution (WANES),
which specifies mean Wardrop equilibrium (MWE) as its
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target set, and the weighted potential loss as the measurement.
In this work, we focus on a class of Mirror Descent

Non-Equilibrium learning algorithms and elaborate on its
role in the resilience of traffic networks under adversarial
environments. We first establish a high probability bound
on the distance between the output and MWE for generic
Mirror Descent (MD) algorithms without assumptions on the
boundedness of the latency function. This high probability
bound can be transformed into the resilience metrics, showing
that after the attack, a WANES with weighted potential loss
that is sublinear in time can be recovered through learning.
Next, we develop a learning-based resiliency mechanism
based on an MD algorithm as the and two classes of
flow disturbance attacks. We demonstrate the performance
resilience under MD using an evacuation case study to
illustrate the process of learning-based recovery. A schematic
illustration of our non-equilibrium learning approach is
provided in Figure 1.

Outline of this paper. We briefly discuss the related
works in Section II. In Section III, we introduce the repeated
stochastic congestion game and MWE as the solution concept,
based on which we introduce the notion of Non-Equilibrium
learning and the formalism of resilience. In Section IV, we
establish several finite-time results for the Non-Equilibrium
learning dynamics and elaborate on the numerical experiments
to illustrate the attack and resilience in Section V.

II. RELATED WORK

Our work bridges the gap between the online-learning and
resilience in traffic assignment. Traffic assignment naturally
fits in the online-learning framework, see [8], [9], [10], where
the convergence in Cesáro sense is shown as interests. Vu
et al. in [11] improved the rate of Cesáro convergence to
O(1/T 2) and provided a last-iterate convergence guarantee.

The existent studies on the resilience of traffic assignment
have targeted on event-based disruptions, (see, e.g., [12]),
the system impedance to misinformation disturbance has
been rarely studied. To the best of our knowledge, the first
informational equilibrium-poisoning concept was proposed by
Pan et al. [2], such a phenomenon occurs when the sensors,
GPS devices in the INS are under attacks [13].

III. PROBLEM FORMULATION

A. Preliminary: Mean Wardrop Equilirbium

We are given a traffic network represented as a directed,
finite, and connected graph G = (V, E) without self-loops.
The vertices V represent road junctions, and the edges E
represent road segments. The set of distinct origin-destination
(OD) pairs is W ⊆ V×V , indexed by w, with cardinality W .
Let P :=

⋃
w∈W Pw be the set of all directed paths between

origins and destinations, where Pw ⊆ P(E) is the path set
between the pair w.

We assume that there is a set of infinitesimal players
over G, denoted by a measurable space (X ,M,m). The
players are non-atomic, i.e., m(x) = 0 ∀x ∈ X ; they
are split into distinct populations indexed by the OD pairs,
i.e., X =

⋃
w∈W Xw and Xw

⋂
Xw′ = ∅, ∀w,w′ ∈ W .

For each OD pair w ∈ W , let mw = m(Xw) represent
the traffic demand. Let M̄ =

∑
w∈W mw For each player

x ∈ Xw, we assume that their travel path a ∈ Pw is fixed
right after the path selection. The action profile of all the
players X induces an edge flow vector q ∈ R|E|≥0, where
qe :=

∫
X 1{e∈a}m(dx), e ∈ E , and a path flow vector

µ ∈ ∆ := {(µp)p∈∪w∈WPw |µp :=
∫
Xw 1{a=p}m(dx)}.

We define the edge-path incident matrix of graph G as Λ =
[Λ1|, . . . , |Λ|W|] ∈ R|E|×|P| such that Λwe,p = 1{e∈p},∀e ∈
E , w ∈ W, p ∈ Pw. Hence the compact form of edge-path
flow relation is q = Λµ.

Let (Ω,F ,P) be the probability space for the formalism,
le : R≥0×Ω 7→ R+ be the cost/latency functions, measuring
the travel delay of the edge e ∈ E determined by its edge flow
qe and a state variable ω ∈ Ω that is universal for the entire
traffic network, e.g., ω can represent the weather condition,
road incidents or anything that affects the congestion level. Let
l : R|E|≥0×Ω 7→ R|E|+ denote the vector-valued latency function.
For an instance ω ∈ Ω, the latency of path p is defined as
`p :=

∑
e∈p le(qe, ω) = Λ>p l(Λµ, ω), which can be seen as

a function of µ and ω, written as `p = `p(µ, ω). We write
the vector-valued path latency function as ` : ∆×Ω 7→ R|P|+ .
Each instance ω determines a congestion game, captured by
the tuple Gωc = (G,W,X ,P, `(·, ω)). Each path flow profile
µ ∈ ∆ induces a probability measure associated with the
positive random vector `(µ, ·) : Ω 7→ R|P|+ .

Assumption 1. For all e ∈ E , the latency functions le are
ω-measurable, for all ω ∈ Ω, le are L0-Lipschitz continuous

and differentiable in qe with
∂le(qe, ω)

∂qe
> 0 for all qe ≥ 0.

Remark. The continuity assumption reflects the fact that
adding a small amount of traffic does not drastically affect
the travel latency; the monotonicity implies the increments
of traffic does not decrease the latency.

We adopt a stochastic alternative definition of Wardrop
equilibrium. In doing so, we consider a “meta” version of the
congestion game, Gc = (G,W,X ,P,Eω[`(·, ω)]), with the
utility functions replaced by the expected latency function.
This “meta” congestion game gives rise to a solution concept
corresponding to Definition 1.

Definition 1 (Mean Wardrop Equilibrium [1]). A path flow
µ ∈ ∆ is said to be a Mean Wardrop Equilibrium (MWE) if
∀w ∈ W , µp > 0 indicates E[`p] ≤ E[`p′ ] for all p′ ∈ Pw.
The set of all MWE is denoted by µ∗. Equivalently, µ ∈ µ∗

if and only if the following variational inequality is satisfied:
Eω[〈µ − µ′, `(µ, ω)〉] ≤ 0, ∀µ′ ∈ ∆, where Eω[·] is the
expectation operator with respect to ω.

The MWE µ∗ is in general not a singleton, but a convex set
given the strict monotonicity of latency in Assumption 1. The
seeking of MWE can be cast as a minimization problem of
the expectation of the Stochastic Beckmann Potential (SBP)
[14], defined as φ(µ, ω) =

∑
e∈E

∫ (Λµ)e
0

le(z, ω)dz, where
(Λµ)e is the eth element of Λµ. We refer to the expectation



defined in (1) as the Mean Beckmann Potential (MBP),

Φ(µ) := E

[∑
e∈E

∫ (Λµ)e

0

le(z, ω)dz

]
. (1)

It immediately follows that by Assumption 1 that, for all
µ ∈ ∆,

∇µΦ(µ) = E[Λ>l(Λµ, ω)] = E[`(µ, ω)],

∇2
µΦ(µ) = E[Λ>(∇l(Λµ, ω))Λ] � 0.

Therefore, Φ is convex in µ. The characterization of the MWE
coincides with the first-order optimality condition. Finally, we
denote by Φ∗ the unique optimal BMP: Φ∗ := minµ∈∆ Φ(µ).

B. Mirror Descent and Wardrop Non-Equilibrium
In the online-learning setting, the players make decisions

repeatedly. Let the time index be t ∈ N+, for each OD
pair w, each player x ∈ Xw receives a mixed strategy
πt(·, x) : Xw 7→ ∆(Pw) which is M-measurable, and plays
a randomized routing path At(x) ∼ πt(·, x).

Under identical and independent path choice randomization
within the populations of each OD pair, individual-level and
population-level online learning are equivalent due to the
non-atomic nature, [9]. We hereby let the history (Ht)t≥0 be
a sequence of realizations of ωt, `t, and µt up to time t, an
online-learning algorithm A maps from the space of Ht to
∆, iteratively generating the traffic flow µt+1.

The individual regret with respect to a path choice p ∈ Pw
for x ∈ Xw, w ∈ W is RT (x) = E[

∑T
t=1 `

t
At(x) − `tp],

where E[·] is taken with respect to A and ω. The population
regret with respect to a path flow is defined as RT (µ) =
E[
∑T
t=1〈µt−µ, `(µt, ωt)〉]. Let µ∗ be one of µ∗, by convexity

of Φ, a sub-linear regret bound, i.e., RT (µ∗) = o(T )
directly implies Φ(µ̄T ) → Φ(µ∗) as T → ∞, where
µ̄T := 1

T

∑T
t=1 µ

t is the empirical flow.
To achieve such sub-linear regret bound [RT (µ∗) = o(T )],

a class of widely used online learning algorithms can be
obtained through mirror descent (MD), as shown in Algorithm
1, with a specified instance of Bregman divergence DΨ(·, ·) :
∆ × ∆ 7→ R. Induced by a mirror map Ψ : ∆ 7→ R̄, the
divergence DΨ(µ1, µ2) := Ψ(µ1)−Ψ(µ2)−〈∇Ψ(µ2), µ1−
µ2〉 measures the dissimilarity between two iterates [see (2)],
regularizing the learning process.

The mirror map Ψ is assumed to be Fréchet differentiable
and strongly convex, i.e., there exists a constant σΨ > 0 such
that DΨ(µ1, µ2) ≥ σΨ

2 ‖µ1−µ2‖2. Note that when the mirror
map is given by `2-norm, mirror descent in (2) reduces to
projected gradient descent [15]: µt+1 ← arg minµ∈∆ ‖µt +
ηt`t−µ‖2. Hence, MD is a generalization of gradient methods
and allows more freedom when designing learning algorithms.
For example, when Ψ(µ) = 1

2‖µ‖
2
p, 1 < p < 2, mirror

descent works favorably for sparse problems [16].
It is shown in [10] that the populational regret under

MD can achieve O(
√
T ) in the static regime (when Ω is

a singleton), which coincides with the Õ(
√
T ) results shown

for stochastic environment in [11]. These sublinear bounds
suggest that the empirical flow under MD arrives at the MWE
asymptotically.

Algorithm 1: Mirror Descent for INS
Input : initialize µ1 ∈ ∆, learning rate (ηt)t∈N+ .
for t ∈ N+ do

for w ∈ W , x ∈ Xw, do
INS assigns mixed strategy
πt(·, x)← 1

mw
(µtp)p∈Pw to player x;

player x samples path A(x) ∼ πt(·, x);
nature samples ωt ∼ P(·);
INS reveals latency vector `t = `(µt, ωt) to X ;
INS updates:

µt+1 ← arg min
µ∈∆

ηt〈µ, `t〉+DΨ(µ, µt) (2)

However, the asymptotic convergence of empirical flow
to the MWE does not capture the transient behavior of
the learning process. The regret bounds above does not
answer the following question regarding the resiliency of
MD: how many iterates does MD need to recover from
an informational attack and return an approximate MWE?
The insufficiency of asymptotic equilibrium characterization
motivates us to dive into the finite-time analysis of the learning
process. Instead of studying the limiting behavior of learning
iterates, we shift the focus to finite sequences of iterates and
associated probabilistic characterizations, based on which
we propose a new solution concept for learning algorithms:
Non-Equilibrium Solution (NonES). For congestion games,
NonES is captured by a measurement function and a target
set of flow profiles. A finite sequence of iterates (called a
trajectory) produced by the learning algorithm A is treated as
a random variable whose probability measure is determined
by the learning dynamics. Then, the measurement function
maps this random variable to the space where the target
set is defined. Whether the trajectory (transformed by the
measurement function) falls within the target set constitutes
a random event. The probabilistic characterization of this
random event is the basis of the non-equilibrium definition
introduced in the following.

Definition 2 (Non-Equilibrium Solutions). For a congestion
game Gc, denoted by B the Borel σ-algebra over the set
of path flow profiles ∆. Let ∆t and Bt be the product
space and the product measure, respectively. Denote by Pt
the probability measure over the space (∆t,Bt). Given a
measurement function F : ∆t → ∆, a target set C ⊂ ∆, and
a positive number δ > 0, Pt is an (F, C, δ)-Non-Equilibrium
solution (NonES) if

Pt{(µk)tk=1 ∈ ∆t|F [(µk)tk=1] ∈ C} ≥ 1− δ. (3)

Remark (Non-Equilibrium Learning). In the context of online
learning, the probability measure Pt is determined by the
learning algorithm A and the environment stochasticity ωt in
Algorithm 1. We refer to A as Non-Equilibrium learning if
the induced probability measure Pt is a NonES, as formally
defined in Definition 3. When no confusion arises, we also



say a trajectory (µk)tk=1 under A is a NonES if its associated
probability measure is a NonES.

The proposed non-equilibrium solution generalizes exist-
ing equilibrium-seeking characterizations (e.g., last iterate
convergence and Cesáro convergence in Example 1), which
concerns transient properties of the underlying flow sequence.
A probability measure (or equivalently a distribution) over
the sequences of flows is a NonES if the sequences fall
within the target set with high probability (δ > 0) or almost
surely (δ = 0). Our resilience study of online learning
algorithms is built upon this Non-Equilibrium notion, where
we demonstrate that MD can quickly recover from unexpected
perturbation, and the resulting path flow falls within a
neighborhood of the optimal one. The following example
shows that the widely used Cesáro convergence [9], [10] is
a special case of the proposed Non-Equilibrium.

Example 1. A sequence of path flows {µk}∞k=1 is said
to Cesáro converge to MWE with respect to weights
{ηk}∞k=1 almost surely if limt→∞Φ(µ̄t) = Φ∗, µ̄t =∑t
k=1 ηkµ

k/
∑t
k=1 ηk, with probability 1. When ηk = 1,

for all k ≥ 1, the Cesáro average reduces to the empirical
flow: µ̄t = 1

t

∑t
k=1 µ

k. Note that in the online learning
context, the weights {ηk}∞k=1 correspond to the vanishing
learning rates of some algorithm A (e.g., learning rate in
Algorithm 1).

The following rephrases the convergence characterization
above using non-equilibrium language. Given an MWE µ∗,
for any ε > 0, let the target set Cε be the ε-approximate
MBE, i.e., Cε := {µ ∈ δ|Φ(µ) − Φ∗ < ε}. Define the
measurement function as the weighted Cesáro average,
F [(µkk=1)t] =

∑t
k=1 ηkµ

k/
∑t
k=1 ηk. A sequence of flows

{µk}∞k=1 converges to MWE if for any ε > 0, there exists a
T such that any finite subsequences {µk}tk=1, t > T is an
(F, Cε, 0)-Non-Equilibrium.

Introducing the target set and measurement function
provides additional degrees of freedom when analyzing the
transient behavior of a sequence of flows produced by learning
processes. For example, the measurement function can be
defined as the last iterate MBP returned by the learning
algorithm. In this case, the proposed NonES generalizes the
way to characterize the outcome of the last iterate [11].

Definition 3 (Wardrop Non-Equilibrium Learning). For the
congestion game Gc, let the measurement function be the
Cesáro average in example 1. For any ε > 0, define the target
set as Cε := {µ ∈ ∆|Φ(µ)−Φ∗ < ε}. A probability measure
Pt over (∆t,Bt) is an (ε, δ)-Wardrop Non-Equilibrium
solution (WANES) if Pt{(µk)tk=1 ∈ ∆t|µ̄t ∈ Cε} ≥ 1 − δ.
Furthermore, any learning algorithm A producing such Pt
is said to be an (ε, δ)-Wardrop Non-Equilibrium learning.

C. Resilience to Informational Attacks

While under normal operation, the INS traffic flow is close
to the equilibrium flow set µ∗, a one-shot perturbation in
the flow can cause successive disruptions, as discussed in
Section I. To see this, let the actual flow of the transportation

network be µt0 ∈ µ∗ at time t0 ∈ N+, an MITM attacker
is able to modify this piece of information into µ† ∈ ∆ to
mislead the INS. This error in turn propagates to the latency
vector revealed by the INS so that at time t the loss vector
`t is replaced by ˜̀t := `(µ†, ωt). Hence the mirror step (2)
at t0 is poisoned as follows:

µt0+1 ← arg min
µ∈∆

ηt〈µ, ˜̀t〉+DΨ(µ, µ†). (4)

The INS assigns the individual mixed strategies corre-
sponding to poisoned µt0+1, hence propagating the flow
disturbance attack. Let attack a† := DΨ(µt0 , µ†) be the
Bregman divergence from µ† to µt0 , which stands for the
attack magnitude in terms of the information geometry, as
the flows can be scaled as probability distributions.

However, the intrinsic adaptability of MD enables the INS
to pull the poisoned flow back to the right track, by iterative
Non-Equilibrium learning in the environment. We hereby give
a resilience characterization for such adaptability in Definition
4 based the non-equilibrium notion.

Definition 4 (Resilience). Given an attack a† ∈ R+, let
ra†(·, ·) : (0, 1)×N+ 7→ R+ be a recovery threshold function
parameterized by a†, T ∈ N+ be a recovery time length, and
A be an online-learning algorithm. For δ ∈ (0, 1), the INS is
said to be (ra† , T, δ)-resilient under A if the T -step trajectory
(µ1, . . . , µT ) under A after an attack a† is a (ra† , δ)-WANES,
i.e., P

{
Φ(µ̄T )− Φ∗ < ra†

}
≥ 1− δ.

The resilience of the INS is quantified by the ability to
recover from a given attack a†. It is natural that the ability to
recover is dependent on the level of a† and the recovering time
T , with δ picked as a tolerance parameter for recovery-failing
tail probability.

IV. RESILIENCE ANALYSIS

A. Resilience with General Ψ

We introduce the following simplified notations. Let
the optimal SBP be φ∗(ω) := supµ∈µ∗ φ(µ, ω), which is
assumed to be finite almost surely; the worst case potential
is then φ∗ = supω∈Ω φ

∗(ω); the realized SBP at time t is
φt = φ(µt, ωt); the MBP at time t be Φt := Φ(µt). Let
d(µ,µ∗) = infµ∗∈µ∗ ‖µ − µ∗‖2 be the Euclidean distance
from µ to the set of MWE. We impose a standard technical
assumption that significantly simplifies the analysis.

Assumption 2. For all µ ∈ ∆ ω ∈ Ω, the latency function
satisfies that, there exist two constants A and B such
that‖`(µ, ω)‖2 ≤ Aφ(µ, ω) +B.

Assumption 2 indicates the linear growth of ‖`‖2 with
respect to φ, which can be analytically verified for some
particular choices of Bureau of Public Roads (BPR) func-
tion, e.g., the additively perturbed BPR functions of form
lbpre ((Λµ)e, ω) = te(1 + α1(1 + (Λµ)e

Ce
)α2) + ωe, where

ω ∈ Ω ⊆ R|E| is the edge-wise perturbation vector, te is
free travel time, Ce is the edge capacity, with α1 and α2

being two parameters. We begin our analysis with Lemma 1,
which bounds the one-step change of DΨ(µ, µt) by MD.



Lemma 1. Let {µt}t∈N be a sequence generated by (2), then
the following holds for any µ ∈ ∆,

DΨ

(
µ, µt+1

)
−DΨ

(
µ, µt

)
≤ ηt

〈
µ− µt, `t

〉
+ 2

η2
t

σΨ
(Aφt +B)

(5)

(Aφt + B) term can be replaced with a coarser bound,
but this refined one-step inequality (5), as an outcome of
Assumption 2, gives a profound interpretation as it connects
the divergence change to φt. This divergence difference
characterizes the system-level “rationality”: as φt gets lower,
the “rationality” level gets higher, and less effort needs to be
paid to change the flow.

Based on Lemma 1, Lemma 2 bounds the Euclidean
distance from post-attack µt to µ∗. To simplify the analysis,
set t0 = 1 by default and assume that at t0, the INS already
reaches the WE set, i.e., µt0 ∈ µ∗. The attacker launches
a† = DΨ(µt0 , µ†) ≥ infµ∈µ∗ DΨ(µ, µ†), after which the
MD dynamic initializes µ1 ← µ†.

Lemma 2. Let {µt}t∈N+
be a sequence generated by (2)

after the attack a†, let C1 = φ∗ + B
A , with ηt ≤ σΨ

2A and
being non-increasing, we have for all t ∈ N+, µ∗ ∈ µ∗,

d(µt+1,µ∗) ≤ ‖µt+1 − µ∗‖2 ≤ 2σ−1
Ψ (C1

t∑
k=1

ηk + a†) (6)

and the following upper bounds:
∑t
k=1 η

2
kφ

k ≤
2(C1

∑t
k=1 η

2
k + η1a

†) and
∑t
k=1 φ

k ≤ 2(C1t +
(C1

∑t
k=1 ηk + a†)η−1

t + η−1
1 a†).

Lemma 2 gives a distance bound larger than 2σ−1
Ψ a†,

increasing with t, yet allows us to control the distance by
adjusting the order of the summation

∑t
k=1 η

2
k, which is

convergent as t → ∞ under careful tuning, e.g., when
ηt = η1t

β− 1
2 with β ∈ (− 1

2 , 0). Later we show that,
d(µt+1,µ∗) can be controlled by the O(

∑t
k=1 η

2
kd(µk,µ∗))

with high probability, which allows us to bound the maximum
of d(µt+1,µ∗), as stated in Theorem 1.

Theorem 1. Let {µt}t∈N+ be the sequence generated by (2)
after attack a†, assuming that ηt ≤ σΨ

2A and is non-increasing.
Let the two quantities be c1 := maxk∈N+

ηk
∑k−1
j=1 ηj <∞,

c2 := η1(φ∗+AΦ∗+B) +σ−1(2A2 + 1)(C1c1 + η1a
†), we

have for t ∈ N+, for δ ∈ (0, 1), w.p. 1− δ,

max
1≤t≤T

d(µt,µ∗) ≤ C2 log

(
T

δ

)
, (7)

where C2 = 4c2
σΨρ

+ ( 4
σΨ

+ 8η1A
σ2

Ψ
)a† + 8AC1+4B

σ2
Ψ

∑t
k=1 η

2
k +

+
∑t1
k=1 2C1

∑k−1
j=1 ηj+a

†

σΨ(
η1
C1
a†+c2)

.

Intuitively, the traffic flow output by MD should fall into
a logarithmic ball centralized around the MWE flows, with
the diameter dependent on the initial flow disturbance attack.
Based on Theorem 1, we can establish the high-probability
resilience results as stated in Proposition 1.

Proposition 1 (Resilience of MD). Under attack a†, let
δ ∈ (0, 1) and ra†(·, ·) be defined as ra†(δ, T ) =

(
∑T
k=1 ηk)−1C3(a†) log

3
2 ( 2T

δ ), where

C3(a†) =

((
1 +

2Aη1

σΨ
a†
)

+ ((4A2 + 1)C2 + 4AC1)

(2

∞∑
t=1

η2
t )

1
2 +

2(AC1 +B)

σΨ

( ∞∑
k=1

η2
k

))
is a constant independent of T but dependent on a†, with
C2 defined in Theorem 1. The INS is (ra† , T, δ)-resilient
under MD algorithm 1. Furthermore, with ηt = η1t

−β−1 and
β ∈ (− 1

2 , 0), then ra†(δ, T ) = O(T β log
3
2 T
δ ).

In Proposition 1 we give a sub-linear order for the threshold
function ra† , without imposing boundedness assumption on
the latency vector. The Õ(T β) order implies a.s. convergence
of the MBP to the optimum, which indicates the asymptotic
collapse of performance loss. In the long run, the INS is
expected to recover fully from such attacks.

B. Resilience Discussion with Bounded Attack
In this section, we let Ψ be the unnormalized negentropy,

i.e., for µ ∈ ∆, Ψ(µ) =
∑
p∈P µp logµp − µp. In this case,

the MD step gives, under the initial information disturbance
a†, µt+1

p ∝ µtp exp(−ηt ˜̀tp) p ∈ Pw w ∈ W , that is, for all
w ∈ W ,

(µt+1
p )p∈Pw =

mw
e−

∑
s≤t ηs

˜̀s
p∑

p∈Pw e
−

∑
s≤t ηs

˜̀s
p


p∈Pw

, (8)

where ˜̀s is the feedback latency vector of the post-attack
flows. To illustrate the dependence of resilience on the attack
capacity, we consider two types of attacks: Unif attacks
and Supp attacks. The Unif attacks are when a† is such
that µ†p = 1

|Pw|mw, for all p ∈ Pw, w ∈ W , in which case
the flow information is uniformly redistributed. The Supp
attacks represent a more generic class of attacks, where the
attacker poisons the flow information such that supp(µt0) ⊆
supp(µ†). Both types of attacks satisfy the boundedness, i.e.,
a† <∞.

Proposition 2. Let P = maxw∈W |Pw|, γw =
minp∈Pw,µp>0 µ

†
p, and γ = minw∈W γw, under MD algo-

rithm 1
a) Under Unif attack, the INS is (rUnif, T, δ)-resilient,

with rUnif(δ, T ) = Õ(MWT β logP ) for β ∈ (− 1
2 , 0).

b) Under Supp attack, the INS is (rSupp, T, δ)-resilient,
with rSupp(δ, T ) = Õ(MM̄2γ−1T β) for β ∈ (− 1

2 , 0).

By Proposition 2, under Unif attack, the resilience
threshold is up to a logarithmic order of the maximum path
size P , and linear in terms of the number of OD pairs.
The capability of the MD learning to adapt and recover
the system is then linearly dependent on the network size
|E| = O(log(|P|)) and the population complexity M and W .
However, when the attack a† becomes more random, the INS
becomes less resilient as the T β order may be partially offset
by other factors such as γ, slowing down the recovery.



V. CASE STUDY

This section studies an experimental setup of an evacuation
process in Sioux Falls, SD, building on the South Dakota
Transportation Network [17]. At each time unit, a fixed
number of individuals are transported from a set of emergency
locations to shelter places. We adopt the BPR function
discussed in Section IV to generate the latency feedback.
The transportation network data, including OD demand, free
travel time, and road capacities are obtained from [18].

We assume that the evacuation process is conducted using
a learning-based mechanism, i.e., the MD algorithm. We
simulate the learning process for 100 time units, at t0 = 30,
the we run the simulation for 10 times and plot the mean
and a sample of the MBP trajectory in Fig. 2.

Fig. 2. The spike at t0 = 30 indicates the Unif flow disturbance. The red
dotted curve represents the greedy assignment process; the blue and green
curve represents the non-equilibrium learning process.

As shown in the figure, at time t0 = 30, an attacker
launches a Unif attack on the INS, causing the potential to be
much higher. After the attack, we compare the learning-based
resilience and the recovery without learning by setting the
benchmark as a greedy assignment process, which iteratively
allocates a half portion of traffic demand to the path with
minimum latency. In comparison with the greedy assignment,
which produces potential oscillation after the attack, the INS
can rapidly recover the system from high MBP through MD
learning within 15 time steps.

Fig. 3. The two figures compare the learning-based (MD) resilience and
greedy-assignment (Greedy) resilience, by showing the post-attack change
of Φt − Φ∗ (left), and d(µt,µ∗) (right) over time respectively.

By plotting the post-attack curves of MBP difference Φt−
Φ∗ and d(µt,µ∗) with logarithmic order, as shown in Fig. 3,
one can observe that the learning-based trajectory achieves
faster recovery and better stability, corroborating that the MD-
based INS provides stronger resiliency and higher efficiency.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the resilience of traffic
networks under misinformation attacks on the Intelligent

Navigation Systems (INS). The proposed non-Equilibrium
learning has enabled a feedback-enabled resiliency mechanism
and provided post-attack resiliency assessment and design
methodologies. Through finite-time analysis of the learning
dynamics, we have demonstrated the ability of INS to
recover from multiple informational attacks. Future research
would focus on creating scalable and distributed resilience
mechanisms that can scale up with respect to the time
and network size of the transportation networks. We would
investigate the dynamic attack model to develop defensive
strategies against strategically evasive cyber-physical threats.
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APPENDIX

A. Two Technical Lemmas

Lemma 3 (Concentration Bounds [19]). Let ω1, . . . , ωk
be a sequence of random variables (not necessarily
i.i.d.), let functionals ξk(ω1, . . . , ωk), k = 1, . . . , T
be such that the conditional variance sum can be
bounded

∑T
k=1 Eωk

[
(ξk − Eωk [ξk])

2
]
≤ σ2: 1) if if

|ξk − Eωk [ξk] | ≤ bk for each k, for δ ∈ (0, 1),

P
{∑T

k=1 ξk − Eωk [ξk] ≤
(

2
∑T
k=1 b

2
k log 1

δ

) 1
2

}
≥ 1 − δ;

2) if ξk − Eωk [ξk] ≤ b, for each k for ρ ∈ (0, 1),
P
{∑T

k=1 ξk − Eωk [ξk] ≤ ρσ2

b +
b log 1

δ

ρ

}
≥ 1− δ.

Lemma 4. Let there be an arbitrary real-valued convex
differentiable function in the domain ∆, taking the MBP Φ
for example, suppose it satisfies Assumption 2, then, for all
µ ∈ ∆, µ∗ ∈ µ∗, ‖∇Φ(µ)‖2 = ‖Eω[`(µ, ω)]‖2 ≤ 2(A2‖µ−
µ∗‖2 +AΦ∗ +B).

Proof of Lemma 4. By convexity of Φ and Assumption 2,
for any µ∗ ∈ µ∗,

‖∇Φ(µ)‖2 ≤ A(Φ(µ)− Φ∗) +AΦ∗ +B

≤ A〈µ− µ∗,∇Φ(µ)〉+AΦ∗ +B

≤ A‖µ− µ∗‖‖∇Φ(µ)‖+AΦ∗ +B

Solving this quadratic inequality gives

‖∇Φ(µ)‖2 ≤ (A‖µ− µ∗‖+
√
AΦ∗ +B)2

≤ 2(A2‖µ− µ∗‖2 +AΦ∗ +B).

B. Resilience Analysis

Proof of Lemma 1. First order condition of mirror step (2)
gives, for any µ ∈ ∆: 〈ηt`t +∇Ψ(µt+1)−∇Ψ(µt), µt+1 −
µ〉 ≤ 0, from which and Pythogarean identity:

DΨ(µ, µt+1)−DΨ(µt+1, µt)

≤ ηt〈µ− µt+1, `t〉 −DΨ(µt+1, µt)

= ηt〈µ− µt, `t〉+ ηt〈µt − µt+1, `t〉 −DΨ(µt+1, µt)

≤ ηt〈µ− µt, `t〉+ ηt‖µt − µt+1‖‖`t‖ − σΨ

2
‖µt − µt+1‖2

≤ ηt〈µ− µt, `t〉+
2η2
t

σΨ
(Aφt +B).

Proof of Lemma 2. For all µ ∈ ∆, since ηt ≤ 1
2AσΨ,

DΨ(µ, µt+1)−DΨ(µ, µt)

≤ ηt(φ(µ, ωt)− φt) +
2η2
t

σΨ
(Aφt +B)

≤ ηtφ(µ, ωt) +
B

A
ηt.

Plugging in µ = µt0 ∈ µ∗, we arrive atDΨ(µ∗, µt+1) −
DΨ(µ∗, µt) ≤ ηtφ∗(ωt) + B

Aηt ≤ ηtC1.

Summing with respect to t, by strong convexity of Ψ and
taking infimum over ∆, we get the result (6). Again taking
µ = µ∗, with ηt non-increasing we have

ηt
2
φt ≤ ηtφ∗(ωt) + 2

Bη2
t

σΨ
+DΨ(µ∗, µt)−DΨ(µ∗, µt+1)

η2
t φ

t ≤ 2η2
tC1 + 2ηt(DΨ(µ∗, µt)−DΨ(µ∗, µt+1))

≤ 2C1η
2
t + 2ηtDΨ(µ∗, µt)− 2ηt+1DΨ(µ∗, µt+1)

Summing up the above, we arrive at
∑t
k=1 η

2
kφ
(
µk, ωk

)
≤

2C1

∑t
k=1 η

2
k + 2η1a

†. Note that φt ≤ 2φ∗(ωt) + 2BA +
2
ηt

(DΨ(µ∗, µt)−DΨ(µ∗, µt+1)), and we obtain
t∑

k=1

φk ≤ 2C1t+

t∑
k=1

2

ηk
(DΨ(µ∗, µk)−DΨ(µ∗, µk+1))

= 2C1t+ 2

t∑
k=2

DΨ(µ∗, µk)(
1

ηk
− 1

ηk−1
)

+ 2η−1
1 DΨ(µ∗, µ1)− 2η−1

t DΨ(µ∗, µt+1)

≤ 2C1t+ (2C1

t∑
k=1

ηk + a†)
1

ηt
+ 2η−1

1 a†.

Proof of Theorem 1. We define the sequence ξk := ηk〈µt0−
µk, `k − Eωk [`k]〉, t ∈ N+. By lemma 1, plug in µt0 ∈ µ∗,

DΨ(µt0 , µt+1)−DΨ(µt0 , µt)

≤ ηt〈µt0 − µt, `t〉+ σ−1
Ψ η2

t (Aφt +B)

= ξt + ηt〈µt0 − µt,Eωt [`t]〉+ σ−1
Ψ η2

t (Aφt +B)

≤ ξt + ηt(Φ
∗ − Φt) + σ−1

Ψ η2
t (Aφt +B)

It is easy to verify that Eω1,...,ωk [ξk] = 0, (ξk)k is thus
a Martingale difference sequence. The conditional second
moment of ξk satisfies:Ek[|ξk|2] ≤ Ek[|〈µt0 − µk, `k〉|2] ≤
‖µt0 −µk‖2Ek[‖`k‖2] ≤ ‖µt0 −µk‖2(AΦk +B) . Thus, the
sum of conditional variances of ξk is

t∑
k=1

Ek[|ξk − E ξk|2] =

t∑
k=1

η2
kEk[|〈µt0 − µk, `k〉|2]

≤ 2Aσ−1
Ψ

t∑
k=1

ηk(η1a
† + C1c1)(Φk − Φ∗)

+

t∑
k=1

η2
k‖µk − µt0‖2(AΦ∗ +B) =: σ2,

where we have let c1 := supk∈N ηk
∑k−1
j=1 ηj < ∞. From

convexity of φ, the magnitude of the increments c2 is as:

ξk − Ek[ξk] = ηk〈µt0 − µt, `k〉+ ηk〈µk − µt0 ,Ek[`k]〉
≤ ηk(φ∗(ωk)− φk) + ηk‖µk − µt0‖‖Ek[`k]‖
≤ ηk(φ∗(ωk)− φk)

+
ηk
2

((2σ−1
Ψ C1

k−1∑
j=1

ηj + 2σ−1
Ψ a†) + ‖Ek[`k]‖2)

≤ ηk(φ∗(ωk)− φk) + ηk(σ−1
Ψ (C1

k−1∑
j=1

ηj + a†)

+A2‖µk − µt0‖2 +AΦ∗ +B)

≤ η1(φ∗ +AΦ∗ +B) + σ−1
Ψ (2A2 + 1)(C1c1 + η1a

†) =: c2



Using conditional Bernstein’s inequality, for δ ∈ (0, 1) let the
constant ρ := min{1, σΨ

2A(η1a†+C1c1)
c2}, one has with proba-

bility 1− δ,
∑t
k=1 ξk −Ek[ξk] =

∑t
k=1 ξk ≤

ρσ2

c2
+

c2 log 1
δ

ρ ,
we plug in the variance upper-estimate σ2 and get

∑t
k=1 ξk ≤∑t

k=1 ηk(Φk − Φ∗)
σΨ

∑t
k=1 η

2
k‖µ

k−µ∗‖2(AΦ∗+B)

2A(η1a†+C1c2)
+

c2 log( 1
δ )

ρ
. Plugging in the inequalities in Lemma 2 and we have
the Φk − Φ∗ term canceled due to ρ: DΨ(µt0 , µt+1) ≤
a†+σΨ

∑t
k=1 η

2
k‖µ

k−µt0‖2(AΦ∗+B)

2A(η1a†+C1c2)
+
c2 log( 1

δ )

ρ +σ−1
Ψ ((2AC1+

B)
∑t
k=1 η

2
k + 2η1Aa

†), with probability 1 − δ. By strong
convexity of Ψ, the claim follows:

‖µt+1 − µt0‖2 ≤ (
2

σΨ
+

4η1A

σ2
Ψ

)a† +

∑t
k=1 η

2
k‖µk − µt0‖2

2( η1

C1
a† + c2)

+
2c2 log( 1

δ )

σΨρ
+ 2σ−2

Ψ (2AC1 +B)

t∑
k=1

η2
k.

(9)
Define the event ΩT as the following:

ET :=

{
(ω1, . . . , ωT ) : ∀t = 1, . . . , T it satisfies Et where

‖µt+1 − µ∗‖2 ≤ (
2

σΨ
+

4η1A

σ2
Ψ

)a† +

∑t
k=1 η

2
k‖µk − µt0‖2

2( η1

C1
a† + c2)

+
2c2 log(Tδ )

σΨρ
+

4AC1 + 2B

σ2
Ψ

t∑
k=1

η2
k

}
,

by a union bound argument one has P{ET } = 1 −
P(
⋃T
t=1E

c,t
T } ≥ 1− δ. Since the series

∑∞
t=1 η

2
t converges,

one can find t1 ∈ N+ such that
∑t
k=t1

η2
k‖µk − µt0‖2 ≤

η1

C1
a† + c2. Under ET , one has that for all t = 1, . . . , T ,

‖µt+1 − µt0‖2 −
2c2 log(Tδ )

σΨρ
−

(
2

σΨ
+

4η1A

σ2
Ψ

)a† − 4AC1 + 2B

σ2
Ψ

t∑
k=1

η2
k

≤
∑t1
k=1 C1

∑k−1
j=1 ηj + a†

σΨ( η1

C1
a† + c2)

+
1

2
sup

1≤k̄≤t
‖µk̄ − µt0‖2.

Therefore, under the event ET , we have:max1≤t≤T ‖µt −
µt0‖2 ≤ 4c2 log(Tδ )

σΨρ
+ ( 4

σΨ
+ 8η1A

σ2
Ψ

)a† + 8AC1+4B
σ2

Ψ

∑t
k=1 η

2
k +∑t1

k=1 2C1
∑k−1
j=1 ηj+a

†

σΨ(
η1
C1
a†+c2)

, scaling the terms with log(Tδ ), and

replacing µt0 with infµ∈µ∗ , we get the desired C2.

Proof of Prop. 1. Now going back to the offset term∑t
k=1 Φk − Φ∗. By lemma 5, we have

DΨ(µt0 , µt+1)−DΨ(µt0 , µt)− 2
η2
t

σΨ

(
Aφt +B

)
≤ ηt

〈
µt0 − µt, `t − Eωt [`t]

〉
+ ηt

〈
µt0 − µt,Eωt [`t]

〉
≤ ξt + ηt(Φ

∗ − Φt),

where the last inequality is by convexity, taking sum-
mation over k = 1, . . . , t,

∑t
k=1 ηk(Φk − Φ∗) ≤

a† +
∑t
k=1 ξk + 2

η2
k

σΨ

(
Aφk +B

)
≤ (1 + 2Aη1

σΨ
)a† +

∑t
k=1 ξk + 2(AC1+B)

σΨ

∑t
k=1 η

2
k. Let ξ′t := ηt〈µt0 − µt, `t −

Eωt [`t]〉1{‖µt−µt0‖2≤C2 log( 2T
δ )}, we can estimate its magni-

tude b(µ) by the following manipulation, under the event
{‖µt − µt0‖2 ≤ C2 log( 2T

δ )}, by Cauchy Schwarz and
triangular inequality, together with Lemma 4,

|ξ′t| ≤ ηt[‖µt − µt0‖2 + ‖`t‖2 + ‖Eωt [`t]‖2]

≤ ηt[(4A2 + 1)‖µt − µt0‖2 + 2A(φ∗ + Φ∗) + 4B]

≤ ηt[(4A2 + 1)C2 log(
2T

δ
) + 4AC1] ≤ c3ηt log(

2T

δ
).

Therefore, with probability 1− δ
2 one can find a E′T such that

by Lemma 3 i., the following inequality holds:
∑T
k=1 ξ

′
k ≤

c3 log( 2T
δ )(2

∑T
k=1 η

2
k log 2

δ )
1
2 ≤ c3 log

3
2 2T

δ (2
∑T
t=1 η

2
t )

1
2 .

Let ET be such that max1≤t≤T ‖µt − µt0‖2 ≤ C2 log( 2T
δ ).

With a union bound argument, P{ET
⋂
E′T } = 1 −

P{EcT
⋃
E′cT } ≥ 1− δ, in which case,

t∑
k=1

ηk(Φk − Φ∗) ≤ (1 +
2Aη1

σΨ
)a†

+ c3 log
3
2

2T

δ
(2

T∑
t=1

η2
t )

1
2 +

2(AC1 +B)

σΨ

t∑
k=1

η2
k

≤
(

(1 +
2Aη1

σΨ
)a† + ((4A2 + 1)C2 + 4AC1)(2

∞∑
t=1

η2
t )

1
2

+
2(AC1 +B)

σΨ
(

∞∑
k=1

η2
k)

)
log

3
2 (

2T

δ
) =: C3(a†) log

3
2 (

2T

δ
).

Using the convexity of Φ, we arrive at the result.

Sketched Proof of Proposition 2. Let Ψ(µ) =∑
w∈W Ψw(µ) where Ψw(µ) =

∑
p∈Pw µp logµp − µp.

It is obvious that the function Ψw(µ) is 1
mw

-strongly
convex on {(µp)p∈Pw :

∑
p∈Pw µp = mw}, for sub-gradient

s ∈ ∂Ψ(µ′),

Ψ(µ)−Ψ(µ′) ≥ 〈s, µ− µ′〉+
∑
w∈W

1

2mw

∑
p∈Pw

(µp − µ′p)2

≥ 〈s, µ− µ′〉+
1

2M
‖µ− µ′‖2

The attack is the KL divergence under the choice of Ψ,a† =

DΨ(µt0 , µ†) =
∑
p∈P µ

t0
p log(

µt0p

µ†p
). Let supp(µt0) ⊆

supp(µ†) such that a† is finite, let γw = minp∈Pw,µp>0 µ
†
p.

by Hölder’s inequality (the lower bound) and reverse Pinsker’s
inequality (the upper bound),

∑
p∈P

µt0p log

( |P|µt0p
M̄

)
≤ a† ≤ ‖µt0 − µ†‖21

minw∈W γw ln 2
,

the first equality holds when µ† is such that every path has
equally distributed flow. By triangular inequality, the a† is
bounded by 4M̄2

minw∈W γw ln 2 . Plugging in a† into Proposition
1 yields the results.
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