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Abstract— The barrier function method for safety control
typically assumes the availability of full state information.
Unfortunately, in many scenarios involving uncertain dynamical
systems, full state information is often unavailable. In this paper,
we aim to solve the safety control problem for an uncertain
single-input single-output system with partial state information.
First, we develop a synthesis method that simultaneously creates
a barrier function and a dynamic output feedback safety
controller. This safety controller guarantees that the unit sub-
level set of the barrier function is an invariant set under the
uncertain dynamics and disturbances of the system. Then, we
build an identifier-based estimator that provides a state estimate
affine to the uncertain model parameters of the system. To
detect the potential risks of the system, a fault detector uses
the state estimate to find an upper bound for the barrier
function. The fault detector triggers the safety controller when
the system’s original action leads to a potential safety issue and
resumes the original action when the potential safety issue is
resolved by the safety controller.

I. INTRODUCTION

Barrier functions [1], [2] are commonly used for safety
control and verification of dynamical systems. However, the
standard theory assumes that the full state information is
available to compute the barrier function values. Unfor-
tunately, full state information can only be estimated in
many safety control scenarios involving disturbances and
uncertainties, such as wearable robots [3] coupled with time-
varying human dynamics and self-driving vehicles [4] in an
uncertain environments.

There are multiple methods [5], [6], [7] for synthesizing
a full state feedback controller that enforces a valid barrier
function. Thus, safety control for a system without full state
measurements naturally begins with finding a state observer
and then builds a safety controller using the state estimate
from the state observer. However, how to estimate the
barrier function values using the state estimate from the state
observer remains a question. Although some observer-based
output feedback controllers can enforce safety constraints
without knowing the barrier function values [8], [9], we
cannot blindly use these controllers at all times. For example,
a human operator may give a human assistive robot [3] an
input that potentially violates some safety constraints of the
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human-robot coupled system. If we replace the original robot
controller entirely with a safety controller, this robot will
maintain safety but not assist the human operator. For this
reason, we must estimate the barrier function value in real-
time so that the safety controller only corrects the original
system when necessary.

In this paper, we aim to solve the safety control problem
for an uncertain single-input single-output (SISO) system
with partial state information. The main contributions of this
paper are summarized as follows.
(1) In Sec. III, we develop a control synthesis method that

simultaneously creates a barrier function and a dynamic
output feedback safety controller. Using the controller
parameter transformation scheme in [10], our dynamic
output feedback safety controller guarantees that the
unit sub-level set of our barrier function is an invariant
set with bounded model uncertainty and disturbance.
The proposed control synthesis method in this paper
builds significantly upon the method in [7], which only
focuses on full state feedback safety control.

(2) In Sec. IV, we propose a robust fault detector that
consists of an identifier-based estimator [11]. Similar
to the method in [12], this identifier-based estimator
provides us with a robust state estimate, which helps
us find the upper bound for our vector norm barrier
function using partial state information. However, unlike
the estimator in [12], our fault detector in this paper
does not require the system to be originally stable or
have a stable static output feedback controller.

(3) In Sec. V, we showcase our fault detector and safety
controller, which work together to protect an uncertain
SISO system from potential risks. In particular, we
demonstrate how our fault detector helps us correctly
trigger our safety controller when the system is about
to violate the safety constraints and resume the original
mission of the system when it is safe to do so.

Notation. We define Sp ≜
[
In×n 0n×n

]
and Sk ≜[

0n×n In×n

]
as two selection matrices, which extract the

plant state xp and the controller state xk from the closed-loop
state vector xCL. Supposing P ≻ 0,

∥⋆∥P ≜
√
⋆TP⋆ (1)

is a vector norm function based on P . In our LMIs, we define
He{⋆} ≜ ⋆+ ⋆T.

II. PRELIMINARIES

In this section, we introduce models of an uncertain dy-
namical system Σp and a full-order dynamic output feedback
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controller Σk. The uncertain dynamical system is described
as a polytopic linear differential inclusion (PLDI) [13]. Then
we give an overview of barrier pairs, which will be used for
safety verification and control of the uncertain dynamical
system. Based on the concept of barrier pairs, we present
our formal problem statement.

A. State Model
In this paper, we consider a SISO system. We will explore

how we can extend our study to a multiple-input multiple-
output (MIMO) system in the future.

First, assume that the transfer function of our system Σp

from input u to output y is expressed as

Gp(s) =
y(s)

u(s)
=

β1s
n−1 + · · ·+ βn−1s+ βn

sn + α1sn−1 + · · ·+ αn−1s+ αn
, (2)

where α1, α2, · · · , αn and β1, β2, · · · , βn are the uncer-
tain parameters of our plant. Let us define

A0 ≜

[
0T
(n−1)×1 0

I(n−1)×(n−1) 0(n−1)×1

]
and c0 ≜

[
01×(n−1) 1

]
.

(3)
In Sec. IV-A, we will conduct a robust fault detection of Σp

using an identifier-based estimator [11]. In order to build this
identifier-based estimator, we need to use the following state
space realization of Σp:

ẋp = A0xp +
[
by bu

] [y
u

]
(4)

y = c0xp + w

where by ≜ [−αn · · · −α2 −α1]
T and bu ≜ [βn · · · β2 β1]

T

contain all the uncertain plant parameters and w is a distur-
bance signal. Let us suppose that

by = b̄y +

np∑
i

δi · θyi · b̃i

bu = b̄u +

np∑
i

δi · θui · b̃i

(5)

where b̄y ≜ [−ᾱn · · · −ᾱ2 −ᾱ1]
T and b̄u ≜ [β̄n · · · β̄2 β̄1]

T

are the nominal plant parameters, np is the number of dimen-
sions of the parameter uncertainties, b̃i ∈ Rn×1, θyi , θ

u
i ∈ R

describe the direction of the parameter uncertainties in each
dimension, δi ∈ R is a scalar variable such that |δi| ≤ 1
for all i = 1, 2, · · · , np. Based on (5),

[
by bu

]
is in a

polytopic region in Rn×2 and (4) becomes a PLDI.
Next, let the state-space model of a full-order dynamic

output feedback controller Σk be

ẋk = Akxk + bky (6)
u = ckxk

where Ak ∈ Rn×n, bk ∈ Rn×1, and ck ∈ R1×n are the
controller parameters to be determined.

Let us define

ACL ≜

[
Âp b̄uck
bkc0 Ak

]
, Bwp ≜

[
b̄y b̃p
bk 0

]
, (7)

Cq ≜
[
ΘT

y c0 ΘT
uck

]
, Dwp ≜

[
ΘT

y 0
]
,

wû u

y

Σp

u = û

or

u = Σk(y)

Σs

Fig. 1. In this paper, our switching system Σs chooses either an original
input u = û of Σp or a known-to-be-safe input u = Σk(y) based on a
barrier function B.

where Âp ≜ A0 + b̄yc0, b̃p ≜ [b̃1 b̃2 · · · b̃np
], Θy ≜

[θy1 θy2 · · · θynp
] and Θu ≜ [θu1 θu2 · · · θunp

]. Combining
(4) and (6), our closed-loop system ΣCL for u = Σk(y) is
described as

ẋCL = ACLxCL +Bwp

[
w
p

]
(8)

q = Cq xCL +Dwp

[
w
p

]
where xCL ≜ [xT

p xT
k ]

T, p = [p1 p2 · · · pnp
]T, q =

[q1 q2 · · · qnp
]T and pi = δiqi for all i = 1, 2, · · · , np.

B. Barrier Pairs

The concept of barrier pairs [7] describes the relationship
between a barrier function and a feedback controller in a
safety control problem. In this paper, we extend the definition
of barrier pairs to output feedback systems.

Definition 1. A barrier pair is a pair (B, Σk) consisting of a
barrier function B : xCL → R and a controller Σk satisfying
the following conditions:
(a) ε ≤ B(xCL) ≤ 1, u = Σk(y) =⇒ Ḃ(xCL) < 0,
(b) B(xCL) ≤ 1 =⇒ xp ∈ Xs, Σk(y) ∈ U .

In particular, xp ∈ Xs and u ∈ U are the state and input
constraints. Intuitively, (a) and (b) mean the invariance and
constraint satisfaction properties of a barrier pair.

C. Problem Statement

In this paper, we consider an uncertain dynamical system
Σp described in (4) and (5) with assumption |w| ≤ w̄ and
safety constraints xp ∈ Xs and u ∈ U .

Problem. Assuming that y and u are the only available
measurements of Σp and xp = 0 at t = 0, find a barrier pair
(B, Σk) and a switching system Σs where (B, Σk) satisfies
conditions (a) and (b) in Definition 1 for Σp and where Σs

switches Σp from its original input u = û to u = Σk(y)
whenever B is close to 1 and switches back to u = û.

Fig. 1 shows a block diagram of Σs that is similar to
the switching systems proposed in [2], [7]. This type of
switching system seeks to maintain the safety of Σp through
a minimum intervention in its original input u = û. However,
unlike the previous works, the full state of Σp is not available
in our problem. Therefore, our switching system cannot
switch between u = û and u = Σk(y) based on the exact
value of our barrier function B.



To address this limitation, we will solve our problem in
two steps. In Sec. III, we show a synthesis method that
creates a barrier pair for Σp. In Sec. IV, we propose a robust
fault detector that finds an upper bound for B using only the
measurements of y and u. Based on this upper bound for B,
we will construct Σs in Sec. IV-C.

III. BARRIER PAIR SYNTHESIS

In this section, we focus on the barrier pair synthesis for
our system Σp described in (4) and (5). First we formulate
conditions (a) and (b) in Definition 1 as linear matrix
inequality (LMI) constraints. Then we introduce our LMI
optimization problems for barrier pair synthesis.

A. LMIs for Invariance Property

In this paper, we define our barrier function as a vector
norm function

B(xCL) ≜ ∥xCL∥P . (9)

Let us partition P and Q ≜ P−1 as

P =

[
X V
V T ⋆

]
and Q =

[
Y W
WT ⋆

]
, (10)

where X, Y, V, W ∈ Rn×n. In addition, we define

Π1 ≜

[
I X
0 V T

]
and Π2 ≜

[
Y I
WT 0

]
, (11)

where Π1 = PΠ2 and Π2 = QΠ1. In Proposition 1, we will
use Π1 and Π2 to perform a controller parameter transfor-
mation [10] and derive the LMI constraints for condition (a)
in Definition 1.

Proposition 1. Supposing that |w| ≤ w̄, there exist a barrier
function B(xCL) = ∥xCL∥P and a controller Σk in the
form of (6) such that (B(xCL), Σk) satisfies condition (a)
in Definition 1, if there exist X ≻ 0, Y ≻ 0, E ∈ Rn×n,
F ∈ Rn×1, G ∈ R1×n, and µw, µ1, µ2, · · · , µnp ≥ 0 such
that [

Y I
I X

]
≻ 0. (12)

and  HA ⋆ ⋆
HT

B −Mwp ⋆
MpHC MpDwp −Mp

 ≺ 0, (13)

where Mp ≜ diag(µ1, µ2, · · · , µnp
), Mwp ≜

diag(µw, Mp),

HA ≜ He

{[
ÂpY + b̄uG Âp

E XÂp + Fc0

]}
+ µw

w̄2

ε2

[
Y I
I X

]
,

(14)

HB ≜
[

b̄y b̃p
F +Xb̄y Xb̃p

]
, HC ≜

[
ΘT

uG+ΘT
yc0Y ΘT

yc0
]
,

and

E ≜ V AkW
T + Fc0Y +Xb̄uG+XÂpY, (15)

F ≜ V bk, G ≜ ckW
T.

Proof. Notice that (13) is obtained by performing a congru-
ence transformation with diag(Π1, I, I) onΦQ + µw

w̄2

ε2 Q ⋆ ⋆
BT

wp −Mwp ⋆
MpCqQ MpDwp −Mp

 ≺ 0, (16)

where ΦQ ≜ ACLQ+QAT
CL. Thus, we focus on the following

two steps to complete the proof. First, we will show that
condition (a) in Definition 1 holds for (B(xCL), Σk) if (16)
holds. Then, we will show that (16) holds if (12) and (13)
hold.

In the first step, we consider B2(xCL) = xT
CLPxCL as

a quadratic Lyapunov function candidate for our closed-
loop system with u = Σk(y). Then, (B(xCL), Σk) satisfies
condition (a) in Definition 1 for Σp in (4) and (5) under
the assumption |w| ≤ w̄ if and only if dB2(xCL)

d t < 0, or
equivalentlyxCL

w
p

T AT
CLP + PACL ⋆ ⋆

BT
wP 0 ⋆

BT
p P 0 0

xCL

w
p

 < 0, (17)

for all xCL, w, and p that

xT
CLPxCL ≥ ε2, w2 ≤ w̄2, and p2i ≤ q2i ,

∀ i = 1, · · · , np.
(18)

Using the S-procedure, (17) holds under the conditions in
(18) if there exist µCL, µw, µ1, · · · , µnp ≥ 0 such that for
all xCL, w, and p thatxCL

w
p

T

HP

xCL

w
p

+ µww̄
2 − µCL < 0, (19)

where

HP ≜

[
ΦP + µCL

ε2 P + CT
q MpCq ⋆

BT
wpP −Mwp +DT

wpMpDwp

]
(20)

and ΦP ≜ AT
CLP + PACL. Then, (19) holds if HP ≺ 0 and

µCL = µww̄
2. Through a congruence transformation with

diag(Q, I) on HP and the Schur complement, HP ≺ 0 for
µCL = µww̄

2 is equivalent to (16).
Now, let us establish the second step. Since (13) is

obtained by performing a congruence transformation with
diag(Π1, I, I) on (16), (16) holds if there exists non-
singular diag(Π1, I, I) such that (13) holds. Obviously,
diag(Π1, I, I) is non-singular if and only if V is non-
singular. Since PQ = I, we have VWT = I −XY . Then,
there exists non-singular V and W if I−XY is non-singular.
I−XY is non-singular if Y ≻ 0 and X − Y −1 ≻ 0. Using
the Schur complement, Y ≻ 0 and X − Y −1 ≻ 0 if (12)
holds. Consequently, we obtain that there exists non-singular
diag(Π1, I, I) if (12) holds.

Therefore, condition (a) in Definition 1 holds for
(B(xCL), Σk) if there exist X ≻ 0, Y ≻ 0, E ∈ Rn×n,
F ∈ Rn×1, G ∈ R1×n, and µw, µ1, µ2, · · · , µnp

≥ 0 such
that (12) and (13) hold.

If we define the scalar variables µw, µ1, µ2, · · · , µnp a



priori, (13) becomes an LMI in (X, Y, E, F, G). Even
though (13) is not an LMI with respect to these variables
jointly, we can consider methods such as D-K iteration [14]
for searching the values of these scalar variables.

B. LMIs for State and Input Limits

Now, let us focus on condition (b) in Definition 1 for
barrier function B(xCL) = ∥xCL∥P and safety controller Σk

in the form of (6). In this paper, let us define Xs and U as

Xs ≜ {xp : |fT
i xp| ≤ 1, i = 1, 2, · · · , nf}, (21)

U ≜ {u : |u| ≤ ū}. (22)

Since fT
i xp = fT

i SpxCL and u = ckSkxCL, condition (b) in
Definition 1 holds for (B(xCL), Σk) if

fT
i SpQST

p fi ≤ 1, for i = 1, 2, · · · , nf , (23)

ck SkQST
k c

T
k ≤ ū2. (24)

Since Σk is undetermined (i.e., Ak, bk and ck are also
decision variables), (24) is not an LMI. We address this
issue as follows. Since Q = P−1, we can use the Schur
complement to obtain that (24) holds if[

P ⋆
ckSk ū2

]
⪰ 0. (25)

By performing a congruence transformation with
diag(Π2, I) on (25), we obtain that (24) holds if Y ⋆ ⋆

I X ⋆
GT 0 ū2

 ⪰ 0, (26)

where (26) is an LMI in our new variable set
(X, Y, E, F, G) introduced in Proposition 1. In addition,
we can use the Schur complement to obtain that (26) also
implies condition (12) in Proposition 1.

C. Barrier Pair Construction

Through a convex optimization

maximize
X,Y,E, F,G

log(det(Y ))

subject to X ≻ 0, Y ≻ 0,

(13), (23), (26),

(27)

we obtain a solution of (X, Y, E, F, G) that maxi-
mize the volume of the xp space projection {xp : xp =
SpxCL, B(xCL) ≤ 1} of the unit sub-level set of B(xCL).

There are multiple methods to construct a controller Σk

based on a solution of (X, Y, E, F, G). For example,
Ref. [15, Lemma 7.9] defines V V T = X − Y −1 and
W = −Y V . After obtaining V and W , we can construct
our controller parameters Ak, bk, and ck according to (15).

IV. ROBUST FAULT DETECTION

Although barrier pair (B, Σk) is obtained in the previous
section, the calculation of B relies on knowing the full state
xCL of the closed-loop system. Since xp is not available, the
true value of B is unknown. In this section, we will introduce
a robust fault detector that provides an upper bound for B
using only the measurements of y and u.

A. Identifier-Based Estimator

In [11], the concept of an identifier-based estimator was
developed for the purpose of model identification and adap-
tive control. However, as a byproduct, it also provides us
with a robust state estimate x̂p to the model uncertainty of
Σp. The identifier-based estimator for our system Σp is a
pair of sensitivity function filters

ży = AT
z zy + cT0 y

żu = AT
z zu + cT0u

(28)

where Az ≜ A0−bzc0 and bz ∈ Rn×1 is defined by the user
such that Az is a Hurwitz matrix. Let us define

Ey ≜ CyC−1
0 , Eu ≜ CuC−1

0 (29)

where C0 is the controllability matrix of (AT
z , cT0 ), Cy

is the controllability matrix of (AT
z , zy), and Cu is the

controllability matrix of (AT
z , zu).

Lemma 1. zy and zu are the states of the identifier-based
estimator in (28). Ey and Eu are defined as (29). If we define
a state estimate x̂p for Σp in (4) as

x̂p = ET
y (by + bz) + ET

u bu, (30)

the state estimation error e ≜ xp − x̂p follows

ė = Aze− bzw. (31)

Proof. This is similar to the proofs of [11, Lemma 2] and
[12, Lemma 1]. Subtracting (31) from (4), we obtain that

˙̂xp = Azx̂p + (by + bz)y + buu. (32)

Since C0 is the controllability matrix of (AT
z , c

T
0 ), we can

derive from (28) that

Ėy = AT
zEy + y · I,

Ėu = AT
zEu + u · I.

(33)

Notice that Az is in a canonical form, which leads to
ET

yAz = AzE
T
y and ET

uAz = AzE
T
u . By taking the

transpose of (33), we obtain ĖT
y = AzE

T
y + y · I and

ĖT
u = AzE

T
u + u · I. Therefore, (32) holds if x̂p = ET

y (by +
bz) + ET

u bu.

Notice that in (30), x̂p is affine in by and bu, which are
defined in (5). Substituting (5) into (30), we have

x̂p = x̄p +

np∑
i

δi · x̃p
i

x̄p ≜ ET
y (b̄y + bz) + ET

u b̄u, x̃p
i ≜ θyi · ET

y b̃i + θui · ET
u b̃i
(34)

where δ ≜ [δ1 δ2 · · · δnp ] and |δi| ≤ 1 for all i =
1, 2, · · · , np. Let us define a set

∆̄ ≜
{
[δ1 δ2 · · · δnp ] : |δi| = 1, i = 1, 2, · · · , np

}
, (35)

which consists of all the 2np extreme values of δ. Then, we
have

x̂p(δ) ∈ Co
{
x̄p +

np∑
i

δi · x̃p
i , ∀ δ ∈ ∆̄

}
. (36)



Although we do not know the exact value of x̂p due to the
uncertainty in by and bu, (36) shows that the possible value
of x̂p(δ) is in a polytopic region in Rn.

B. Barrier Function Estimation

Next, we will explain how (31) and (36) help us find a
computable upper bound for our barrier function B.

Proposition 2. Let us define

B̄ ≜ max
δ̄∈∆̄

B(x̂CL(δ̄)) + re, (37)

where x̂CL(δ̄) ≜ [x̂p(δ̄)
T xT

k ]
T and re > 0. Supposing that

|w| ≤ w̄, B(xCL) ≤ B̄ if there exists µe ≥ 0 such that[
AT

zX +XAz + µe ·X ⋆

−bTzX −µe · r2e
w̄2

]
≺ 0. (38)

Proof. Through the triangle inequality of ∥⋆∥P , we have

B(xCL) = ∥xCL∥P ≤ ∥x̂CL(δ)∥P + ∥ST
p e∥P , (39)

where e ≜ xp − x̂p. According to (36),

∥x̂CL(δ)∥P ≤ max
δ̄∈∆̄

∥x̂CL(δ̄)∥P . (40)

Based on the definition of P in (10),

∥ST
p e∥P ≤ ∥e∥X . (41)

Therefore, B(xCL) ≤ B̄ for all w that |w| ≤ w̄ if
max
δ̄∈∆̄

∥x̂CL(δ̄)∥c + ∥e∥X ≤ B̄, or equivalently ∥e∥X ≤ re,

for all w that |w| ≤ w̄.
At t = 0, e ≜ xp − x̂p = 0 for xp = zy = zu = 0. Since

e = 0 at t = 0 and ė = Aze − bzw, ∥e∥X ≤ re for all w
that |w| ≤ w̄ if and only if d ∥e∥2

X

d t < 0, or equivalently[
e
w

]T [
AT

zX +XAz ⋆
−bTzX 0

] [
e
w

]
< 0, (42)

for all e and w that

eTXe ≥ r2e and w2 ≤ w̄2. (43)

Using the S-procedure, we obtain that (42) holds under the
conditions in (43) if there exists µe ≥ 0 such that (38) holds.
Therefore, B(xCL) ≤ B̄ for all w that |w| ≤ w̄ if there exists
µe ≥ 0 such that (38) holds.

Notice that X is already obtained from optimization (27).
If we fix the value of µe, (38) becomes an LMI in bz .
Through convex optimization

minimize
bz

r2e

subject to (38)
(44)

bz in (28) can be defined for minimizing re. Since x̂CL(δ̄) for
all δ̄ ∈ ∆̄ can be obtained from our identifier-based estimator,
B̄ is available to us.

C. Switching Logic of Σs

Based on the value of B̄ (Fig. 2), we can now define the
switching logic of Σs. Let us define two thresholds

¯
ε and ε̄

(with ε <
¯
ε < ε̄ ≤ 1). Σs switches from the original input

B̄ ≥ ε̄

u = û u = Σk(y)

B̄ <
¯
ε

start

Fig. 2. Σs switches from the original input u = û to u = Σk(y) if
B̄ ≥ ε̄ and switches back to u = û if B̄ <

¯
ε.

m
k

u
xx0

Fig. 3. In our example, we consider a simplified 1-DOF physical human-
robot interaction system, which a mass-spring system with an uncertain
human stiffness k and a robot inertia m.

u = û to u = Σk(y) if B̄ ≥ ε̄ and switches back to u = û if
B̄ <

¯
ε. According to Proposition 1, xCL converges to residual

set {xCL : B(xCL) ≤ ε} when u = Σk(y). Therefore, when
Σk is in control of the system, the true value of B(xCL)
goes below

¯
ε in finite time. By setting the values of

¯
ε and

ε̄ closer to 1, we reduce the intervention from Σk in the
original operation of Σp.

V. EXAMPLE

In this section, we provide an example to illustrate the
robust fault detection and safety control of our proposed
method.

A. System Model

Here we consider an uncertain mass-spring system Σp

(Fig. 3) with a transfer function

Gp(s) =
y(s)

u(s)
=

k

m · s2 + k
(45)

where the system has a unit mass m = 1 and a spring
stiffness k, the output y = k(x − x0) measures the spring
force, and the input u represents an adjustable force exerting
to the mass. The spring stiffness is uncertain and defined as
k = k̂ + δ · k̄, where k̂ = 10, k̄ = 1, and |δ| ≤ 1. The state
model of Σp can be expressed as

ẋp =

[
0 0
1 0

]
xp +

[
− k

m
0

]
y +

[
k
m
0

]
u (46)

y =
[
0 1

]
xp + w

where xp = [ẋ x]T and w is an unknown exogenous input. If
we consider this system as a simplified 1-DOF human-robot
interaction model in a wearable robot control problem [3],
then m is the robot inertia, k is an uncertain human joint
stiffness, and x0 = w

k is a desired joint position where the
human operator tends to move to.

The safe regions Xs and U are defined as

Xs ≜ {[ẋ x]T : |ẋ| ≤ 2, |x|≤ 2}, (47)

U ≜ {u : |u| ≤ 10}. (48)

Assuming that |w| ≤ w̄ = 0.05, we aim to achieve a residual
set {xCL : B(xCL) ≤ ε} of our barrier function with ε = 0.5.



10−2 10−1 100

f (Hz)

−
1
0

0
1
0

|G
e
|
(d

B
) |Ge|

Peak

−60 0 60 120

t (s)

−
2

0
2

x

Act.

Ref.

−60 0 60 120

t (s)

−
2

0
2

ẋ
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Fig. 4. Simulation Results of Example—(a) shows the frequency response of Ge(s), where the peak value is at fe = 0.09Hz. (b)-(d) show the results
of our safety control test under the disturbance signals w(t) = 0.05 sin(2πfet). In particular, (b)-(c) show the actual (Act.) and reference (Ref.) values
of x and ẋ and (d) shows the actual value (Act.) and upper bound (B̄) of B.

B. Safety Control

Through optimizations (27) and (44), we obtain a barrier
pair (B, Σk) and a state estimator in the form of (28), which
provides us with a state estimate x̂p to calculate a barrier
function upper bound B̄ with re = 0.05.

In our safety control test, we want to demonstrate the
robustness of our switching system Σs with respect to
the bounded model uncertainty and disturbance in the test.
Unfortunately, it is difficult to implement the exact worst
case of the bounded disturbance signal w(t) that maximizes
the peak value of the estimation error residue ∥e∥X . Instead,
we implement w(t) as a sinusoidal signal in this example.
Let us define a transfer function

Ge(s) ≜
∥e(s)∥X
w(s)

(49)

from the disturbance w(s) to the estimation error residue
∥e(s)∥X . In the frequency domain (Fig. 4a), ∥Ge(s)∥∞ =
1.09 at fe = 0.09Hz. Therefore, we define the disturbance
as a sinusoidal signal w(t) = w̄ · sin(2πfet), which gives us
the maximum sinusoidal response of Ge(s).

To test the fault detection, we implement the original input
û as a reference tracking controller, which lets x follow a
trapezoidal reference (Fig. 4b-c). The reference is designed
to violate the safety limits of x and ẋ on purpose in such a
way that û can cause potential risks. Fig. 4b-d show that the
safety controller Σk is correctly triggered when the system
is about to violate the constraints of x and ẋ. Fig. 4d shows
that the true value of B is strictly lower than B̄ at all times.

VI. DISCUSSION

In our problem statement, we assume that the initial state
of xp is 0. Similar to Ref. [12], our fault detector can also
be extended to cases where the initial states of xp are not
0. The Hurwitz matrix Az in our identifier-based estimator
in (28) guarantees that the state estimation error due to an
unknown initial state of xp converges to 0 exponentially.

Fig. 4d in our example shows a slight over-conservatism
of the barrier function upper bound B̄. This is partly because
the worst case of the disturbance input w(t) is difficult to
find. In our example, we implement the disturbance input
w(t) as a sinusoidal signal, which only leads to the worst
case of the sinusoidal response of Ge(s) in (49). Note that
as long as w ≤ w̄, constraint (38) guarantees ∥e(t)∥X ≤ re
no matter what type of signal we implement w(t) as.

In this paper, we considered the safety control problem for
an uncertain SISO system with partial state information. By
knowing the limits of the uncertain model parameters and
disturbance a priori, our fault detector and safety controller
work together to protect the uncertain SISO system from
potential risks. In the future, we will extend our safety control
method to MIMO systems.
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