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Abstract— Soft robots are robotic systems made of de-
formable materials and exhibit unique flexibility that can be
exploited for complex environments and tasks. However, their
control problem has been considered a challenging subject
because they are of infinite degrees of freedom and highly
under-actuated. Existing studies have mainly relied on sim-
plified and approximated finite-dimensional models. In this
work, we exploit infinite-dimensional nonlinear control for soft
robots. We adopt the Cosserat-rod theory and employ nonlinear
partial differential equations (PDEs) to model the kinematics
and dynamics of soft manipulators, including their translational
motions (for shear and elongation) and rotational motions
(for bending and torsion). The objective is to achieve position
tracking of the whole manipulator in a planar task space by
controlling the moments (generated by actuators). The control
design is inspired by the energy decay property of damped
wave equations and has an inner-outer loop structure. In the
outer loop, we design desired rotational motions that rotate
the translational component into a direction that asymptotically
dissipates the energy associated with position tracking errors. In
the inner loop, we design inputs for the rotational components to
track their desired motions, again by dissipating the rotational
energy. We prove that the closed-loop system is exponentially
stable and evaluate its performance through simulations.

I. INTRODUCTION

Soft robots are artificial bodies made of continuously
deformable and compliant materials [1]. Compared with con-
ventional rigid-body robots, the compliant structure endows
soft robots with unique advantages such as being inherently
safe when interacting with humans and being able to adapt
to constrained and crowded environments. As a result, soft
robots have found many applications including medical surg-
eries and interventions [2] and underwater maneuvers [3].

Despite the structural advantages, the control problem
of soft robots has been considered a challenging subject
[4] for two main reasons. First, due to the continuous
deformability, soft robots have infinite degrees of freedom
and are inherently infinite-dimensional nonlinear systems,
yet the inputs are always finite-dimensional because we can
only equip finitely many independent actuators on the robots.
Second, dimensionality aside, the number of input variables
is usually much less than the number of state variables. (Here
a “variable” is a continuous function.) In one word, soft
robots are highly under-actuated systems.
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The existing effort has mainly focused on developing finite
dimensional approximations of soft robots’ kinematics and
dynamics, such as those that are based on the piecewise
constant curvature (PCC) assumption [5] or finite element
methods (FEM) [6]. PCC models suggest ignoring the linear
strains (like shear) that are sometimes negligible compared
with the angular strains (like bending) and further assume
that a soft manipulator consists of a finite number of curved
segments with constant curvatures. In this way, the con-
figuration space is approximated by a reduced number of
finite-dimensional variables. This approach has been widely
adopted and produced fruitful results ranging from kinematic
control to dynamic control in the last two decades [7]–[9].
However, this over-simplification suffers from low accuracy
and might also produce local singularities, especially in the
presence of significant body and external loads. FEM is a
numerical method for solving partial differential equations,
which represents the deformable shape as a very large set of
mesh nodes together with the information of their neighbors
[10], [11]. While FEM is a powerful tool for simulating
deformations of various geometric shapes, it significantly
relies on linearization and reduction for control purposes.

Cosserat-rod models, also known as geometrically exact
models, are infinite-dimensional models for soft manipula-
tors which are based on continuum mechanics and are con-
sidered more accurate [12]–[15]. They describe the kinemat-
ics and dynamics of a soft manipulator using a system of two
coupled nonlinear partial differential equations (PDEs), one
for the translational/linear deformations and the other for the
rotational/angular deformations. The PCC and FEM models,
to some extent, may be considered as finite-dimensional
approximations of the Cosserat-rod models [4]. Moreover,
since they are mechanics-based, the role of actuators can
be systematically formulated into Cosserat-rod models [16]–
[18]. Despite modeling accuracy, these PDEs are nonlinear
and highly under-actuated, which are very difficult to control
due to the lack of a well-developed control theory for infinite-
dimensional nonlinear systems. As a result, the existing effort
of the control design based on Cosserat-rod models has
mainly relied on discretization [19]–[21], or assuming a full-
actuation [22], [23].

In this work, we design feedback controllers directly
based on an under-actuated Cosserat-rod model without
approximations. The control objective is to achieve position
tracking of the whole manipulator in a planar task space
by designing the internal moments (generated by actuators)
which are treated as the input variables. We recognize that
the complete system has a lower-triangular structure in the
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sense that the rotational motion can be viewed as a virtual
input of the translational component. Therefore, we adopt
an inner-outer loop design and exploit the energy decay
property of damped wave equations for each loop. In the
outer loop, we design desired rotational motions that rotate
the translational motions into a direction that converts the
tracking error system into a damped wave equation whose
energy is known to decay exponentially. In the inner loop,
we design inputs for the rotational component to track their
desired motions, again by converting the rotational error into
a damped wave equation. We prove that this inner-outer
loop feedback controller achieves the exponential stability
of position tracking in task space. Simulations are included
to validate the performance of the proposed controller.

The rest of the paper is organized as follows. We introduce
the Cosserat-rod model and the control problem in Section II.
The inner-outer loop control design is presented in Section
III. In Section IV, simulations are conducted to validate the
algorithms. Section V summarizes the contribution.

II. MODELING AND PROBLEM STATEMENT

The special orthogonal group is defined by SO(3) = {R ∈
R3×3 | RTR = I, detR = 1}. The associated Lie algebra is
given by so(3) = {A ∈ R3×3 | A = −AT }. Define the hat
operator (·)∧ : R3 → so(3) by the condition that u∧v = u×v
for all u, v ∈ R3, where × denotes the cross product. Let
(·)∨ : so(3)→ R3 be its inverse operator, i.e., (u∧)∨ = u.

Cosserat-rod models are geometrically exact models that
describe the dynamic response of long and thin deformable
rods undergoing external forces and moments [12], [13] and
have been widely used to model soft manipulators [14]–
[23]. A Cosserat rod is idealized as a spatial curve and a
family of cross-sections (Fig. 1a). Let {e1, e2, e3} be the
standard basis of R3. Let s ∈ [0, `] be the arc length
parameter of the undeformed centerline, where ` is the
undeformed length. The position of centerline is specified by
p : [0, `] × [0, T ] → R3. The rotation of each cross-section
is specified by R : [0, `] × [0, T ] → SO(3). The columns
{b1, b2, b3} of R can be seen as a body-attached basis. We
thus have two types of coordinate frames: one is the fixed
global frame {e1, e2, e3}, and the other is a family of body-
attached local frames {b1, b2, b3}. The deformation of the rod
is uniquely decomposed into the linear strains q (for shear
and elongation) and the angular strains u (for bending and
torsion), which are defined in the local frames (Fig. 1b).

Using the nomenclature in Table. I, the kinematics and dy-
namics of a Cosserat rod are characterized by the following
set of PDEs [12], [13]:

ps = Rq (1)
Rs = Ru∧ (2)
pt = Rv (3)
Rt = Rw∧ (4)

Ns + F = (Rρσv)t (5)
Ms + ps ×N + L = (RρJw)t (6)

(a) A Cosserat rod.

(b) Four types of strains.

Fig. 1: Illustration of Cosserat rods.

p : [0, `]× [0, T ]→ R3 global position
R : [0, `]× [0, T ]→ SO(3) global rotation matrix

V, v : [0, `]× [0, T ]→ R3 global/local linear velocities
w : [0, `]× [0, T ]→ R3 local angular velocity
q : [0, `]× [0, T ]→ R3 local linear strain
u : [0, `]× [0, T ]→ R3 local angular strain
N : [0, `]× [0, T ]→ R3 global total internal force
M : [0, `]× [0, T ]→ R3 global total internal moment
n : [0, `]× [0, T ]→ R3 local internal elastic force
m : [0, `]× [0, T ]→ R3 local internal elastic moment
nc : [0, `]× [0, T ]→ R3 local internal force input
mc : [0, `]× [0, T ]→ R3 local internal moment input
F : [0, `]× [0, T ]→ R3 global external force
L : [0, `]× [0, T ]→ R3 global external moment
ρ ∈ R+ density
σ ∈ R+ cross-sectional area
J ∈ R3×3 rotational inertia matrix

K1,K2 ∈ R3×3 linear/angular stiffness matrices

TABLE I: Nomenclature in the 3D case

where (·)t := ∂
∂t (·) and (·)s := ∂

∂s (·) are partial derivatives.
Assuming the rod is initially in a straight configuration on
the z-axis, the initial condition is given by

p(s, 0) = [0 0 s]T , pt(s, 0) = 0,

R(s, 0) = I, Rt(s, 0) = 0,
(7)

where I ∈ R3×3 is the identity matrix. Assume one end
(s = 0) is fixed and the other end (s = `) is free, the
boundary condition is given by

p(0, t) = 0, R(0, t) = I,

N (`, t) = 0, M(`, t) = 0.
(8)

Following the nomenclature in [5], we refer to {p,R}
as the task space variables, and {q, u} as the configuration



space variables. Equations (1)-(2) are the forward kinematics.
Equations (3)-(4) are the kinematic equations. Equations (5)-
(6) are the dynamic equations for momentum balance. We
assume the control inputs act on the system in the form
of internal forces and moments, denoted by nc and mc

respectively. This assumption is valid for tendon and fluidic
actuators [17]. Following [17], the total internal forces and
moments are given by

N = R(n− nc), (9)
M = R(m−mc). (10)

Assuming linear constitutive laws, the internal elastic forces
and moments (caused by deformation) are given by

n = K1(q − q̄), (11)
m = K2(u− ū), (12)

where {q̄(s), ū(s)} are the undeformed values of {q, u}, K1

and K2 are positive-definite and diagonal. In our problem,
F = ρσge3 and L = 0 where g is the gravity.

Note that there are only four independent state variables
(or twelve if recalling that each variable has three elements).
To obtain a minimum representation of the complete system,
we choose {p,R, V,w} as the state variables. By substituting
(1)-(2) and (9)-(12) into (5)-(6) and using the fact that V =
Rv, we obtain the following task space representation:

pt = V

ρσVt =
(
R(n− nc)

)
s

+ ρσge3

Rt = Rw∧

ρJwt = RT
(
R(m−mc)

)
s

+RT p∧sR(n− nc)
− w∧ρJw,

(13)

where, according to (1)-(2) and (11)-(12),

n = K1(RT ps − q̄)
m = K2((RTRs)

∨ − ū).

This is a system of two nonlinear hyperbolic equations, one
for the translational motions p and the other for the rotational
motions R.

Remark 1: Relevant results concerning the well-
posedness of (13) can be found in [24]. With mild
conditions, one can show that H1 solutions of {p,R} exist
globally, which is essentially due to the energy conservation
property of Cosserat rods. One can also obtain the semi-
global existence of C2 solutions with extra smallness
assumptions on the initial conditions [25]. The complete
treatment of the well-posedness issue is beyond the scope
of this work and is left for future research.

In practice, system (13) is under-actuated for two rea-
sons. First, the inputs {nc,mc} are the internal forces and
moments generated by actuators, which are always finite-
dimensional because there are only finitely many indepen-
dent actuators. Second, mc is usually a function of nc, i.e.,
we cannot control the translational and rotational motions
independently. We use the models for fluidic actuators de-
rived in [16] as an example. Consider a soft manipulator

with multiple hollow actuation chambers offset from the
centerline. Let α be the number of chambers. Let ri(s) be
the vector from the cross-section center of mass to the center
of the i-th chamber. Assume a uniform air pressure Pi(t)
in each chamber. Let Ai be the cross-sectional area of the
chamber. Then the local internal force and moment generated
by the i-th chamber are

nci = PiAie3,

mc
i = r∧i n

c
i = PiAir

∧
i e3.

The total local internal force and moment are given by

nc =

α∑
i=1

PiAie3, (14)

mc =

α∑
i=1

PiAir
∧
i e3. (15)

We see that nc and mc are essentially simultaneously de-
termined by an α-dimensional air pressure vector P =
[P1 . . . Pα]T .

To simplify the design, we directly treat mc as the control
input. In the implementation, one needs to find values of
{Pi} to approximate the mc that we design. We will impose
nc = 0 to simplify the stability proof. This is not a restriction
because as long as the actuators are paired symmetrically on
two sides of the manipulator, we can let their forces coun-
teract each other to generate only moments. For example, let
ri = −rj (symmetric placement) and Pi = −Pj .

In this work, we consider the planar case where the ma-
nipulator only moves on the yz-plane, assuming the gravity
also lies on this plane. In this case, one element of every
translational variable and two elements of every rotational
variable are constantly zero. The corresponding equations
can be removed from the complete system (13). We will still
use the same notations for the reduced vectors and matrices,
e.g., p = [p2 p3]T and w = w1 where (·)i, i = 1, 2, 3 is the
i-th element of the original vector. Assuming nc = 0, the
task space representation in the planar case is given by:

ptt = (RK3R
T ps −RK3q̄)s + ge3,

θtt = K4θss −
1

ρJ
(mc)s + p̂sRK5(RT ps − q̄),

(16)

where K3 = K1/(ρσ), K4 = K2/(ρJ), K5 = K1/(ρJ),
p̂ = [−p3 p2], θ : [0, `] × [0, T ] → R is the rotation angle
about the x-axis, and

R =

[
cos θ − sin θ
sin θ cos θ

]
.

The boundary conditions are correspondingly simplified as:

p(0, t) = 0, θ(0, t) = 0,

(RT ps)(`, t)− q̄ = 0, (K2θs −mc)(`, t) = 0.
(17)

Assume the objective is to track a position trajectory
p∗(s, t) ∈ R2 in the task space (alternatively written as p∗
when the superscript position is needed for other notations)



which is as smooth as needed with uniformly bounded
derivatives and satisfies the following boundary conditions:

p∗(0, t) = 0, p∗s(`, t) = ps(`, t). (18)

The condition at s = ` is a mild condition to simplify the
stability analysis. In practice, for a given desired trajectory
p∗(s, t), it is easy to regulate its value in a small neighbor-
hood of the free end s = ` such that the regulated trajectory
is almost the same as the original p∗ while satisfying (18).

The control problem is stated below.
Problem 1: Consider (16). Design mc such that p(·, t)→

p∗(·, t) as t→∞.

III. INNER-OUTER LOOP CONTROL DESIGN

In this section, we design an infinite-dimensional state
feedback controller for the soft manipulator to track a desired
position trajectory in the task space.

The control design relies on recognizing that the complete
system (16) has a lower-triangular structure in the sense that
the rotational motion R can be viewed as a virtual input
of the translational equation. Therefore, we adopt an inner-
outer loop design philosophy. In the outer loop, we design
desired rotational motions to rotate the translational motions
in a direction that asymptotically achieves position tracking.
In the inner loop, we design inputs mc for the rotational
equation to track their desired motions. Both designs are
inspired by the energy decay property of damped wave
equations. We will assume the states {p,R} are available.
It is relatively easy to obtain estimates of p using cameras.
One can then estimate R using the extended Kalman filter
for Cosserat-rod models reported in [23].
Outer loop. Define the following translational error term:

p̃ = p− p∗.

By the first equation of (16), we obtain that p̃ satisfies:

p̃tt = (RK3R
T ps −RK3q̄)s + ge3 − p∗tt. (19)

We view R as a virtual input to this system and use it to
reshape the translational dynamics such that p̃ satisfies the
following damped wave equation:

p̃tt = (Kqp̃s)s −Kvp̃t −Kpp̃,

which is known to converge exponentially under suitable as-
sumptions on the coefficients {Kq,Kv,Kp} and the bound-
ary condition. This inspires us to design the desired rotational
motion R∗(s, t) (alternatively R∗), in the form of

R∗ =

[
cos θ∗ − sin θ∗

sin θ∗ cos θ∗

]
,

such that at every t, the following ODE holds

(R∗K3R
T
∗ ps −R∗K3q̄)s + ge3 − p∗tt

= (Kqp̃s)s −Kvp̃t −Kpp̃,
(20)

for some positive-definite matrix-valued functions
Kq(s),Kv(s, t),Kp(s) ∈ R2×2, with the boundary
conditions θ∗(0, t) = 0 and θ∗s(`, t) = θs(`, t) to ensure that
the desired rotational trajectory is trackable. It is important

that Kv can be a function of t which ensures that (20) has a
solution. We should point out that if Kv is prescribed, (20)
may not admit a solution for R∗. The correct procedure is
to treat both R∗(s, t) and Kv(s, t) as independent variables
and solve for them simultaneously at every t with the
constraints that R∗ is a rotation matrix and Kv > 0.
Inner loop. Define the following rotational error term:

θ̃ = θ − θ∗.

By the second equation of (16), θ̃ satisfies:

θ̃tt = K4θss −
1

ρJ
(mc)s + p̂sRK5(RT ps − q̄)− θ∗tt. (21)

We can use the same idea to reshape the rotational dynamics
into a damped wave equation. This motivates us to design
the input mc such that

K4θss −
1

ρJ
(mc)s + p̂sRK5(RT ps − q̄)− θ∗tt

= (kuθ̃s)s − kwθ̃t − kθ θ̃,
(22)

for some functions ku(s), kw(s), kθ(s) > 0 with the bound-
ary condition mc(`, t) = K2θs(`, t) according to (17).
Equivalently, at every t, after substituting the boundary
condition, mc can be computed by:

mc(s, t) = ρJ [K4θs − kuθ̃s](s, t)

+ ρJ

∫ `

s

[
− kwθ̃t − kθ θ̃

− p̂sRK5(RT ps − q̄) + θ∗tt
]
(τ, t)dτ.

(23)

We can prove that the closed-loop system under such an
inner-outer loop control is exponentially stable.

Theorem 1: Consider (16). Let R∗ be computed by (20)
and mc be given by (23). Let the smallest eigenvalue of Kq

be sufficiently large such that (Kq + RK3R
T − R∗K3R

T
∗ )

is positive-definite for all s at t = 0. Then as t → ∞, the
following convergence holds exponentially,(

‖θ̃(·, t)‖L∞ , ‖θ̃t(·, t)‖L∞ , ‖θ̃s(·, t)‖L2

)
→ 0,(

‖p̃(·, t)‖L2 , ‖p̃t(·, t)‖L2 , ‖p̃s(·, t)‖L2

)
→ 0.

Proof: The proof mainly consists of two arguments. In
the inner loop, {θ̃, θ̃t, θ̃s} converge exponentially under (23).
In the outer loop, {p̃, p̃t, p̃s} become input-to-state stable
[26] after at most a finite time (once {θ̃, θ̃t} become small)
and eventually converges exponentially.

(1) Inner loop. We prove (‖θ̃‖L∞ , ‖θ̃t‖L∞ , ‖θ̃s‖L2) → 0.
Substituting (22) into (21), we obtain

θ̃tt = (kuθ̃s)s − kwθ̃t − kθ θ̃, (24)

with boundary conditions θ̃(0, t) = 0 and θ̃s(`, t) = 0.
Consider a Lyapunov functional

V1(t) =
1

2

∫ `

0

kuθ̃
2
s + θ̃2t + 2cθ̃θ̃t + kθ θ̃

2ds

=
1

2

∫ `

0

kuθ̃
2
s +

[
θ̃t
θ̃

]T [
1 c
c kθ

] [
θ̃t
θ̃

]
ds,



where c > 0 is a constant to be determined later. We have

d

dt
V1 =

∫ `

0

kuθ̃sθ̃st + θ̃tθ̃tt + cθ̃θ̃tt + cθ̃2t + kθ θ̃θ̃tds

=

∫ `

0

kuθ̃sθ̃st + (θ̃t + cθ̃)[(kuθ̃s)s − kwθ̃t − kθ θ̃]

+ cθ̃2t + kθ θ̃θ̃tds.

Using integration by parts and the boundary condition,∫ `

0

(θ̃t + cθ̃)(kuθ̃s)sds =

∫ `

0

−ku(θ̃ts + cθ̃s)θ̃sds.

Then,

d

dt
V1 =

∫ `

0

−ckuθ̃2s − (kw − c)θ̃2t − ckwθ̃θ̃t − ckθ θ̃2ds

= −
∫ `

0

ckuθ̃
2
s +

[
θ̃t
θ̃

]T [
kw − c ckw

2
ckw
2 ckθ

] [
θ̃t
θ̃

]
ds.

We can choose c such that

0 < c < inf
s

{√
kθ(s),

kθkw
kθ + k2w/4

(s)
}
. (25)

Then V1 is positive-definite and d
dtV1 is negative-definite.

We obtain that (‖θ̃(·, t)‖L2 , ‖θ̃t(·, t)‖L2 , ‖θ̃s(·, t)‖L2) → 0
exponentially. Note that (‖θ̃(·, t)‖L2 , ‖θ̃s(·, t)‖L2) → 0 im-
plies ‖θ̃(·, t)‖L∞ → 0. Next, define η = θ̃t. Since all the
coefficients in (24) are independent of t, one can take the
time derivative on both sides and find that η satisfies the
same equation as θ̃. By the same argument, we can prove that
(‖η(·, t)‖L2 , ‖ηt(·, t)‖L2 , ‖ηs(·, t)‖L2) → 0 exponentially
and hence ‖θ̃t(·, t)‖L∞ = ‖η(·, t)‖L∞ → 0 exponentially.

(2) Outer loop. We prove (‖p̃‖L2 , ‖p̃t‖L2 , ‖p̃s‖L2) → 0.
Substituting (20) into (19), we obtain

p̃tt =
(
(Kq + Φ)p̃s

)
s
−Kvp̃t −Kpp̃+ Ψ,

where

Φ = RK3R
T −R∗K3R

T
∗ ,

Ψ = (Φp∗s)s + (R∗ −R)sK3q̄.

According to (18), the boundary condition is given by
p̃(0, t) = 0 and p̃s(`, t) = 0. Consider a Lyapunov functional

V2(t) =
1

2

∫ `

0

p̃Ts (Kq + Φ)p̃s + p̃Tt p̃t + 2p̃TCp̃t + p̃TKpp̃ds,

where C > 0 is a positive-definite constant matrix such that

K
1
2
p − C and Kv − C −

KvCK
−1
p Kv

4

are both positive-definite for all s, which is essentially the
matrix version of condition (25). (The existence of such an
C can be easily verified by assuming C = c1I for some
constant c1 > 0.) By assumption, V2 is positive-definite at
t = 0. Note that ‖θ̃(·, t)‖L∞ → 0 exponentially implies
that ‖Φ(·, t)‖L∞ → 0 exponentially. Hence, V2 is positive-
definite for all t ≥ 0. Next, by taking the time derivative and

using integration by parts in a similar way as for d
dtV1, we

obtain

d

dt
V2 =

∫ `

0

p̃Ts (Kq + Φ)p̃st +
1

2
p̃Ts Φtp̃s + p̃Tt p̃tt

+ p̃TCp̃tt + p̃Tt Cp̃t + p̃TKpp̃tds

=

∫ `

0

−p̃Ts (CKq + CΦ− 1

2
Φt)p̃s + (p̃t + Cp̃)TΨ

−
[
p̃t
p̃

]T [
Kv − C 1

2KvC
1
2CKv CKp

] [
p̃t
p̃

]
ds,

where the last term is negative-definite by our selection
of C. Note that (CKq + CΦ − 1

2Φt) is not necessarily
positive-definite. However, (‖θ̃(·, t)‖L∞ , ‖θ̃t(·, t)‖L∞) → 0
exponentially implies that ‖Φt(·, t)‖L∞ → 0 exponentially.
This means that there exists a finite time T > 0 such that
when t > T , (CKq +CΦ− 1

2Φt) becomes positive-definite
for all s and V2 becomes input-to-state stable [26] with
respect to ‖Ψ(·, t)‖L2 . Since (‖θ̃(·, t)‖L∞ , ‖θ̃s(·, t)‖L2)→ 0
exponentially implies that ‖Ψ(·, t)‖L2 → 0 exponentially,
we conclude that (‖p̃(·, t)‖L2 , ‖p̃t(·, t)‖L2 , ‖p̃s(·, t)‖L2)→ 0
exponentially.

Remark 2: Our control design takes place in the task
space so we completely avoid the inverse kinematics problem
encountered if using PCC models [5]. The control algorithm
in either loop may be replaced by alternative algorithms as
long as they have suitable stabilizing properties. For example,
the inner loop is exponentially stable and the outer loop is
input-to-state stable (at least after a finite time).

The control input given by (23) is infinite-dimensional. In
the implementation, it needs to be approximated by a finite
number of actuators. Take fluidic actuators as an example.
Then one needs to find values of the air pressure {Pi}αi=1

such that the generated actuation mc (finite-dimensional)
according to (15) approximates the designed mc (infinite-
dimensional) in (23). Intuitively, we can achieve better ap-
proximations with more actuators and suitable placements.
On the other hand, if a position trajectory is not achievable
based on the current actuator allocation, then it is impossible
to accurately approximate the designed mc. This allocation
problem highly depends on the actuators and is under study.

IV. SIMULATION STUDY

A simulation study is performed on MATLAB to verify
the proposed control algorithms.

Setup. The system parameters for (16) are chosen as
` = 0.5, K3 = diag[1, 1.5], K4 = 1, and K5 = 1.5.
The system (16) is simulated using finite differences where
we set ds = 0.05 and dt = 0.005. In other words, we
use N = 11 points to represent a rod. (Note that these
system parameters are chosen to be small values to avoid
numerical instability in the finite difference method and may
not reflect a real soft manipulator. A more delicate simulator
for soft manipulators is under development.) The manipulator
is initially undeformed and lies on the z-axis.

Algorithm implementation. In the outer loop, we set the
control gains to be Kq = 1 and Kp = 4. To solve for the



Fig. 2: The position tracking process (from left to right). Black: desired position. Blue: actual position.

desired rotation matrix R∗ using (20), we notice that at every
t, (20) can be written as an ODE of s in the following form:

d

ds
(R∗K3R

T
∗ a−R∗b) +Kvc+ d = 0,

where a, b, c, d : [0, `] → R2 are given vector fields. We
let Kv = diag[K1

v ,K
2
v ] be a diagonal matrix. After spatial

discretization, each component of a vector field becomes an
N -dimensional vector, and the differentiation operator d

ds
is represented by a matrix A ∈ RN×N . We thus obtain
the following N -dimensional algebraic equation for each
component i:

A(R∗K3R
T
∗ a−R∗b)i +Ki

vc
i + di = 0, i = 1, 2,

subject to the constraints that θj∗ ∈ [−π, π) and K1,j
v ,K2,j

v >
0, j = 1, . . . , N , which can then be solved using
nonlinear optimization algorithms such as “lsqnonlin” in
MATLAB. Note that since the deformation is continuous,
{θj∗,K1,j

v ,K2,j
v } are supposed to change continuously in

time. Thus, using the computed solution from the last time
step to start the search of the current time step significantly
improves the efficiency of the optimization algorithm. In the
inner loop, the control gains are chosen to be ku = 0.5,
kθ = 4 and kw = 2.

Result. The position tracking task is illustrated in Fig. 2.
The desired position is initially bent and the manipulator is
able to converge to the desired position. The L2 norms of
the position and velocity errors are given in Fig. 3

Fig. 3: Tracking errors. Solid: ‖p̃‖L2 . Dashed: ‖p̃t‖L2

V. CONCLUSION

In this work, we explored infinite-dimensional control
theory for soft manipulators that are modeled by nonlinear
Cosserat-rod PDEs. We presented an inner-outer loop control

design for position tracking in planar task space. We first de-
signed desired rotational motions that asymptotically achieve
position tracking and then designed inputs for the rotational
component to track their desired motions. Both designs were
inspired by the energy decay property of damped wave
equations. Exponential stability was proved. These results
suggested the promising role of infinite-dimensional control
theory for soft robots. Our future work is to extend the
inner-outer loop design to the 3D case and test the control
algorithms on a real platform.
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