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Abstract— In this paper, we propose a combined Magnitude
Saturated Adaptive Control (MSAC)-Model Predictive Control
(MPC) approach to linear quadratic tracking optimal control
problems with parametric uncertainties and input saturation.
The proposed MSAC-MPC approach first focuses on a stable
solution and parameter estimation, and switches to MPC when
parameter learning is accomplished. We show that the MSAC,
based on a high-order tuner, leads to parameter convergence
to true values while providing stability guarantees. We also
show that after switching to MPC, the optimality gap is well-
defined and proportional to the parameter estimation error.
We demonstrate the effectiveness of the proposed MSAC-MPC
algorithm through a numerical example based on a linear
second-order, two input, unstable system.

I. INTRODUCTION

Adaptive control is developed to address the presence of
parametric uncertainties. The term “adaptive” suggests that
an adaptive controller can modify its behavior in response
to sudden changes in the dynamics of the process [1], with
emphasis on a real-time solution that achieves typical control
objectives including tracking a reference signal and stabiliza-
tion. Therefore, the performance is evaluated with present
and instantaneous properties, e.g., stability guarantees. In
general, future behaviors such as optimality of the system
trajectory are not considered in the goals of adaptive control
systems.

Optimal control methods, in contrast, focus on finding
control strategies to minimize a specific cost function that the
system is expected to incur over a future time horizon. Other
control goals such as stabilization and reference tracking
are often incorporated through specific cost function designs
or constrained optimization formulations. To achieve cost
minimization, optimal control strategies rely on having an
accurate model, which requires knowledge of both the model
structure and parameters within.

When parametric uncertainties occur, an accurate model
is no longer available, and hence the problem becomes more
complex, as one has to determine a controller that both adapt
to uncertainties and achieve optimality goals. We propose a
solution to this complex problem which combines Magnitude
Saturated Adaptive Control (MSAC) and Model Predictive
Control (MPC) approaches. The proposed MSAC-MPC con-
troller first focuses on fast adaptation by leveraging high-
order tuner-based adaptation laws, which guarantees stability
of the closed-loop system, and ensures parameter learning
in the presence of persistent excitation [2]. Once parameter
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learning is accomplished, our proposed controller shifts its
focus to the optimality objective, which utilizes a MPC
structure to minimize cost using the estimated model learnt
during adaptation. In addition, the MSAC component in
our proposed approach incorporates control input magnitude
saturation, which is equivalent to input constraints commonly
seen in optimal control problems. All discussions are limited
to linear time-invariant systems.

In the literature, approaches to solve adaptive optimal
control problems can be broadly categorized into direct
and indirect adaptive optimal control methods (see [3] for
definitions). As introduced in [4], indirect adaptive optimal
control methods distinguish from their direct counterpart by
explicitly learning the unknown parameters. Indirect adaptive
optimal control approaches often utilize a robust optimal con-
trol framework. As an example, the Adaptive MPC proposed
in [5] iteratively updates estimates of the uncertain param-
eters and their error bounds, and optimizes with respect to
the worst case using a robust MPC design [6]. Although this
approach provides proof of stability guarantees and achieves
optimality goals, it accomplishes these goals by solving a
min-max optimization problem to ensure robustness over all
possible uncertain parameter values in a compact set, which
is computationally very expensive, thus less suitable for real-
time decision making tasks. In comparison, our proposed
approach focuses on real-time control and parameter learning
during adaptation, therefore, reduces the estimation error
of uncertain parameters rapidly, and avoids the need for
invoking robust MPC.

Direct adaptive optimal control methods, which refer to
methods that do not learn uncertain parameters explicitly,
are mainly developed based on online approximate dynamic
programming (ADP) algorithms such as value iteration and
policy iteration [7]. As an example, the computational
adaptive optimal control method proposed in [8] for lin-
ear systems with unknown matrices uses policy iteration
to iteratively solve the Riccati equation and consequently
find optimal control policy, instead of identifying system
dynamics. Similar approaches are developed in [9], [10],
and [11]. Although these online algorithms are shown to
be very effective and provide stability guarantees, most
of them require an initial stable control policy, which is
often unavailable especially in the case where parametric
uncertainties occur online. Our proposed MSAC approach
avoids this difficulty and ensures that the proposed real-time
controller will guarantee boundedness and a small tracking
error, without any requirement of an initial controller that
guarantees closed-loop stability.

The main contribution of this paper is that the proposed
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MSAC-MPC approach provides real-time stable solution and
parameter estimation during MSAC adaptation, and achieves
near-optimal solution using MPC after parameter learning.
Further, our approach is applicable to both finite-horizon and
infinite-horizon optimal control problems.

The remainder of this paper is organized as follows. In
Section II, we formulate the adaptive optimal control prob-
lem. In Section III, we introduce the linear quadratic tracking
problem and derive a structure of optimal solutions under
input constraints. In Section IV, we propose the MSAC-MPC
controller and present theoretical results including stability
guarantees, parameter learning, and optimality analysis. In
Section V, we demonstrate the proposed approach in a
numerical example. The paper is concluded in Section VI.

II. PROBLEM FORMULATION

Consider a linear system with parametric uncertainties,

ẋp = Apxp +BpΛ(Bsat(u)) (1)

where xp ∈ Rnx is the state vector that is assumed to be
measurable, u∈Rnu is the control input vector. The unknown
parameters are Ap ∈ Rnx×nx , Λ ∈ Rnu×nu , and we assume Λ

is a diagonal matrix with all entries positive. The function
Bsat(u) represents control input saturation by a ball centered
at origin with a fixed radius umax ∈ R, i.e.,

Bsat(u) =

{
u, ‖u‖ ≤ umax
‖u‖
umax

u, ‖u‖> umax
(2)

The objective is to compute an optimal control law for the
system in (1) such that the following quadratic cost function
is minimized over a prediction horizon of length T = t1− t0,

J = h(xp(t1))+
∫ t1

t0
l(xp,u,τ)dτ (3)

where h(x) = (x−xd(t1))T Q f (x−xd(t1)),Q f =QT
f � 0 is the

terminal cost matrix, and l(x,u,τ)= (x(τ)−xd(τ))
T Q(x(τ)−

xd(τ))+ u(τ)T Ru(τ),Q = QT � 0,R = RT � 0 is the stage
cost matrices. Note that the stage cost is penalizing a tracking
error, ep = xp − xd , which forces the system to track an
exogenous signal xd(τ).

In the optimal control framework, the input magnitude
saturation in (2) is equivalent to input constraints. Therefore,
the overall problem we are addressing in this paper can be
formulated as a linear quadratic tracking (LQT) problem with
parametric uncertainties in system dynamics,

min
u(τ)

J = h(xp(t1))+
∫ t1

t0
l(xp,u,τ)dτ (4a)

subject to x(t0) = x0 (4b)
ẋp(τ) = Apxp(τ)+BpΛ(u(τ)) ∀τ ∈ [t0, t1] (4c)
u(τ) ∈U, ∀τ ∈ [t0, t1] (4d)
U = {u ∈ Rnu : ‖u‖ ≤ umax} (4e)

Two assumptions are made to simplify the problem:
Assumption 1: R is a diagonal matrix with identical en-

tries, i.e., ∃Ru > 0 such that R = RuInu×nu .

Assumption 2: The exogenous signal xd(t) that is desired
to be tracked and its derivative ẋd(t) are known.

The main difficulty is that directly solving the optimization
problem when Ap and Λ are unknown in the dynamics con-
straints is intractable. In addition, LQT problems with input
constraints generally do not have an explicit solution because
the solution involves exogenous signal xd(t), unlike linear
quadratic regulation (LQR) problems where stabilization is
the goal.

The solution we propose, termed MSAC-MPC, proceeds
thus. First, we propose a magnitude-saturation constrained
adaptive controller (MSAC), where the controller guarantees
bounded solutions and persistent excitation of the underlying
regressor guarantees learning of the parameters. The resulting
parameter estimates are then used to switch to an MPC
controller, and the overall cost is evaluated in terms of
the residual parameter error after a finite time. Numerical
examples are provided to illustrate the nature of the overall
MSAC-MPC controller.

III. LINEAR QUADRATIC TRACKING CONTROL

We first address the LQT problem in (4a)-(4e) when Ap
and Λ are known. When there is no control input constraint,
i.e., U = Rnu , the unconstrained optimal controller u∗uc(τ)
assumes a linear feedback form, and the corresponding
optimal cost-to-go function is quadratic in x(τ), [12]

u∗uc(τ) =−R−1(BpΛ)T (Suc
1 (τ)+Suc

2 (τ)x(τ)) (5a)

V ∗uc(x,τ) = x(τ)T Suc
2 (τ)x(τ)+2x(τ)T Suc

1 (τ)+Suc
0 (τ) (5b)

A. Linear feedback control

In this subsection, we show the cost-to-go function as-
sociated with (4a)-(4e) under any linear feedback control is
quadratic. We also provide a bound on the cost-to-go function
in terms of error bounds on the control parameters. Following
Lemma 1 in [10], a cost-to-go function V π associated with
a fixed feedback control policy u(τ) = π(x(τ)) can be found
by solving the following equation,

l(x,u,τ)+
∂V π

∂x
(Apx+BpΛu)+

∂V π

∂τ
= 0 (6)

In the case where π(x(τ)) is a linear feedback control
policy, by solving (6), we have the following proposition.

Proposition 1: Under any linear feedback control law
u(τ) = π(x,τ) = Kπ

1 (τ)x(τ)+Kπ
0 (τ), the cost-to-go function

is quadratic, V π = xT Sπ
2 x+2xT Sπ

1 +Sπ
0 .

Ṡπ
2 =−Q−Sπ

2 (Ap +BpΛKπ
1 )− (Ap +BpΛKπ

1 )
T Sπ

2
T

−Kπ
1

T RKπ
1 (7a)

Ṡπ
1 = Qxd− [Sπ

2 Kπ
0 +(Ap +BpΛKπ

1 )
T Sπ

1
T +Kπ

1
T RKπ

0 ] (7b)

Ṡπ
0 =−xT

d Qxd−2Sπ
1 Kπ

0 −Kπ
0

T RKπ
0 (7c)

with boundary conditions,

Sπ
2 (t1) = Q f ,Sπ

1 (t1) =−Q f xd(t1),Sπ
0 (t1) = xT

d Q f xd
Remark 1: When Kπ

1 = −R−1(BpΛ)T Suc
2 and Kπ

0 =
−R−1BT Suc

1 , the unconstrained optimal control and optimal
cost-to-go function are recovered, i.e., u = u∗uc and V π =V ∗uc.



Based on the results in Proposition 1, for two linear feed-
back control laws with similar gain matrices, the resulting
cost-to-go functions will also be close in their values.

Proposition 2: For any two linear feedback laws
πi(x,τ) = Kπi

1 (τ)x(τ) + Kπi
0 (τ), i = 1,2, if there exists

δ > 0, such that max j{supτ∈[t0,t1] ‖K
π1
j −Kπ2

j ‖} ≤ δ , then
the corresponding cost-to-go functions, defined by (7a)-(7c),
V π1 ,V π2 , satisfy |V π1 −V π2 | ≤ O(δ 2).
Quadratic coefficient matrices, Sπ

j , are defined by differential
equations in (7a)-(7c). It is not difficult to see that Sπ

2 is
a quadratic function of Kπ

1 , Sπ
1 is a quadratic function of

Kπ
1 ,K

π
0 , and Sπ

0 is a quadratic function of Kπ
0 . In addition,

V π is a linear function of Sπ
2 ,S

π
1 ,S

π
0 , therefore, a quadratic

function of Kπ
1 ,K

π
0 , which implies,

|V π1 −V π2 |= O(max
j=0,1
{ sup

τ∈[t0,t1]
‖Kπ1

j −Kπ2
j ‖}) = O(δ 2)

B. Input Constrained LQT

Now we consider the LQT problem with input constraints
described in (4a)-(4e) with U $ Rnu . In the following the-
orem, we show that the constrained optimal control input
u∗ is the point in admissible set U closest to unconstrained
optimal control u∗uc under a distance metric defined by R, i.e.
dR(x,y) = (x− y)T R(x− y).

Theorem 1: If u∗ is an optimal solution to (4a)-(4e), then
u∗ satisfies u∗ = argminu∈U (u−u∗uc)

T R(u−u∗uc).
Proof: Let H be the Hamiltonian of (4a)-(4e),

H = p0l(x(τ),u(τ),τ)+ p(τ)T (Apx(τ)+BpΛu(τ))

where p0 ∈ 0,1 is a binary variable constant in τ , p(τ) ∈
Rnx is the Lagrange multiplier. Since there is no additional
equality constraint other than system dynamics, p0 = 1 [13].

Using Pontryagin’s Maximum Principle (PMP), by mini-
mizing H with resepct to u subject to input constraint u∈U ,
the optimal control input under constraint u∗ is

u∗ = argminu∈U u(τ)T Ru(τ)+ p(τ)T BpΛu(τ)

Note that for the reduced quadratic cost, unconstrained
optimal solution is u∗uc =− 1

2 R−1(BpΛ)T p, which satisfies

uT Ru+ pT BpΛu = (u−u∗uc)
T R(u−u∗uc)−u∗uc

T Ru∗uc

Since u∗uc does not depend on u explicitly, we have

u∗ = argminu∈U (u−u∗uc)
T R(u−u∗uc)

The Lagrange multipliers p(τ) are defined by the follow-
ing differential equations and boundary conditions, which are
the adjoint equations and transversality conditions in PMP,

ṗ(τ) =−∇xH = p(τ)T Ap−2Q(x(τ)− xd(τ))

p(t1) = 2Q(x(t1)− xd(t1))

0 = l(t1)+ p(t1)T (Apx(t1)+BpΛu(t1))

Corollary 1: Under Assumption 1, and the admissible
set U is a ball around origin, i.e. U = {u ∈ Rnu : ‖u‖2 ≤
umax},umax > 0, u∗ can be written as u∗ = u∗uc

umax
‖u∗uc‖

, which is
a linear feedback controller.

Proof: By Theorem 1, when R = RuInu×nu ,

u∗ = argminu∈U Ru‖u−u∗uc‖2 = argminu∈U‖u−u∗uc‖2

If U is a ball of radius umax around the origin, then the
closest point to u∗ is the projection of u∗ on the outside
sphere, therefore, u∗ = u∗uc

umax
‖u∗uc‖

.

IV. MSAC-MPC: ADAPT, LEARN, OPTIMIZE

In the previous section, we have established that the opti-
mal solution to a input-constrained LQT problem with known
system matrices (4a)-(4e) is a linear feedback controller, with
the assumption that the parameters were known. It should
be noted that these parameters were directly used in the
LQT control design. Now we address the input-constrained
LQT problem with parametric uncertainties. As illustrated in
Figure 1, the proposed MSAC-MPC controller first adapts
over [0,Tadap] and then switches to an MPC controller.

The main difficulty in extending the approach described
in Section III lies in computing optimal control while para-
metric uncertainties are present in the system dynamics.
Adaptive MPC approaches, e.g., in [5], propose to esti-
mate the unknown parameters based on state measurements
while computing optimal control using currently estimated
parameter values. While these approaches provide stabil-
ity guarantees through robust MPC designs, the resulting
min-max optimization problems are computationally quite
burdensome. From a real-time control perspective, when
computation power is limited and control input needs to be
determined within a short time, the proposed MSAC-MPC
controller may prove to be attractive. During [t0, t0 +Tadap],
our controller focuses primarily on a stable solution and
on learning the unknown parameters. After this finite time,
we show that one can switch to MPC with a well-defined
optimality gap that is proportional to the parameter error
that is present for t ≥ t0 +Tadap.

Fig. 1: A diagram of MSAC-MPC Algorithm (t0 is assumed
to be zero).

A. MSAC: Adapt and Learn

The MSAC controller in this paper follows the adaptive
control structure proposed in [14] for multi-input systems,
but replaces the parameter adaptation by a high-order tuner
in [2]. The motivation behind such a combination is that
we explicitly accommodate input constraints and guarantee
boundedness as in [14] while ensuring that the speed of
convergence is fast when compared to [14], as in [2].



1) Adaptive control design: As in all adaptive control
designs [3], a known reference system is chosen as,

ẋm = Amxm +Bmr (8)

where xm ∈ Rnx , r ∈ Rnu is a bounded reference input
satisfying ‖r‖ ≤ rmax, and Am is a Hurwitz matrix, and Bm
is full column rank.

The magnitude saturated multi-input model reference
adaptive controllrer (MSAC) is defined as (see [14] for
details),

u = Θ̂Φ, Θ̂ = [K̂x, K̂r], Φ = [xT
p ,r

T ]T (9)

We assume there exists an ideal matrix Kx ∈ Rnu×nx and
an ideal vector Kr ∈ Rnu×nu corresponding to the unknown
parameters in (1), which satisfy

Ap +BpΛKx = Am, BpΛKr = Bm

The parameter estimation errors are defined as,

K̃x = K̂x−Kx, K̃r = K̂r−Kr, Θ̃ = [K̃x, K̃r]

Let ∆u = Bsat(u)−u. The closed-loop dynamics is,

ẋp = (Ap +BpΛKx)xp +BpΛKrr+BpΛ(Θ̃Φ+∆u) (10)

By subtracting (8) from (1) and defining error e = xp−xm,
the closed-loop error dynamics is obtained as,

ė = Ame+BpΛ(Θ̃Φ+∆u) (11)

To address the nonlinear disturbance ∆u introduced by the
input magnitude saturation, we introduce an auxiliary error
e∆ generated by the following dynamics,

ė∆ = Ame∆ +Bpdiag(λ̂ )∆u

where λ̂ ∈ Rnu is a vector that estimates the unknown
diagonal entries of Λ. We also denote the diagonal vector
of Λ as λ , and define λ̃ = λ̂ −λ .

Define eu = e− e∆, the augmented error eu is used to
establish the stability results, whose error dynamics is,

ėu = Ameu +Bp[ΛΘ̃,diag(λ̃ )][ΦT
∆uT ]T (12)

Let Θa = [Θ,Λ], Θ̂a = [Θ̂,diag(λ̂ )], Φa = [ΦT ,−∆T
u ]

T . The
High-order Tuner-based Adaptation laws are chosen as,

Ξ̇a =−γBT
p PeuΦ

T
a (13a)

˙̂
Θa =−β (Θ̂a−Ξa)Nt (13b)

Nt = 1+µΦ
T
a Φa, µ ≥ 2γ

β
‖PBp‖2

F (13c)

where P is the solution to Lyapunov equation, AT
mP+PAm =

−Q and Q is a positive definite matrix.
The goal of the adaptive controller is to show that the

adaptation laws in (13a)-(13c) guarantee that the tracking
error e remains small and that all signals in the closed-loop
system are bounded. Once this is accomplished, persistent
excitation arguments are to be used to ensure that Θ̂a
converges to the true value. We now link the convergence
of the error e to the tracking of the desired signal xd by

specifying the reference input r(t) in the reference model as
follows.

Using Assumption 2, we choose the reference input r as

r = (BT
mBm)

−1BT
m(−Amxd + ẋd) (14)

Let em = xm− xd . Since the error dynamics is ėm = Amem,
and Am is Hurwitz, we have that ‖em(t)‖→ 0 as t→ ∞.

Now that we have a complete MSAC design described in
(9), (12), (13a)-(13c), and (14), we are ready to state stability
results and parameter learning results.

2) Stability results: Let Θ̃a = Θ̂a−Θa. Consider a Lya-
punov function candidate,

V = eT
u Peu +

1
γ

Tr
[
(Ξa−Θa)

T
Λ

T
a (Ξa−Θa)

]
+

1
γ

Tr
[
(Θ̂a−Ξa)

T
Λ

T
a (Θ̂a−Ξa)

]
(15)

where Λa =

[
Λ 0
0 Inu×nu

]
is used for compact notation.

It follows that

V̇ = eT
u (PAm +AT

mP)eu +2eT
u PBp[ΛΘ̃Φ−diag(λ̃ )∆u]

−Tr[(Ξa−Θa)
T (Λa +Λ

T
a )B

T
p PeuΦ

T
a ]

− β

γ
Tr
[
(Θ̂a−Ξa)

T (Λa +Λ
T
a )(Θ̂a−Ξa)

]
Nt

+Tr
[
(Θ̂a−Ξa)

T (Λa +Λ
T
a )B

T
p PeuΦ

T
a

]
=−eT

u Qeu +2eT
u PBp[ΛΘ̃Φ−diag(λ̃ )∆u]

−Tr
[
(Ξ−Θ)T (Λ+Λ

T )BT
p PeuΦ

T ]
+2Tr

[
(diag(λε)−diag(λ̂ ))T BT

p Peu∆uT
]

− β

γ
Nt [Tr[(Θ̂−Ξ)T (Λ+Λ

T )(Θ̂−Ξ)]

+2Tr(diag(λ̂ )−diag(λε))
T (diag(λ̂ )−diag(λε))]

+Tr[(Θ̂−Ξ)T (Λ+Λ
T )BpPeuΦ

T ]

+2Tr[(diag(λ̂ )−diag(λε))
T BT

p Peu(−∆u)T ]

=−eT
u Qeu +4eT

u PBpΛ(Θ̂−Ξ)Φ

− β

γ
(1+µ‖Φ‖2)Tr[(Θ̂−Ξ)T (Λ+Λ

T )(Θ̂−Ξ)]

−4eT
u PBp(diag(λ̂ )−diag(λε))∆u− β

γ
(1+µ‖∆u‖2)

·2Tr[(diag(λ̂ )−diag(λε))
T (diag(λ̂ )−diag(λε))]

≤−2‖eu‖2 +4‖eu‖‖PBpΛ(Θ̂−Ξ)‖F‖Φ‖

− 2β

γ
(1+

2γ

β
‖PB‖2

F‖Φ‖2)Tr
[
(Θ̂−Ξ)T

Ω
T

Ω(Θ̂−Ξ)
]

+4‖eu‖‖PBp(diag(λ̂ )−diag(λε))‖F‖∆u‖

− 2β

γ
(1+

2γ

β
‖PBp‖2

F‖∆u‖2)

·Tr[(diag(λ̂ )−diag(λε))
T (diag(λ̂ )−diag(λε))]

=−
[
‖eu‖−2‖PBp‖2‖(Θ̂−Ξ)T

Ω‖F‖Φ‖
]2

−
[
‖eu‖−2‖PBp‖2‖diag(λ̂ )−diag(λε)‖F

]2
≤ 0



Therefore, eu,Θ̂a,Ξa ∈L∞. Define Kmax = max‖Θ̃a‖,

Kmax ≥max
(

sup‖K̃x‖,sup‖K̃r‖,sup‖λ̃‖
)

We define the following variables for compact notations
in the error bound definition:

qmin = mineig(Q), pmin = mineig(P), pmax = maxeig(P),

ρ =

√
pmax

pmin
, ūmin = min

i
(umax,i), ūmax = max

i
(umax,i),

PB = ‖PBpΛ‖,λmin = min(eig(Λ))

Additionally, the following variable definitions are used in
the main stability result, Theorem 2.

β =
PBKmax

‖K∗x ‖+Kmax
,a0 =

ūminKmax

‖K∗x ‖+Kmax

xmin =
3PBKmax(rmax +1)+3PB‖K∗r ‖rmax

qmin−3PBKmax

+
2PBūmax

qmin−3PBKmax

xmax =
PBa0

|qmin−2PB‖K∗x ‖|

K̄max =
qmin− ρ

a0
(3‖K∗r ‖rmax +2ūmax) |qmin

3PB +
3ρ

a0
(rmax +1)|qmin−2PB‖K∗x ‖|

− 2PB‖K∗x ‖|
3PB +

3ρ

a0
(rmax +1)|qmin−2PB‖K∗x ‖|

where all vector norms are 2-norm and the matrix norm in
PB is the induced matrix norm, which implies ‖PBpΛx‖ ≤
PB‖x‖.

Theorem 2: For the closed-loop system with adaptive
controller and adaptation laws described in (1) (9), and (13a)-
(13c), x(t) has bounded trajectories for t ≥ t0 if

1) ‖x(t0)‖< xmax
ρ

2)
√

V (t0)< K̄max

√
λmin
γmax

Moreover, ‖x(t)‖ < xmax,∀t ≥ t0, and the error variable is
of the same order as the difference between saturated input
Bsat(u(t)) and the unsaturated u(t), i.e.,

‖e‖= ‖xp− xm‖= O
[

sup
τ≤t
‖∆u(τ)‖

]
The proof is very similar to the one for Theorem 1 in [14].

Note that in the proof especially parts related to the error
bounds, adaptation laws are not directly involved, instead,
parameter estimation error upper bound Kmax is used to
bound the error term. The boundedness of Kmax relies on
Θ̃a ∈L∞, which is proved by showing the candidate in (15)
is indeed a Lyapunov function.

It should be noted that the stability results hold for any
initial values of control gain matrix estimates K̂1(t0), K̂0(t0).
The main advantage of the MSAC is that it can provide
stable solutions without any prior knowledge of unknown
parameters, in comparison to policy iteration methods such
as [8] where an initial stable controller is assumed to be
available, which requires at least partial information about
the unknown parameters.

3) Parameter learning: Now that boundedness and
asymptotic properties of the tracking error are established
we proceed to learning of the unknown parameters. In order
to learn Θa, the regressor Φa must satisfy persistent exci-
tation properties. We now introduce definitions of persistent
excitation and the conditions for parameter learning.

Definition 1: A bounded function Φ : [t0,∞) → Rnu is
persistently exciting (PE) if there exists T > 0 and α > 0
such that

∫ t+T

t
Φ(τ)ΦT (τ)dτ ≥ αI, ∀t ≥ t0. (17)

If ‖Φ̇(t)‖ is bounded for all t, equivalently, an alternative
definition can be given as follows,

Definition 2: Φ is PE if there exists an ε > 0, a t2 and
a sub-interval [t2, t2 + δ0] ⊂ [t, t + T ] such that for all unit
vectors ω ∈ Rnu

1
T

∣∣∣∣∫ t2+δ0

t2
Φ(τ)T

ωdτ

∣∣∣∣≥ ε, ∀t ≥ t0 (18)

Lemma 1: Let ε and δ be given positive numbers. There
exists T = T (ε,δ ) such that if z(t) = [eu(t)T ,Θ̃a(t)T ]T is a
solution with ‖z(t1)‖ ≤ ε1, then there exists some t2 ∈ [t, t +
T ] such that ‖Θ̃a(t2)‖ ≤ δ .

Theorem 3: If Φa(t) satisfies the persistent excitation
property in (18), then the origin in (13), eu = 0,Ξa = 0,Θa =
0, is uniformly asymptotically stable.

Under the assumption that Φa(t) satisfies persistent exci-
tation property, Lemma 1 and Theorem 3 state that arbitrary
accuracy of estimated parameters can be achieved in finite
time. Given a positive estimation accuracy δ , we can always
find t2 such that ‖Θ̃a‖≤ δ . This implies that given a δ , there
exists a large enough Tadap such that, ‖Θ̃a(Tadap)‖ ≤ δ is
satisfied. We refer the readers to [15], where detailed proofs
can be found. As the underlying asymptotic convergence is
not necessarily exponential, an explicit bound on Tadap that
leads to a desired accuracy δ is yet to be defined. Non-
asymptotic tools [16] may need to be examined for this
purpose.

B. MPC: Optimize after parameter learning

Now that the unknown parameter values have been es-
timated with accuracy δ > 0, we can proceed to replace
the unknown parameters in the optimal control problem
considered in Section III with the parameter estimates. More
precisely, at t = t0 +Tadap, we compute the plant parameter
estimates as:

Âp = Am−BpΛ̂K̂x(t0+Tadap), Λ̂ = diag(λ̂ (t0+Tadap)) (19)

Since there is still some discrepancy between unknown
parameters and their estimates, we choose a model predictive
control (MPC) design to compute an approximate optimal
control, uMPC. This carried out at every sampling time instant



ti as follows [17].

min
u(τ)

J = h(xp(ti +T ))+
∫ ti+T

ti
l(xp,u,τ)dτ (20a)

subject to x(t0) = x0 (20b)

ẋp(τ) = Âpxp(τ)+BpΛ̂(u(τ)),∀τ ∈ [ti, ti +T ]
(20c)

u(τ) ∈U, ∀τ ∈ [ti, ti +T ] (20d)
U = {u ∈ Rnu : ‖u‖ ≤ umax} (20e)

We denote uAOC(τ),τ ∈ [ti, ti + T ] as the solution to (20)
and denote uMPC(τ) = uAOC(τ),∀τ ∈ [ti, ti+1]. We denote the
corresponding cost-to-go as V MPC. It is also assumed that
t1 ≥ t0 +Tadap.

Under Assumption 1, by Corollary 1, uMPC is a linear
feedback controller, denoted as uMPC = K̂1xp + K̂0. It should
be noted that the parameters of uMPC, K̂1 and K̂0 are directly
dependent on the estimated plant parameters Âp and Λ.
Similarly, denoting the optimal solution of the problem in
(4a)-(4e) as u∗, it is easy to infer from Corollary 1, again,
that u∗ = K∗1 xp +K∗0 .

Since ‖Θ̂a‖ ≤ δ , Θ̂a = [K̂x, K̂r, Λ̂], by (19),

‖Âp−Ap‖= O(δ ), ‖Λ̂−Λ‖ ≤ δ

Note that

‖K̂1−K∗1‖= O(δ ),‖K̂0−K∗0‖= O(δ )

Using Proposition 2, it follows that the deviation in the
corresponding cost-to-go functions is given by

|V MPC−V ∗| ≤ O(δ 2) (21)

In conclusion, the discrepancy between the cost associated
with system trajectories generated using uMPC and the opti-
mal cost is quantified in (21), and it summarizes the main
advantage of the proposed MSAC-MPC controller. That is,
the MSAC-MPC controller results in a cost that differs from
the optimal cost by an order of magnitude comparable to
parameter error δ and is of the order δ 2. This optimal cost
is evaluated after a time Tadap elapses after t0. The benefit of
the proposed method is the reduction of the computational
burden over [t0, t0 + Tadap] in comparison to [5] where a
min-max optimization will have to be solved to compute a
controller robust for all values of Ap and Λ in a compact set.
Instead, our controller is chosen to be stable and sub-optimal
over [t0, t0 +Tadap] and near-optimal for t ≥ t1 > t0 +Tadapt .
Ensuring optimality over [t0, t0+Tadap] is a difficult problem
that remains to be addressed.

V. NUMERICAL EXAMPLE

A numerical example is implemented to demonstrate the
ability of proposed MSAC-MPC algorithm to ensure closed-
loop system stability, learn unknown parameter values before
Tadap, and perform optimal control after Tadap. The plant is
chosen as an unstable, second-order linear system with two
inputs in the form of (1), where

Ap =

[
1 1
0 1

]
,Bp =

[
1 0
0 1

]
,Λ =

[
1 0
0 1

]

The reference system is chosen as specified in (8) with

Am =

[
−1 1
0 −2

]
,Bm =

[
1 0
0 1

]
The input magnitude saturation function Bsat(u) is defined

in (2), and the admissible input set U is defined in (4e), where
the umax is chosen as umax = 8. Without loss of generality, it
assumed that t0 = 0.

The exogenous signal desired to be tracked is defined as,

xd(t) =
[

sin(t)+ sin(3t)+ sin(5t)+ sin(7t)
sin(2t)+ sin(4t)+ sin(6t)

]
Note that there are 12 uncertain parameters in Θa to be
estimated. Choosing the above xd with sinusoidal signals at 7
different frequencies ensures Φa to have persistent excitation
properties in (18) [3].

The penalty matrix Q, R defined in (4a) are chosen as
follows,

Q =

[
20 0
0 20

]
,R =

[
1 0
0 1

]
The initial condition of the state xp is set to xp(0)= [0,0]T .

The initial parameter estimator values are chosen as Θ̂a(0) =
0.8Θa.

In the simulation, Tadap = 32π is chosen to ensure pa-
rameter learning is performed sufficiently. MSAC controller
defined in (9), (14), (12), (13a)-(13c) is applied to (1)
during t ∈ [0,Tadap]. The MPC controller uMPC is run dur-
ing [Tadap,Tadap +TMPC], where TMPC = 8 [sec]. Simulation
results for MSAC controller is shown in Figure 2-4.

Fig. 2: State trajectories of plant xp, reference system xm,
and exogenous signal xd .

Fig. 3: Time histories of unsaturated u and saturated Bsat(u).

Fig. 4: 2-norm of parameter estimation error Θ̃a.



In Figure 2, it is observed that xm follow xd closely. Due
to active control input saturation (2) observed in Figure 3,
the tracking error ‖xp− xd‖ is not converging to zero, but
it is the same order of magnitude as ∆u defined in defined
in Section IV.A, which demonstrates the MSAC controller’s
ability to provide stability guarantees. It is also observed
in Figure 4 that under PE condition, the MSAC controller
is able to reduce the parameter estimation error rapidly, as
stated in Theorem 3.

After Tadap, the MSAC-MPC controller switches to uMPC

defined in Section IV.B. The simulation results are shown in
Figure 5-6, where xp is the plant state trajectory generated
by applying uMPC to (1), and x∗p is the latent optimal state
trajectory generated by applying u∗ to (1). It is observed that
xp and uMPC match with x∗p and u∗ closely, respectively.

Fig. 5: Comparison between time histories of plant state xp
and optimal state x∗p.

Fig. 6: Comparison between time histories of uMPC and u∗.

VI. CONCLUSIONS

In this paper, we have developed a MSAC-MPC controller
to address linear quadratic tracking optimal control problems
under parametric uncertainties and input saturation. Theoreti-
cal results have been developed to show the proposed MSAC
controller is able to provide stable solutions and achieve
parameter learning under persistent excitation, and that after
switching from MSAC to MPC controller, the optimality
gap is proportional to the parameter estimation error bound.
A numerical example based on an unstable second-order,
two-input system has been developed to demonstrate the
effectiveness of the MSAC-MPC controller along with its
parameter learning ability and well-defined optimality gap.
We note that during the first step when adaptation is being
carried out, the controller is stable but not optimal, and

that during the second step, it is near-optimal. How these
optimality gaps can be further reduced is a topic for future
research.
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