
ar
X

iv
:2

30
3.

06
86

1v
1 

 [
m

at
h.

O
C

] 
 1

3 
M

ar
 2

02
3

On the achievable degree of stability in strictly negative imaginary state

feedback control

James Dannatt1, Ian Petersen2

Abstract— In this paper we study the problem of determining
the largest degree of stability that can be achieved for SISO
systems using negative imaginary state feedback control. A
state feedback result is given for synthesising a controller
for a plant such that a given closed-loop transfer function is
strictly negative imaginary with a prescribed degree of stability.
By varying a parameter, the placement of the closed-loop
system poles can be adjusted to give a prescribed degree of
stability. We show the achievable degree of stability is related
to the zero locations of the transfer function from the control
input to the disturbance output of the nominal plant being
controlled. Moreover, we offer results that outline the largest
degree of stability that can be achieved for systems with distinct
eigenvalues.

I. INTRODUCTION

The theory of negative imaginary (NI) systems is broadly

applicable to problems of robust vibration control for flex-

ible structures; e.g., see [1]–[4]. In these control systems,

unmodelled spillover dynamics can degrade control system

performance or lead to instability if the controller is not

designed to be robust against this type of uncertainty. NI

systems theory provides a way analyzing robustness and

designing robust controllers for such flexible structures in the

case of collocated force actuators and position sensors; e.g.,

see [3]–[9]. Motivated by the robust stability properties of

NI systems, research has been made into controller synthesis

results with the aim of creating a closed-loop system with

the NI or SNI property [1], [10].

In this paper, we concentrate on the state feedback neg-

ative imaginary control problem as illustrated in Figure 1.

In this control problem, the unmodelled flexible dynamics

are represented by the plant uncertainty ∆(s) which are

assumed to have the NI or SNI property. This is a natural

assumption in the control of flexible structures, since it is

known that any flexible structure with collocated force inputs

and position outputs will have the NI property; e.g., see [2].

The (strictly) NI state feedback control problem is concerned

with synthesising a state feedback control law u = Kx, such

that the corresponding closed-loop system will be guaranteed

to have the (strictly) NI property

One method of approaching the SNI state feedback control

problem has been to form a controller using the solution
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Fig. 1. A state feedback control system with plant uncertainty ∆(s).

to a certain algebraic Riccati equation (ARE) [11], [12].

However, it has been shown that the associated ARE used

in these results does not have a stabilizing solution [13]. To

avoid the computation complexity of solving this ARE, [14]

proposed a controller synthesis approach using the solution

to an algebraic Riccati equation (ARE) that could be obtained

by solving two Lyapunov equations. The approach was

computationally efficient, but yielded a closed-loop pole at

the origin, ensuring a marginally stable closed-loop system.

This pole at the origin was problematic, as in vibration

control problems for flexible structures, pole placement is

related to the degree of damping achieved for the nominal

resonant modes.

The papers [4], [15] modified the approach of [14] using

a perturbation applied to the plant matrix of the nomi-

nal system in order to ensure asymptotic stability of the

closed-loop system. The perturbation achieved closed-loop

asymptotic stability. However, it was not proven that the

closed-loop system retained the NI property after such a

perturbation. The paper [13] then showed that under suitable

assumptions, the perturbation approach of [4] did in fact

lead to an SNI closed-loop system and by varying the

perturbation parameter, the closed-loop poles of the system

could be shifted further into the complex plane, resulting in a

prescribed degree of stability. The Lyapunov equations used

in forming the controller in this approach also depend on the

perturbation parameter. As a consequence, there are choices

of this parameter that result in the equations no longer being

solvable. This puts a limit on the degree of stability that can

be achieved.

In this paper, we focus on SISO systems and build on

the results of [13] to study the achievable degree of stability

of an SNI closed-loop system formed using the perturbation
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approach of [4]. This issue is important since closed-loop

degree of stability is a key performance measure in vibration

control problems for flexible structures. Our main results

show that the achievable degree of stability for a given

system is limited by the eigenvalues of a certain matrix

that is related to the zeros of the transfer function from

the control input to the disturbance output of the nominal

system. Under suitable assumptions, we quantify how the

perturbation approach of [4] effects this matrix, and the

maximum degree of stability that can be achieved before we

can no longer guarantee the SNI property of the closed-loop

system.

II. PRELIMINARY DEFINITIONS

In this section, we briefly present definitions for both

negative imaginary and strictly negative imaginary systems.

First consider the linear time-invariant (LTI) system,

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), (1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m.

The following two definitions relate to the NI and SNI

properties of the transfer function matrix G(s) = C(sI −
A)−1B + D corresponding to the system (1). We do not

consider a direct feed-through term from disturbance to

output in this work.

Definition 2.1: A square transfer function matrix G(s) is

NI if the following conditions are satisfied [16]:

(i) G(s) has no pole in Re[s] > 0.

(ii) For all ω ≥ 0 such that jw is not a pole of G(s),
j(G(jω) −G(jω)∗) ≥ 0.

(iii) If s = jω0, ω0 > 0 is a pole of G(s) then it is a simple

pole. Furthermore, if s = jω0, ω0 > 0 is a pole of G(s),
then the residual matrix K = lims→jω0

(s− jω0)jG(s)
is positive semidefinite Hermitian.

(iv) If s = 0 is a pole of G(s), then it is either a simple

pole or a double pole. If it is a double pole, then,

lims→0 s
2G(s) ≥ 0.

Also, an LTI system (1) is said to be NI if the corresponding

transfer function matrix G(s) = C(sI −A)−1B+D is NI.

Definition 2.2: A square transfer function matrix G(s) is

SNI if the following conditions are satisfied [16]:

(i) G(s) has no poles in Re[s] ≥ 0.

(ii) For all ω > 0 such that jw is not a pole of G(s),
j(G(jω) −G(jω)∗) > 0.

Also, an LTI system (1) is said to be SNI if the correspond-

ing transfer function matrix G(s) = C(sI −A)−1B +D is

SNI.

Lemma 2.1: ( [17]) Suppose the system (1) is a given state

space realization with R = CB+BTCT > 0 and D = DT .

If there exists a real P = PT ≥ 0 such that

PA+ATP + (CA−BTP )TR−1(CA−BTP ) = 0 (2)

with σ(A − BR−1(CA − BTP )) ⊂ C≤0. Then, the state

space realization and corresponding transfer function is NI.

III. STRICTLY NEGATIVE IMAGINARY STATE FEEDBACK

In this paper are concerned with the use of state feedback

control to achieve a closed-loop system which is SNI and has

a prescribed degree of stability. Moreover, we are concerned

with how stable can we make the eigenvalues of the closed-

loop system while maintaining the SNI property. In this

section, we introduce the SNI state feedback control problem

along with the state feedback results of the papers [4], [13].

In addition to this we will introduce supporting lemmas

that contextualise the perturbation method used in the state

feedback theorem of [4], [13].

A. Problem Formulation

For the SNI state feedback method we will consider in

this paper, we require the following controlled linear state

space system:

ẋ = Ax +B1w +B2u,

z = C1x, (3)

where A ∈ Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×m, and C1 ∈
Rm×n. This system corresponds to the nominal plant transfer

function matrix G(s) in Figure 1.

If we apply a state feedback control law u = Kx to this

system, the corresponding closed-loop system has state space

representation

ẋ = (A+B2K)x+B1w,

z = C1x, (4)

with corresponding closed-loop transfer function Gcl(s) =
C1(sI −A−B2K)−1B1.

We assume that the system (3) satisfies the following

assumptions.

Assumption 1: The matrix C1B2 is non-singular.

Assumption 2: The matrix R = C1B1 +BT
1 C

T
1 > 0.

Assumption 1 is essential for ensuring the existence of the

controller in the state feedback theorem that will follow.

Assumption 2 is necessary to ensure the invertability of a

certain matrix in several of the proofs that follow.

B. Preliminary Results

We now introduce three results that are needed to under-

stand the SNI state feedback theorem discussed in this paper.

Firs,t we will introduce a lemma that details the behavior of

NI systems under an ǫI perturbation applied to the plant

matrix. Then, we present a Schur decomposition applied to

a matrix that is used in controller synthesis to avoid the

potential computational difficulties of solving an ARE that

does not have a stabilizing solution. In the third result, we

remark that the eigenvalues of the matrix used in the Schur

decomposition actually corresponds to the zeros of a certain

related transfer function. Our main results will show that

these eigenvalues dictate the maximum degree of stability



that the closed-loop system can achieve under SNI state

feedback.

Lemma 3.1 ( [13]): Suppose the system (1) is a given

state space realization with m = 1 and an NI transfer

function G(s). Then the perturbed state space realization
[

A − ǫI B

C D

]

will be SNI for all ǫ > 0.

We now introduce the matrix

Ar = Q(A+ ǫI) = Aq + ǫQ. (5)

where

Q = I −B2(C1B2)
−1C1, (6)

Aq = QA, (7)

and ǫ > 0 is a parameter which will determine the degree

of stability of the closed-loop system in the SNI state

feedback theorem of the next subsection. The matrix Ar is

fundamental to the state feedback theorem that follows and

is discussed further in Remark 1.

After applying a real Schur decomposition to the matrix

Ar as in (8a), we may take the orthogonal matrix U and

construct the following matrices:

Ã = UTArU =

[

Ã11 Ã12

0 Ã22

]

, (8a)

B̃ = UTB1 =

[

B̃11

B̃22

]

, (8b)

C̃ = UT
(

B2(C1B2)
−1 −B1R

−1
)

=

[

C̃11

C̃22

]

, (8c)

Z̃ = UTZU = B̃R−1B̃T − C̃RC̃T =

[

Z̃11 Z̃12

Z̃21 Z̃22

]

,

(8d)

where Ã11 has all of its eigenvalues in the closed left half

of the complex plane and Ã22 is an anti-stable matrix; i.e.,

σ(Ã22) ⊂ {s : Re[s] > 0}. Here, U is an orthogonal

matrix dependent on ǫ and is obtained through the real Schur

transformation; see Section 5.4 of [18]. Also,

Z = B1(B
T
2 C

T
1 )

−1BT
2 +B2(C1B2)

−1BT
1

−B2(C1B2)
−1R(BT

2 C
T
1 )

−1BT
2 . (9)

Remark 1: Note that the choice of matrix Ar for the Schur

decomposition above is not arbitrary. The eigenvalues of Aq

correspond to the zeros of the transfer function from u to z

in (3), plus a zero at the origin. To see this, set w ≡ 0 and

note that (3) implies

ż = C1Ax + C1B2u. (10)

Since (C1B2) is invertible by assumption, we can rearrange

(10) to write

u = (C1B2)
−1ż − (C1B2)

−1C1Ax. (11)

Now, we can substitute (11) into (3) to give

ẋ = Ax+B2(C1B2)
−1ż −B2(C1B2)

−1C1Ax

= (A−B2(C1B2)
−1C1A)x+B2(C1B2)

−1ż

= Aqx+B2(C1B2)
−1ż. (12)

These equations define the inverse system which maps from

ż to u. Considering the Laplace transform of ż, suppose

z(0) = 0 and observe that L(ż) = sL(z) + z(0). Thus, the

eigenvalues of Aq will be the zeros of the transfer function

from u to z plus a zero at zero.

C. Negative Imaginary State Feedback

In this section we introduce the SNI state feedback theo-

rem that we will be analysing in our main result to determine

the degree of stability that can be achieved. This theorem can

be found in [4], [13].

Theorem 3.2 ( [13]): Consider the system (3) with m = 1
satisfying Assumptions A1-A2. For a given ǫ > 0, there

exists a static state feedback matrix K such that the closed-

loop system (4) is SNI with degree of stability ǫ if there exist

T ≥ 0 and S ≥ 0 such that

−Ã22T − T ÃT
22 + C̃22RC̃T

22 = 0, (13)

−Ã22S − SÃT
22 + B̃22R

−1B̃T
22 = 0, (14)

T − S > 0, (15)

where Ã22, B̃22 and C̃22 are obtained from the Schur

decomposition (8). Moreover, if the conditions (13)-(15) are

satisfied, then the required state feedback controller matrix

K is given by

K = (C1B2)
−1(BT

1 P − C1A− ǫC1 −R(BT
2 C

T
1 )

−1BT
2 P ),
(16)

where P = UP̃UT and P̃ =

[

0 0
0 (T − S)−1

]

≥ 0.

Here, U is the orthogonal matrix obtained through the Schur

transformation (8).

When the Aq matrix from the Schur decomposition (8)

has no unstable eigenvalues, the dimension of Ã22 is equal

to zero. Therefore, we cannot form (13)-(15). This situation

corresponds to the case in which the transfer function from

u to y in (3) is minimum phase. This case is also considered

in the paper [19] for the special case of B1 = B2 in (3). The

following theorem is a minor result that allows us to use SNI

state feedback in the case in which the transfer function from

u to y in (3) is minimum phase.

Theorem 3.3: Consider the system (3) with m = 1 that

satisfies Assumptions A1-A2. Suppose the matrix Aq , ob-

tained from the Schur decomposition (8) has no unstable

eigenvalues. For a given ǫ > 0 such that the corresponding

matrix Ar also has no unstable eigenvalues, there exists a

static state feedback matrix K such that the closed-loop

system (4) is SNI with degree of stability ǫ. The required

state feedback controller matrix K is given by

K = −(C1B2)
−1(C1A+ ǫC1). (17)



Proof of Theorem 3.3: For design purposes we will begin

by replacing the open loop plant matrix A with the perturbed

matrix Aǫ = A + ǫI . Now, using Lemma 2.1, we know

that the closed-loop system (4) is NI if there exists a real

P = PT ≥ 0 such that

PÂ+ ÂTP + PB1R
−1BT

1 P +Q = 0 (18)

where

Â = Acl −B1R
−1C1Acl, R = C1B1 +BT

1 C
T
1 ,

Q = AT
clC

T
1 R

−1C1Acl, Acl = Aǫ +B2K,

with σ

(

Acl −B1R
−1(CAcl −BTP )

)

⊂ C≤0.

Let P = 0. Then, (18) reduces to the condition

AT
clC

T
1 R

−1C1Acl = 0. (19)

We will consider the matrix C1Acl. For our choice of K , and

noting that for a SISO system, (C1B2) is a scalar, C1Acl =
A+ ǫI +B2K reduces to

C1Acl = C1A+ ǫC1 − C1B2(C1B2)
−1(C1A+ ǫC1) = 0

(20)

Therefore, P = 0 satisfies (18). We will now show that

σ

(

Acl − B1R
−1(CAcl − BTP )

)

⊂ C≤0. We begin by

considering Acl − B1R
−1(CAcl − BT

1 P ). When P = 0,

and substituting for K = −(C1B2)
−1(C1A + ǫC1) in this

expression, we see that

Acl −B1R
−1(CAcl −BT

1 P ) =Acl −B1R
−1CAcl

=Aǫ −B2(C1B2)
−1C1Aǫ

=Ar, (21)

where Ar is defined in (5). Thus, (21) implies

σ(Acl −BR−1(CAcl −BTP )) =σ(Ar). (22)

Since σ(Ar) ⊂ C≤0 follows from our assumption that Ar

has no unstable eigenvalues, we have σ(Acl−BR−1(CAcl−
BTP )) ⊂ C≤0. Therefore, it follows from Lemma 2.1

that the closed-loop system is NI. Further, Lemma 3.1 then

implies that the actual closed-loop system corresponding to

the unperturbed system will have all its poles shifted by an

amount ǫ to the left in the complex plane. Moreover, the

actual closed-loop system is SNI with degree of stability ǫ.

�

IV. THE ACHIEVABLE DEGREE OF STABILITY

This section contains the main results of this paper and

provides a solution to the maximum degree of stability that

can be achieved using Theorem 3.2 to design a controller

for SNI state feedback. This section is broken into two

subsections. The first offers preliminary results needed in the

proofs of the main results. In the second subsection, we offer

two results that outline the maximum degree of stability that

can be achieved using Theorem 3.2. There are two results

because depending on the zeros of the transfer function from

u to z in (3), the matrix Ar may have no unstable poles. As a

consequence, Theorem 3.2 cannot be used and Theorem 3.3

must be evaluated instead.

A. Preliminary Results

In this section we provide lemmas necessary to the proof

of our main results.

Lemma 4.1: Consider the system (3) and suppose the

dimensions are such that (C1B2) 6= 0 is a scalar. In addition,

let

w =
(C1B1B

T
2 − C1B2B

T
1 )

(C1B2)2
. (23)

The vector C1 is orthogonal to w.

Proof: We show our result using a simple algebraic

manipulation. Observe that

wCT
1 = (

C1B1B
T
2 − C1B2B

T
1

(C1B2)2
)CT

1

=
C1B1B

T
2 C

T
1 − C1B2B

T
1 C

T
1

(C1B2)2

= 0. (24)

Lemma 4.2: The vector C1 defined in (3) is in the left-

nullspace of the matrices Q, Aq and Ar, where Q, Aq and

Ar are defined in (6), (7) and (5).

Proof: We can show that C1 is in the left-nullspace of

Q, Aq and Ar using the following routine algebra:

C1Q = C1(I −B2(C1B2)
−1C1)

= C1 − C1B2(C1B2)
−1C1 = C1 − C1 = 0, (25)

C1Aq = C1QA = 0, (26)

C1Ar = C1(QA+ ǫQ) = C1QA+ C1Qǫ = 0 + 0 = 0.
(27)

Lemma 4.3: Consider the system (3) with m = 1 satis-

fying Assumptions A1-A2. Let Z be defined as in (9). For

some non-zero vector y, yTZy = 0 if and only if

(C1B1B
T
2 − C1B2B

T
1 )

(C1B2)2
y = 0, (28)

or BT
2 y = 0. (29)

Proof: Note that Assumption A1 is required to ensure

C1B2 6= 0 in the manipulation to follow. Now, suppose there

exists a non-zero vector y which we use to pre and post

multiply Z to form yTZy. We may expand yTZy = 0 as

0 = yT
[

B2(C1B2)
−1R(BT

2 C
T
1 )

−1BT
2 −B1(B

T
2 C

T
1 )

−1BT
2

−B2(C1B2)
−1BT

1

]

y. (30)



Using that fact that R = C1B1+BT
1 C

T
1 = 2C1B1 and C1B2

are scalars, we may further manipulate (30) as follows

0 =
yTB2(2C1B1)B

T
2 y

(C1B2)2
−

yTB1B
T
2 y

C1B2
−

yTB2B
T
1 y

C1B2

=
(2C1B1)B

T
2 yB

T
2 y

(C1B2)2
−

BT
1 yB

T
2 y

C1B2
−

BT
1 yB

T
2 y

C1B2

= (
(2C1B1B

T
2 )y

(C1B2)2
−

BT
1 y

C1B2
−

BT
1 y

C1B2
)BT

2 y

= 2(
C1B1B

T
2

(C1B2)2
−

BT
1

(C1B2)
)yBT

2 y

= 2
(C1B1B

T
2 − C1B2B

T
1 )

(C1B2)2
yBT

2 y. (31)

Now, there are only two cases where (31) is equal to zero,

either:

(C1B1B
T
2 − C1B2B

T
1 )

(C1B2)2
y = 0, (32)

or BT
2 y = 0, (33)

as required.

Lemma 4.4: Consider the system (3) with m = 1 satisfy-

ing Assumptions A1-A2. Let ǫ > 0 be given and Ar defined

as in (5) and suppose there exist matrices T, S ≥ 0 satisfying:

−Ã22T − T ÃT
22 + C̃22RC̃T

22 = 0, (34)

−Ã22S − SÃT
22 + B̃22R

−1B̃T
22 = 0, (35)

where Ã22, B̃22 and C̃22 are obtained from the Schur

decomposition (8). Let Z be defined as in (9) and let

X = T − S. Suppose, λ 6= 0 is an eigenvalue of Ã22

with corresponding eigenvector v2
T ∈ ker(ÃT

22 − λI) and

let y = U [0 v2
T ]T ∈ ker(AT

r − λI), where U is obtained

from the Schur decomposition (8). Then yTZy < 0 if and

only if v2
TXv2 > 0.

Proof: Suppose all assumptions are satisfied and (34)-

(35) hold. Subtracting (34) from (35) gives the Lyapunov

equation,

0 = −Ã22S − SÃT
22 + B̃22R

−1B̃T
22

− (−Ã22T − T ÃT
22 + C̃22RC̃T

22)

= Ã22X +XÃT
22 + Z̃22. (36)

Note that the matrix Ã22 is the 22 block of the matrix Ã

obtained from the Schur decomposition (8). By assumption,

we know there exists a vector v2 that satisfies

v2
T Ã22 = λv2

T ,

ÃT
22v2 = λ̄v2.

Now, pre-multiply (36) by v2
T and post-multiply by v2 to

form

v2
T Ã22Xv2 + v2

TXÃT
22v2 + v2

T Z̃22v2 = 0. (37)

We may proceed with the following manipulation:

0 = v2
T Ã22Xv2 + v2

TXÃT
22v2 + v2

T Z̃22v2

= λv2
TXv2 + v2

TXλ̄v2 + v2
T Z̃22v2

= (λ+ λ̄)v2
TXv2 + v2

T Z̃22v2. (38)

We now rearrange (38) to form

v2
TXv2 = −

v2
T Z̃22v2

(λ+ λ̄)
, (39)

where, (λ+ λ̄) > 0. In order to see the relationship between

v2
TXv2 and yTZy, observe that

vT Z̃v =
[

0 v2
T
]

[

Z̃11 Z̃12

Z̃21 Z̃22

] [

0
v2

]

= vT2 Z̃22v2. (40)

Using (40), we can rewrite (39) as

v2
TXv2 = −

vT Z̃v

(λ+ λ̄)
. (41)

We know that yT = vTUT by assumption. Thus we can

substitute back into (41) to see that

v2
TXv2 = −

vT Z̃v

(λ+ λ̄)
= −

yTZy

(λ+ λ̄)
. (42)

Since (λ + λ̄) > 0 and (42) was arrived at using only

algebraic manipulation, we can infer that yTZy < 0 if and

only if v2
TXv2 > 0.

Lemma 4.5: Consider a SISO system (3) satisfying As-

sumptions A1-A2. Let Z,Ar and X = T − S be defined

as in (9), (5) and (15). Suppose there exists a vector y

such that y = U [0 v2]
T ∈ ker(AT

r − λI), where λ > 0
and U is obtained from the Schur decomposition (8). Under

these assumptions, v2
TXv2 = 0 if and only if either of the

following conditions holds

(C1B1B
T
2 − C1B2B

T
1 )

(C1B2)2
y = 0, (43)

or BT
2 y = 0. (44)

Proof: Suppose either (43) or (44) hold. We know from

Lemma 4.3 that this immediately implies yTZy = 0. Also,

we know from Equation (42) in Lemma 4.4 that for a vector

y such that y = U [0 v2]
T ∈ ker(AT

r − λI), then

v2
TXv2 = −

vT (Z̃)v

(λ+ λ̄)
= −

yTZy

(λ+ λ̄)
, (45)

where, (λ+ λ̄) > 0. Since (λ+ λ̄) > 0, it follows from (45)

that yTZy = 0 implies v2
TXv2 = 0.

Conversely, suppose v2
TXv2 = 0. We can use the rela-

tionship (45) and after substituting in v2
TXv2 = 0 we see

that

−
yTZy

(λ+ λ̄)
= 0. (46)

Since, (λ+ λ̄) > 0 by assumption, this implies

yTZy = 0. (47)



Now, Lemma 4.3 states that yTZy = 0 if and only if (43)-

(44) hold.

Lemma 4.6: Consider the system (3) satisfying Assump-

tions A1-A2. Let Z,Ar and X = T −S be defined as in (9),

(5) and (15). Suppose the Schur decomposition (8) is such

that dim(Ã22) = 1, and let y = U [0 1]T ∈ ker(AT
r −λI),

where λ = Ã22 > 0 and U is obtained from the Schur

decomposition (8). Then X = 0, if and only if either of the

following conditions holds

(C1B1B
T
2 − C1B2B

T
1 )

(C1B2)2
y = 0, (48)

or BT
2 y = 0. (49)

Proof: This is a special case of Lemma 4.5 and the

proof is the same noting that v2 in that proof is equal to 1
in this case. We know from Lemma 4.4 that for a vector y

such that y = U [0 v2]
T ∈ ker(AT

r − λI), X is related to

Z by

v2
TXv2 = −

yTZy

(λ+ λ̄)
. (50)

When dim(Ã22) = 1, v2 = 1 and we can substitute y into

(50) to obtain

X = −

[

0 1
]T

Z̃
[

0 1
]

(λ+ λ̄)
= −

yTZy

(λ+ λ̄)
, (51)

where, (λ+λ̄) > 0. We know from Lemma 4.3 that yTZy =
0 if and only if (48)-(49) hold. Since (λ+ λ̄) > 0, it follows

from (51) that yTZy = 0 if and only if X = 0.

Lemma 4.7: [20] Let matrix A, scalars λ and µ, and

non zero vectors x, y be given. Suppose that Ax = λx and

yTA = µyT . If λ 6= µ, then yTx = 0.

Lemma 4.8: [20] Let matrix A, eigenvalue λ and non

zero vectors x and y be given. Suppose that λ is an

eigenvalue of A such that Ax = λx and yTAx = λyT . If

λ has algebraic multiplicity 1, then yTx 6= 0. Also, if λ has

geometric multiplicity 1, then it has algebraic multiplicity 1
if and only if yTx 6= 0.

The following lemma is important as it tells us how the

eigenvalues of the matrix Aq behave under the perturbation

Ar = Aq+ǫQ. Remember the eigenvalues of Aq correspond

to the zeros of the transfer function from u to z in (3), plus

a zero at the origin. Also, the solvability of the Lyapunov

equations in Theorem 3.2 is also depend on the eigenvalues

of Ar.

Lemma 4.9: Consider the uncertain system (3) with m =
1 satisfying Assumptions A1-A2. Consider the n×n matrix

Aq = QA defined in (7). Suppose Aq is not a defective

matrix and has the distinct eigenvalues

0 , λ1 , λ2 , ... , λk, (52)

such that

dim
(

ker(Aq)
)

= j, (53)

dim
(

ker(Aq − λiI)
)

= ni, i = 1, 2, ..., k, (54)

where 1 ≤ j ≤ n. Let a value of ǫ > 0 be given such that

λi 6= −ǫ ∀ i where i = 1, 2, ..., k and the matrix Ar =
QA + ǫQ is not defective. Then Ar = QA + ǫQ has the

distinct possible eigenvalues

0 , ǫ , λ1 + ǫ , ... , λk + ǫ, (55)

such that

dim
(

ker(Ar − ǫI)
)

= j − 1 (56)

dim
(

ker(Ar − (λi + ǫ)I)
)

= ni, i = 1, 2, ..., k (57)

dim
(

ker(Ar)
)

= 1. (58)

Proof: The proof will be published elsewhere.

B. Main results

In this section we address the problem of determining the

maximum degree of stability that can be achieved using the

SNI state feedback control laws presented in Theorem 3.3

and Theorem 3.2. These results are given under a number

of assumptions on the eigenvalues of the matrix Aq . Future

research will be directed towards more generalized results.

Our results are offered as two separate cases that consider

when the system has different zeros of the transfer function

from u to z in (3).

For the results that follow, we assume the following

assumption is satisfied:

Assumption 3: Aq has distinct eigenvalues λ1, · · · , λn.

This assumption is made so that we can leverage Lemma 4.9,

which does not use generalized eigenvector. This assumption

will be relaxed in future work.

Case 1:

The following case considers when the matrix Aq has a

single unstable eigenvalue, a single eigenvalue at the origin,

and n − 2 stable eigenvalues. We only consider a single

unstable eigenvalue here in order to simply the proof and

conserve space.

The eigenvalues of Aq are ordered such that

Re[λ1] ≤ · · · ≤ Re[λn−2] ≤ 0 ≤ λn (59)

and we will assume that the following conditions hold:

(i) For all i ∈ {1, · · · , n− 2}, Re[λi] < 0;

(ii) For i = n− 1, λi = 0;

(iii) For i = n, λi > 0.

Let γ be defined as γ = −Re[λn−2]. In other words, γ is the

real part of the maximum eigenvalue of Aq less than zero.

In the following theorem we will show that a system with

an Aq matrix as above may be perturbed for all ǫ within the



range 0 < ǫ < γ and still satisfy the conditions of Theorem

3.2.

Theorem 4.10: Consider the system (3) that satisfies the

conditions of Theorem 3.2. Suppose, the pair {A,B2} is

controllable, the matrix Aq , (7), has distinct eigenvalues and

the matrix Aq , has only one unstable eigenvalue; The closed-

loop system formed using Theorem 3.2 will be SNI with

degree of stability ǫ, for any ǫ within the range 0 < ǫ < γ,

where γ = −Re[λn−2].

Case 2:

The following case considers when the matrix Aq has no

unstable eigenvalues, a single eigenvalue at the origin, and

n− 1 stable eigenvalues.

Now, consider a matrix Aq ∈ Rn×n with distinct eigenval-

ues λ1, · · · , λn. Suppose the eigenvalues of Aq are ordered

such that

Re[λ1] ≤ · · · ≤ Re[λn−1] < 0. (60)

Also, assume that the following conditions hold:

(i) For all i ∈ {1, · · · , n− 1}, Re[λi] < 0;

(ii) For i = n, λi = 0.

Let γ be defined as γ = −Re[λn−1]. In other words, γ is the

real part of the maximum eigenvalue of Aq less than zero.

In the following theorem we show that the system with

an Aq matrix as above may be perturbed for all ǫ within the

range 0 < ǫ < γ and still satisfy the conditions of Theorem

3.3; that is, the system will be SNI for all ǫ within the range

0 < ǫ < γ. Moreover, for ǫ > γ, the system may still be

SNI if it satisfies Theorem 4.10.

Theorem 4.11: Consider the system (3) with dimension

n, that satisfies the conditions of Theorem 3.3 when un-

perturbed. Suppose, the pair {A,B2} is controllable; the

matrix Aq defined in (7) has distinct eigenvalues, and the

matrix Aq , has no unstable eigenvalues. Then, the closed-

loop system formed using Theorem 3.3 will be SNI with

degree of stability ǫ, for any ǫ within the range 0 < ǫ < γ,

where γ = −Re[λn−1] is defined as in (60). In addition,

for ǫ in the range −Re[λn−1] < ǫ < −Re[λn−2], if the

open-loop system satisfies the conditions of Theorem 3.2 at

ǫ, then the system will remain SNI for all ǫ within the range

−Re[λn−2] < ǫ < −Re[λn−2].

Proof of Theorem 4.10: If a system satisfies the conditions

of Theorem 3.2, there exists an X > 0 such that

Ã22X +XÃT
22 + B̃22R

−1B̃T
22 − C̃22RC̃T

22 = 0

Ã22X +XÃT
22 + Z̃22 = 0, (61)

where Ã22, B̃22 and C̃22 are obtained from the Schur

decomposition (8). Suppose the conditions of Theorem 3.2

are satisfied when ǫ = 0 and X0 > 0 is a solution to (61).

The dimension of X0 is related to Ã22 by dim(X0) =
dim(Ã22) = 1, so in this case X0 is scalar. Our proof

methodology will show that for any ǫ within the range

0 < ǫ < −Re[λn−2], if there exists a left eigenvector of

Ar such that Xǫ = 0, then X0 = 0 must also be true,

which contradicts our initial assumption. To that end, let

γ = −Re[λn−2] and suppose there exists an ǫ within the

range 0 < ǫ < γ such that X = 0. Also, let y1 be a left

eigenvector of Ar such that

y1
TAr = (µ+ ǫ)y1

T , (62)

where Ar is defined in (5) and µ = λn is the anti-stable

eigenvalue of Aq.

According to Lemma 4.6, if X = 0, then either

(C1B1B
T
2 − C1B2B

T
1 )

(C1B2)2
y1 = 0, (63)

or BT
2 y1 = 0. (64)

We now consider each of these conditions separately:

Case 1, (63) is satisfied:

In this case,

(
C1B1B

T
2 − C1B2B

T
1

(C1B2)2
)y1 = wT y1 = 0. (65)

Since we can easily check that the vector w is orthogonal to

C1, it follows that

CT
1 ∈ ker(AT

r ). (66)

Moreover, we have distinct eigenvalues, therefore C1 is also

a basis for ker(AT
r ). Since w is orthogonal to the basis of

ker(AT
r ), this must mean w ∈ range(Ar). Thus, we can

describe w using a linear combination of basis vectors for

range(Ar), to give

w = β1x1 + β2x2 + · · ·+ βn−1xn−1, (67)

where β1, · · · , βn−1 ∈ R and x1, · · · , xn−1 are eigenvectors

of Ar corresponding to the n− 1 non-zero eigenvalues.

Using this form of w, we can restate (65) as

wT y1 = 0 (68)

⇐⇒ y1
Tw = 0 (69)

⇐⇒ β1y1
Tx1 + · · ·+ βn−1y1

Txn−1 = 0. (70)

According to Lemma 4.7, every term after β1y1
Tx1 will be

equal to zero. Therefore (70) is reduced to

β1y1
Tx1 = 0. (71)

Equation (71) tells us that Condition (65) holds if either β1 =
0 or y1

Tx1 = 0.

Since we only have simple eigenvalues, it follows from

Lemma 4.8 that y1
Tx1 = 0 cannot occur. Therefore, we

now consider β1 = 0.

If we substitute β1 = 0 back into (67), the first term is

eliminated and we are left with

w = β2x2 + · · ·+ βn−1xn−1. (72)

We know from Lemma 4.9 that Aq and Ar will have the same

right-eigenvectors corresponding to a particular eigenvalue.



Therefore, each vector xi is an eigenvector of Aq and the

following holds:

Aqxi = λixi, (73)

for i = 1, 2, · · · , n−2, n. Also, for the eigenvalue µ = λn in

(62), there will be a left-eigenvector of Aq , y0, that satisfies

y0
TAq = µy0

T . (74)

Now, consider

wT y0 = β2x2
T y0 + · · ·+ βn−1xn−1y0. (75)

We can apply Lemma 4.7 to show that each term in this sum

is orthogonal and therefore zero. Thus,

wT y0 = β2x2
T y0 + · · ·+ βn−1xn−1y0 = 0. (76)

Equation (76) is just (43). Therefore, we can conclude from

Lemma 4.5 that (76) implies X0 = 0. This contradicts our

initial assumption that X0 > 0.

Case 2, (64) is satisfied:

In this case, let y1 be a left eigenvector of Ar such

that

y1
TAr = (µ+ ǫ)y1

T (77)

and

BT
2 y1 = 0. (78)

We know (A,B2) is controllable by assumption. Since is

(A,B2) controllable, it follows immediately that (A+ǫI, B2)
is also controllable. Using this knowledge, we will make

a manipulation on Ar to show that it is also controllable.

To that end, remember Ar = QA + ǫQ, Q = I −
B2(C1B2)

−1C2, and C1B2 is a scalar. Let k = −C1(A+ǫI)
C1B2

and consider the following manipulation:

Ar = Q(A+ ǫI) = (A+ ǫI)− (
B2C1

C1B2
)(A+ ǫI)

= A+ ǫI +B2K. (79)

Thus, we can conclude from (79) that (Ar , B2) is also

controllable. An immediate consequence of (Ar, B2) being

controllable is that there can be no left eigenvector of Ar

that is orthogonal to B2. Therefore, (78) can never be

satisfied and we have a contradiction.

We have shown that both cases lead to a contradiction. �

Proof of Theorem 4.11: For ǫ within the range 0 < ǫ < γ,

where γ = −Re[λn−1], the closed-loop system is SNI

follows directly from Theorem 3.3. For −Re[λn−2] < ǫ <

−Re[λn−2], the matrix Aq will have attained an unstable

eigenvalue. Consequently, X has dimension one. Therefore,

if the system satisfies the conditions of Theorem 3.2 for

−Re[λn−2] < ǫ < −Re[λn−2], then the system will remain

SNI for all ǫ within the range 0 < ǫ < −Re[λn−2] follows

directly from Theorem 4.10. �

V. ILLUSTRATIVE EXAMPLE

In this section we provide an illustrative example that

illustrates Theorem 4.10.

Consider an uncertain system

A =





−1 0 −1
1 0 −1
−1 2 1



 , B1 =





1
1
1



 , B2 =





0
1
1



 ,

C1 =
[

1 1 0
]

, D = 0.

that satisfies assumptions A1-A2. The Aq matrix for this

system is

Aq =





−1 0 −1
1 0 1
−1 2 3



 ,

with σ(Aq) = {−1.6458, 0, 3.6458}. We can readily

verify that for any ǫ < 1.6458 this system satisfies the

conditions of Theorem 3.2, and the closed-loop system is

SNI.

Now, we choose ǫ = 1.6458 and reevaluate. With ǫ =
1.6458, the matrix Ar = QA+ ǫQ has the form

Ar =





0.6458 0 -1

-0.6458 0 1

-2.6458 0.3542 4.6458



 ,

with σ(Ar) = {0, 5.2946} and the 0 eigenvalue has

multiplicity two. At exactly ǫ = 1.6458, the matrix X is

undergoing a dimension change and cannot be evaluated.

Therefore, we analyse X as we approach ǫ = 1.6458 from

the positive direction on the real axis; i.e., we consider

ǫ+ : ǫ → 1.6458+.

We can reform Xǫ+ for our perturbed system as

Xǫ+ =

[

-5.5431 0.2815

0.2815 0.2477

]

.

It is easily verified that Xǫ+ is dimension 2 and no longer

positive definite, with a negative eigenvalue at −5.5568. We

no longer satisfy the conditions of Theorem 3.2 and cannot

guaranteed the SNI property.

VI. CONCLUSIONS

In this paper we have studied the maximum prescribed

degree of stability that can be achieved by SISO closed-

loop systems formed using SNI state feedback. These results

show that in the cases considered, the achievable degree of

stability for the closed-loop system is related to the zeros

of the transfer of the nominal plant from the control input

to the disturbance output. These results were given under a

number of assumptions and future research will be directed

towards relaxing these assumptions and extending the results

to MIMO systems.
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