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Abstract— This paper concerns the adaptive control of a class
of discrete-time nonlinear systems with all states accessible.
Recently, a high-order tuner algorithm was developed for
the minimization of convex loss functions with time-varying
regressors in the context of an identification problem. Based
on Nesterov’s algorithm, the high-order tuner was shown to
guarantee bounded parameter estimation when regressors vary
with time, and to lead to accelerated convergence of the tracking
error when regressors are constant. In this paper, we apply the
high-order tuner to the adaptive control of a particular class of
discrete-time nonlinear dynamical systems. First, we show that
for plants of this class, the underlying dynamical error model
can be causally converted to an algebraic error model. Second,
we show that using this algebraic error model, the high-order
tuner can be applied to provably stabilize the class of dynamical
systems around a reference trajectory.

I. INTRODUCTION
Adaptive control problems take the form of controlling

a plant containing unknown parameters, which requires si-
multaneous online learning and control [1]–[4]. The field
is rich with numerous applications and a theoretical history
stretching back decades [2]. As autonomous systems become
more and more pervasive, there is a growing need for faster
learning and faster control. The many approaches to adaptive
control that have been developed over the years can be
roughly divided into two categories [4]: indirect adaptive
control, in which the unknown plant parameters are learned
and state feedback is calculated from the estimates; and
direct adaptive control, in which the state feedback is directly
learned.

Many recent approaches have taken an indirect approach.
The approaches in [5], [6] are one illustration of indirect
adaptive control of LTI systems, where the unknown pa-
rameters are first estimated using a least squares approach
followed by a system-level synthesis method to determine
the resulting LQR gain K. It should be noted that indirect
adaptive control has a very rich history prior to [5], [6] as
well [1]–[4].

Indirect approaches, however, have the requirement that
the initial parameter estimate is sufficiently close, and they
require a persistently exciting input so that the parameter
estimates converge to their true values – [5], for example,
calls for Gaussian noise as input. Direct adaptive control
algorithms, on the other hand, determine a control structure
wherein the parameters are directly adjusted based on a
suitable performance error derived using a reference model.
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Often the adaptive laws for adjusting these parameters are
based on an error model [1] that leads to a stable adaptive
law. The main advantage of this approach over the indirect
one is that there is no requirement related to persistent
excitation. As one cannot always guarantee that such an
excitation is present, and as it is often counter to the system
performance goals, this direct approach can be advantageous
in many cases. For the most part, the adaptive laws for
updating the parameter estimates are based on a gradient
descent approach, both in continuous time [1], [2] and
discrete-time [4].

We restrict our attention in this paper to the matched
uncertainty setting. There has been previous literature on
the unmatched uncertainty setting, especially the hybrid
MRAC approach in [7], which relies other methods such as
concurrent learning [8] and composite learning [9] to avoid
the need for persistent excitation. However, all of the above
methods rely on perfect parameter learning, which requires at
least a guarantee of finite excitation. Another hybrid MRAC
approach is presented in [10] which does not place any
assumption on excitation level, but does assume a bounded
state and time derivative. Additionally, all of the papers above
focus only on continuous time.

Within direct adaptive control, high-order tuners represent
a more recent departure from gradient descent-based meth-
ods. High-order tuners for adaptive control were first studied
in [11]. Within the past few years, a discrete-time high-order
tuner was developed in [12] for parameter learning with time-
varying regressors. Developed from a well-known theory of
2nd-order gradient algorithms for accelerated convergence
[13]–[16], the high-order tuner algorithm in [12] was shown
to lead to faster learning than gradient descent-based meth-
ods, as well as strong non-asymptotic convergence guaran-
tees for constant regressors. Crucially, the discrete-time high-
order tuner is provably stable when regressors vary with time.
Its distinct advantage is accelerated convergence of the output
error: it has been shown in [12] that when regressors are
constant, the high-order tuner has convergence guarantees
that are a log factor away from those of Nesterov’s algorithm
[15] and that are significantly faster than those of gradient
descent algorithms. Additionally, in [17], a continuous-time
version of the high-order tuner algorithm was shown in
simulation to result in an accelerated convergence of the
output error to zero.

The discrete-time high-order tuner discussed above has
only been studied in the context of system identification, and
has employed algebraic error models for parameter learning.
In this paper, we consider the adaptive control problem for
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a class of feedback-linearizable dynamical systems whose
states are accessible. For this class, we show that the high-
order tuner can be applied, leading to global stability and
convergence of the underlying tracking error in the state
to zero. As in [18], a causal filtering approach based on
[19] converts the underlying dynamical error model into
an algebraic error model. Unlike in [20]–[24] where the
underlying states are filtered as well, the approach used here
only generates an augmented error signal, as in [19]. Using
this error model and a high-order tuner, we show that the
class of dynamic systems can be adaptively controlled in a
stable manner (see [18] for a few preliminary results).

The main contribution of this paper is the application of
the high-order tuner in [12] to direct adaptive control of a
class of feedback-linearizable systems. We prove that this
algorithm guarantees global boundedness of the closed-loop
adaptive system and asymptotic tracking of a reference model
regardless of the level of excitation in the input or the initial
parameter estimate. Our proof technique is straightforward
and generalizable to a broad class of laws for updating the
parameter estimate.

To the authors’ knowledge, ours is the first paper to apply
the high-order tuner in [12] to general discrete-time adaptive
control. Our paper complements [18], which explores a
simplified high-order tuner under noisy disturbances, and
[25], which establishes parameter learning for identification
problems in discrete-time dynamical systems with persistent
excitation.

The paper proceeds as follows. Section II lays out the
problem setting, describes the framework by which we
convert the dynamical error model to an algebraic error
model, and introduces useful notation for the subsequent
proofs. Section III provides an illustrative example of our
proof technique on a gradient descent-based adaptive law.
Section IV presents the main result of our paper: a proof
of stability using the high-order tuner in [12] as an adaptive
law. Section V presents simulation results of the high-order
tuner’s performance on a simple common dynamical system.
Finally, Section VI provides concluding remarks, and the
Appendix contains all proofs in the paper as well as a
discussion of allowable high-order tuner hyperparameters.

II. PROBLEM SETTING

The problem that we consider in this paper is the adaptive
control of the states-accessible plant

xp(k+1) = Apxpk +B

(
p∑
i=1

aifi(xpk) + uk

)
(1)

where Ap ∈ Rn×n and all ai ∈ Rm are unknown, while
B ∈ Rn×m and all fi : Rn → R are known, subject to the
following assumptions:

Assumption 1: We assume that
1) the pair (Ap, B) is controllable and all columns of B

are linearly independent, and
2) each fi(·) is known and globally Mi-Lipschitz with

fi(0) = 0.

The goal is to determine the control input uk in real time
such that xpk behaves in a desired manner.

A standard procedure in adaptive control is to choose a
reference model

xm(k+1) = Amxmk +Brk (2)

where Am is chosen by the control designer to be Schur-
stable with the desired closed-loop eigenvalues, and rk ∈ Rm
is a reference input with ‖rk‖ ≤ rmax chosen such that xmk
follows the desired trajectory of the plant. For realizability,
given that Am is chosen without a priori knowledge of Ap,
the following matching condition is a standard assumption
employed in adaptive control:

Assumption 2: We assume that there exists some K∗ ∈
Rm×n such that

Am = Ap +BK∗. (3)
If all parameters were known, choosing uk of the form

uk = K∗xpk + rk −
p∑
i=1

aifi(xpk), (4)

a feedback linearizing controller, would ensure that the
closed-loop plant response follows the same trajectory as the
reference model.

It is well-known that an adaptive control input of the form

uk = K̂kxpk + rk −
p∑
i=1

âifi(xpk), (5)

where K̂k and âik are estimates of the unknown parameters
K∗ and ai in (4), can guarantee that the state error

ek := xpk − xmk (6)

converges to zero if the estimates are suitably adjusted using
an adaptive law [1], [4].

In the remainder of this section, we propose a new general
algorithm for this adaptive control problem, based on results
in [19] for system identification. In Section IV, we then
propose the addition of the high-order tuner developed in
[12], [25] as a particular adaptive law.

The certainty equivalence input in (5) is equivalent to

uk = K∗xpk + rk −
p∑
i=1

aifi(xpk) + Θ̃kφk (7)

where

Θ̂k := [K̂k, â1k, . . . , âpk] (8)
Θ∗ := [K∗, a1, . . . , ap] (9)

Θ̃k := Θ̂k −Θ∗ (10)

φ>k := [x>pk,−f1(xpk), . . . ,−fp(xpk)]. (11)

The closed-loop adaptive system for the plant in (1) with the
controller in (7) is thus described by

xp(k+1) = Amxpk +Brk +BΘ̃kφk. (12)

It is easy to see that (12), (2), and (6) yield the error model

ek+1 = Amek +BΘ̃kφk. (13)



A. An Equivalent Algebraic Error Model

Equation (13) is a dynamical error model, as it relates the
two main errors, the state error ek and the parameter error
Θ̃k, through a dynamical model. Our approach based on [19]
transforms this problem into an algebraic error model of the
form

εk+1 = Θ̃kφk (14)

where [19]

εk+1 := (B>B)−1B>(ek+1 −Amek), . (15)

It should be noted that the prediction error εk+1 is another
performance metric that depends on the state error through
the relation

ek+1 = Amek +Bεk+1. (16)

It should also be noted that a causal adaptive law can
be derived for adjusting the parameter estimate Θ̂k defined
in (8) by first measuring the state and the state errors on
the right-hand side of (15) and then updating the parameter
estimate. This overall algorithm is summarized in Algorithm
1 [18]. In line 11, ADAPT refers to any iterative algorithm
for updating Θ̂k.

As we shall show in the following sections, update laws
based on the gradient of a loss function - in particular,
normalized gradient descent and the high-order tuner - lead
to global stability, regardless of the level of excitation in the
input or the initial parameter estimate Θ̂0.

B. Preliminaries

In this section, we first review a well-known result pertain-
ing to the Lyapunov stability of linear time-invariant systems:

Proposition 1 ( [26]): For any matrix A ∈ Rn×n, the
following conditions are equivalent:

1) A is Schur-stable, i.e. all eigenvalues of A are inside
the unit circle.

2) For every symmetric positive-definite Q, there exists
a unique symmetric positive-definite P satisfying the
discrete-time Lyapunov equation

Algorithm 1 General Algorithm for Direct Adaptive Control
of the Plant in (1) [18]

1: Input: initial conditions xp0, xm0, initial parameter
estimate Θ̂0, reference input {rk}k≥0, reference system
(Am, B), functions f1(·), . . . , fp(·), hyperparameters

2: for k = 0, 1, 2, . . . do
3: Receive reference input rk
4: Let φk = [x>pk,−f1(xpk), . . . ,−fp(xpk)]>

5: Let uk = Θ̂kφk + rk
6: Apply uk to plant
7: Measure new state xp(k+1)

8: Simulate xm(k+1) ← Amxmk +Brk
9: Let ek+1 = xp(k+1) − xm(k+1)

10: Let εk+1 = (B>B)−1B>(ek+1 −Amek)
11: Update Θ̂k+1 ← ADAPT(Θ̂k, φk, εk+1, ∗)
12: end for

A>PA− P = −Q. (17)
Finally, we provide a useful result pertaining to the relative

growth rates of xpk and φk:
Lemma 1: Let φk be the regressor defined in (11). Then,

under Assumption 1, there exists a known constant C > 0
such that ‖φk‖2 ≤ C‖xpk‖2.
We omit the proof, as it is fairly straightforward.

III. A FIRST-ORDER APPROACH TO ADAPTIVE
CONTROL

The algebraic error model in (14) lends itself easily to a
loss function given by [12]

Lk(Θ̂k) =
1

2
‖εk+1‖2 =

1

2
‖Θ̃kφk‖2. (18)

Using (14), the gradient of the loss function can then be
calculated as

∇Lk(Θ̂k) = Θ̃kφkφ
>
k = εk+1φ

>
k . (19)

It is easy to see that Lk(Θ̂k) is non-strongly convex and has
a time-varying smoothness parameter of ‖φk‖2. We therefore
use a normalized loss function given by [12]

fk(Θ̂k) =
Lk(Θ̂k)

Nk
(20)

with the normalization term

Nk = max{µ, ‖φk‖2} (21)

for some µ > 0. It is thus apparent that fk(Θ̂k) is convex
and 1-smooth, with a gradient that can be calculated as

∇fk(Θ̂k) =
1

Nk
εk+1φ

>
k . (22)

The problem of minimizing the loss function in (20) leads
naturally to the multivariable form of the well-known nor-
malized gradient descent adaptive law given by [4]

Θ̂k+1 = Θ̂k − γ∇fk(Θ̂k). (23)

A. Stability of the Gradient Descent Adaptive Law

We now show that Algorithm 1 with (21)-(23) in place of
ADAPT on line 11 is a globally stable adaptive controller.
The first step is to quantify the evolution of the parameter
error, which is addressed in Proposition 2.

Proposition 2: The adaptive law in (21)-(23) results in a
bounded parameter error Θ̃k for all k if µ > 0 and 0 < γ < 2
with

Vk = ‖Θ̃k‖2F (24)

as a Lyapunov function.
Proof: See Subsection A in the Appendix.

We now prove the convergence of the overall closed loop
adaptive system described by the error model in (13):

Theorem 1: The closed-loop adaptive system defined by
(1), (5), (13), (15), and (21)-(23) with µ > 0 and 0 < γ < 2
results in limk→∞ ‖ek‖ = 0.

Proof: See Subsection B in the Appendix.
Remark 1: Proposition 2 and Theorem 1 are both well-

known in the existing literature – see e.g. [27]. We include



both proofs in order to make apparent the similarity with the
high-order tuner algorithm in the next section.

Remark 2: Theorem 1 together with Proposition 2 extends
the results of [19] to show that the approach based on an
algebraic error model can be used to guarantee closed-loop
stability for discrete-time adaptive control.

Another interesting point to note is the generality of
the proof. As will become evident from our discussions
in the next section, the same method of proof can be em-
ployed for any adaptive law that can guarantee the property
limk→∞

‖εk+1‖2
Nk

= 0. In this case, this property followed
from the structure of the Lyapunov increment (see (37) in
the Appendix).

IV. ADAPTIVE CONTROL WITH A HIGH-ORDER
TUNER

We now state the main result of this paper. For the plant
given in (1), we propose the adaptive controller given in
Algorithm 1, with Algorithm 2 in place of ADAPT in line
11. Algorithm 2 summarizes the high-order tuner adaptive
law [12].

The specific updates that constitute the high-order tuner
are given by

Ξ̂k+1 = Ξ̂k − γ∇fk(Θ̂k+1) (25)

Θk = Θ̂k − γβ∇fk(Θ̂k) (26)

Θ̂k+1 = Θk − β(Θk − Ξ̂k) (27)

where Ξ̂k is an auxiliary parameter estimate, ∇fk(Θ̂k) =
∇Lk(Θ̂k)

Nk
and ∇fk(Θ̂k+1) = ∇Lk(Θ̂k+1)

Nk
, and the gradients

of Lk are given by

∇Lk(Θ̂k) = Θ̃kφkφ
>
k = εk+1φ

>
k (28)

∇Lk(Θ̂k+1) = Θ̃k+1φkφ
>
k

= ((Θ̂k+1 − Θ̂k)φk + εk+1)φ>k . (29)

When the regressors are constants (i.e. φk = φ = constant),

Algorithm 2 ADAPT (Projected High Order Tuner) [12]

1: Input: time step k, current parameter estimate Θ̂k,
regressor φk, prediction error εk+1, gains µ, γ, β

2: if k == 0 then
3: Ξ̂0 ← Θ̂0

4: else
5: Receive Ξ̂k from previous iteration
6: end if
7: Let Nk = max{µ, ‖φk‖2}
8: Let ∇fk(Θ̂k) = 1

Nk
εk+1φ

>
k

9: Let Θk = Θ̂k − γβ∇fk(Θ̂k)
10: Update Θ̂k+1 ← Θk − β(Θk − Ξ̂k)
11: Let ∇fk(Θ̂k+1) = 1

Nk
((Θ̂k+1 − Θ̂k)φk + εk+1)φ>k

12: Update Ξ̂k+1 ← Ξ̂k − γ∇fk(Θ̂k+1)
13: Return Θ̂k+1

(25)-(27) reduce to Nesterov’s algorithm [12],

Θ̂k+1 = Θ̂k + β(Θ̂k − Θ̂k−1)− γ∇L(Θ̂k + β(Θ̂k − Θ̂k−1))
(30)

where
β = 1− β, γ = γβ. (31)

(25)-(27) are therefore a high-order counterpart to the adap-
tive law in (23), and include momentum components (second
term in (30)) and acceleration components (third term in
(30)).

A. Stability of the High-Order Tuner Adaptive Law

As before, we first quantify the evolution of the parameter
error Θ̃k and the auxiliary parameter estimate Ξ̂k in the
following proposition.

Proposition 3: The adaptive law in (21) and (25)-(29)
results in a bounded parameter error Θ̃k and a bounded
auxiliary parameter estimate Ξ̂k for all k if µ > 0, 0 <

β < 2, 0 < γ <
√

2−β
β , and α > 0 as defined in (47) with

Vk = ‖Ξ̂k −Θ∗‖2F + ‖Θ̂k − Ξ̂k‖2F (32)

as a Lyapunov function.
Proof: See Subsection C in the Appendix.

The main result of this paper, that the high-order tuner
algorithm accomplishes the control objective of ‖ek‖ → 0
as k →∞, is now given in the following theorem.

Theorem 2: For the plant given in (1), Algorithm 1 with
Algorithm 2 as ADAPT and µ > 0, 0 < β < 2, 0 <

γ <
√

2−β
β , and α > 0 as defined in (47) results in

limk→∞ ‖ek‖ = 0.
Proof: See Subsection D in the Appendix.

Remark 3: In Proposition 3 and Theorem 2 (as in Proposi-
tion 2 and Theorem 1), we make no assumptions on the level
of excitation in the input or on the initial parameter estimate
Θ̂0. Therefore, this adaptive law can be applied with any
bounded input {rk}k≥0 and any initial parameter estimate.

V. SIMULATION RESULTS

To show that the high-order tuner achieves state tracking
performance that is comparable to or better than that of
gradient descent, we conducted simulations of a simple plant
as in (1) using Algorithm 1. We compare the results using
(21)-(23) and Algorithm 2 as ADAPT in line 11.

A. Simulation Details

As in [18], the numerical experiments were conducted
using the linearized short-period dynamics of a transport
aircraft flying at a low altitude at 250 ft/s, taken from
Exercise 1.2 in [28]. We add an integral error state q̇e = q−r
so that the pitch rate tracks a command signal r with zero
steady-state error, assume a discrete-time controller with a
100 Hz sampling rate, and discretize the resulting dynamics
using a zero-order hold to obtain the nominal discrete-time
dynamics

xp(k+1) = Axpk + buk + brrk (33)

where xpk = [α, q, qe]
>. Further details can be found in [18].



We considered the reference model

xm(k+1) = Amxmk+brrk = (A+bθ>LQR)xmk+brrk (34)

where θLQR is the gain matrix obtained from LQR on the
nominal discrete-time dynamics with cost matrices Q =
diag([0, 0, 1]

>
) and R = 1. We then assumed a parametric

uncertainty such that Ap = Am−bθ>∗ for some unknown k∗
and applied the certainty equivalence control input

uk = θ̂>k xpk (35)

with θ̂0 = θLQR. The resulting error model was given by

ek+1 = Amek + bθ̃>k φk = Amek + bεk+1 (36)

with φk = xpk.

B. Results and Discussion

A Monte Carlo simulation was conducted with 2000 trials.
In each trial, θ∗ was obtained by multiplying each element
of θLQR by an i.i.d random value uniformly distributed over
[−0.5, 2]. The adaptive control task was to track the reference
model with rk = 5 ∀k ≥ 0 starting from xp0 = xm0 = 0.
For simplicity, we chose µ = 1. Hyperparameter tuning was
carried out to ensure the fastest possible convergence of ‖ek‖
to zero. For gradient descent we chose γ = 1, corresponding
to the well-known projection algorithm [4]. For the high-
order tuner, we found that choosing γ as large as possible
for any given value of β (see Subsection E in the Appendix)
led to fastest reduction of both ‖ek‖ and |εk|.

Figures 1 and 2 show the results of our simulations. Solid
lines are mean values over all trials, and the darker and
lighter windows around them are 50% and 90% confidence
intervals, respectively. We find that under both performance
metrics, the high-order tuner performs comparably to gradi-
ent descent. Intriguingly, however, the high-order tuner tends
to produce slightly larger values of |εk| and slightly smaller
values of ‖ek‖. This result runs counter to the intuition
provided by (16).

Further research is needed to understand this result, as well
as to understand why it appears best to choose γ as large as
possible for any given β. One possible source of intuition
may be the reduction to Nesterov’s algorithm in (30)-(31)
It is possible that having an extra hyperparameter allows
the adaptive law to be somewhat tuned to the particular
dynamical system. It is also possible that there exists another
Lyapunov function besides the one in (32), which could
provide more clarity.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we present a novel algorithm for model-
reference adaptive control of the class of nonlinear systems
given in (1). This algorithm uses a causal filtering method to
convert the resulting dynamical error model into an algebraic
error model and applies the discrete-time high-order tuner
presented in [12] as the adaptive law. Crucially, the algorithm
is shown to guarantee that ‖ek‖ → 0 as k → ∞ using a
simple and general proof method for systems with all states
accessible. In this proof, we make no assumptions on the

Fig. 1. State error ‖ek‖ of the simulation results of both adaptive laws.
During each trial, the unknown parameter θ∗ was obtained by multiplying
each element of θLQR by an i.i.d random variable in U(−0.5, 2). Mean
values over all trials and 50% and 90% confidence intervals are plotted.

Fig. 2. Prediction error |εk+1| of the simulation results of both adaptive
laws. During each trial, the unknown parameter θ∗ was obtained by multi-
plying each element of θLQR by an i.i.d random variable in U(−0.5, 2).
Mean values over all trials and 50% and 90% confidence intervals are
plotted.

initial parameter estimate or the amount of excitation in the
input.

We also provide simulation results showing that the high-
order tuner achieves comparable or slightly better perfor-
mance than the standard gradient descent-based adaptive law.
Simulations in [17] have shown accelerated convergence of
the state error ek to zero using a continuous-time equivalent
of the high-order tuner algorithm. Further research is needed
to understand the influence of the choice of gains on the
performance of the high-order tuner, and to explore how this
accelerated convergence might be realized in discrete time.
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APPENDIX

Proofs of all propositions and theorems are provided
below, as well as a discussion of allowable high-order
tuner hyperparameters. While the proof of Proposition 2 is
well-known, we include it for completeness. The proof of
Proposition 3 is based on the proof of Theorem 4 in [12], but
differs in several crucial steps that are needed for the proof
of Theorem 2. Finally, as the bulk of the proof of Theorem
1 can be applied verbatim to Theorem 2, Subsection D only
details the differences.

A. Proof of Proposition 2
Consider the candidate Lyapunov function given in (24).

Applying (22)-(23) and rearranging, we obtain

∆Vk = ‖Θ̃k+1‖2F − ‖Θ̃k‖2F
∆Vk ≤ ‖Θ̂′k+1 −Θ∗‖2F − ‖Θ̃k‖2F
∆Vk = ‖Θ̃k −

γ

Nk
εk+1φ

>
k ‖2F − ‖Θ̃k‖2F

∆Vk = Tr[(Θ̃k −
γ

Nk
εk+1φ

>
k )>(Θ̃k −

γ

Nk
εk+1φ

>
k )]

∆Vk =− Tr[Θ̃>k Θ̃k]

∆Vk = Tr[− γ

Nk
Θ̃>k εk+1φ

>
k −

γ

Nk
φkε
>
k+1Θ̃k

∆Vk = Tr.+
γ2

N2
k

φkε
>
k+1εk+1φ

>
k ]

∆Vk = − 2γ

Nk
ε>k+1Θ̃kφk +

γ2‖φk‖2

N2
k

‖εk+1‖2

∆Vk = − γ

Nk
(2− γ‖φk‖2

Nk
)‖εk+1‖2.

Finally, noting that Nk ≥ ‖φk‖2 by (21), we are left with

∆Vk ≤ −γ(2− γ)
‖εk+1‖2

Nk
≤ 0 (37)

if 0 < γ < 2.

B. Proof of Theorem 1
Consider the Lyapunov function in (24). By Proposition 2,

we know that Vk ≥ 0 and ∆Vk ≤ 0. It follows immediately
that Vk is bounded, and that

0 ≤ lim
k→∞

Vk ≤ V0 =⇒

0 ≤ V0 +

∞∑
k=0

∆Vk ≤ V0 =⇒

−V0 ≤
∞∑
k=0

∆Vk ≤ 0 =⇒

lim
k→∞

∆Vk = 0. (38)

https://doi.org/10.2514/3.4313
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Substituting (37), we get

lim
k→∞

‖εk+1‖2

Nk
= 0. (39)

Note that (39) with (21) implies that if ‖φk‖ is bounded,
then limk→∞ εk = 0, which as stated earlier implies that
limk→∞ ‖ek‖ = 0. The final step is to show that ‖φk‖ is
bounded. Lemma 1 together with (39) implies that

lim
k→∞

‖εk+1‖2

max{µ,C‖xpk‖2}
= 0, (40)

which in turn implies that either (1) limk→∞ ‖εk‖ = 0 or (2)
limk→∞

‖εk+1‖
‖xpk‖ = 0. If case (1) is satisfied, then the proof

is complete. Thus, we henceforth assume case (2).
Now consider the function V xk = x>pkPxpk for a P =

P> > 0 which satisfies (17) for Am and any Q = Q> > 0.
Using (12), (14), and (17), the increment of V xk is given by

∆V xk = −x>pkQxpk + r>k B
>PBrk + ε>k+1B

>PBεk+1

∆V xk = + 2x>pkA
>
mPBrk + 2x>pkA

>
mPBεk+1

∆V xk = + 2r>k B
>PBεk+1

∆V xk ≤ −λmin(Q)‖xpk‖2 + ‖B>PB‖2r2
max

∆V xk = + ‖B>PB‖2‖εk+1‖2 + 2‖A>mPB‖2‖xpk‖rmax
∆V xk = + 2‖A>mPB‖2‖xpk‖‖εk+1‖
∆V xk = + 2‖B>PB‖2rmax‖εk+1‖

∆V xk = −(λmin(Q)− ‖B
>PB‖2r2max

‖xpk‖2

∆V xk = −.− ‖B
>PB‖2‖εk+1‖2
‖xpk‖2 − 2‖A>

mPB‖2rmax

‖xpk‖

∆V xk = −.− 2‖A>
mPB‖2‖εk+1‖
‖xpk‖

∆V xk = −.− 2‖B>PB‖2rmax‖εk+1‖
‖xpk‖2 )‖xpk‖2

∆V xk ≤ −(λmin(Q)− 2‖A>
mPB‖2(rmax+‖εk+1‖)

‖xpk‖

∆V xk = −.− 2‖B>PB‖2(r2max+‖εk+1‖2)
‖xpk‖2 ) 1

λmax(P )V
x
k (41)

whenever ‖xpk‖ 6= 0. Choose any constant c1 such that 0 <
c1 < λmin(Q). Then, ∆V xk ≤ −

c1
λmax(P )V

x
k whenever

λmin(Q)− 2‖A>
mPB‖2(rmax+‖εk+1‖)

‖xpk‖

− 2‖B>PB‖2(r2max+‖εk+1‖2)
‖xpk‖2 ≥ c1 ⇐⇒

λmin(Q)− 2‖A>
mPB‖2‖εk+1‖
‖xpk‖ − 2‖B>PB‖2‖εk+1‖2

‖xpk‖2

− 2‖A>
mPB‖2rmax

‖xpk‖ − 2‖B>PB‖2r2max

‖xpk‖2 ≥ c1 ⇐⇒

1
‖xpk‖ ≤

√
‖A>

mPB‖22
4‖B>PB‖22r2max

+
d1
( ‖εk+1‖

‖xpk‖

)
−c1

2‖B>PB‖2r2max

1
‖xpk‖ =− ‖A>

mPB‖2
2‖B>PB‖2rmax

(42)

where

d1(‖εk+1‖
‖xpk‖ ) =λmin(Q)− 2‖A>

mPB‖2‖εk+1‖
‖xpk‖

− 2‖B>PB‖2‖εk+1‖2
‖xpk‖2 .

(43)

Further define

d2(c2) =

(√
‖A>

mPB‖22
4‖B>PB‖22r2max

+ c2
2‖B>PB‖2r2max

− ‖A>
mPB‖2

2‖B>PB‖2rmax

)−1

.

(44)

The proof concludes as follows: choose any constants c1 ∈
(0, λmin(Q)) and c2 ∈ (0, λmin(Q) − c1). Then, because
limk→∞

‖εk+1‖
‖xpk‖ = 0, there exists a time step K(c1, c2) such

that d1(‖εk+1‖
‖xpk‖ ) − c1 ≥ c2 ∀k ≥ K(c1, c2). Thus, for all

k ≥ K(c1, c2), we have

V xk ≥ λmin(P )d2(c2)2 =⇒ ‖xpk‖ ≥ d2(c2) ⇐⇒
1

‖xpk‖ ≤
1

d2(c2) =⇒ (42) =⇒ ∆V xk ≤ −
c1

λmax(P )V
x
k .

Therefore, for all but finitely many time steps, V xk con-
verges exponentially to a compact set, implying that xpk and
therefore φk is bounded.

C. Proof of Proposition 3

Consider the candidate Lyapunov function given in (32).
Defining Ξ̃k = Ξ̂k −Θ∗ and applying (25)-(29), we obtain

∆Vk = ‖Ξ̃k+1‖2F − ‖Ξ̃k‖2F
∆Vk = + ‖Θ̂k+1 − Ξ̂k+1‖2F − ‖Θ̂k − Ξ̂k‖2F

∆Vk = ‖Ξ̃k −
γ

Nk
∇Lk(Θ̂k+1)‖2F − ‖Ξ̃k‖2F

∆Vk = + ‖Θk − β(Θk − Ξ̂k)− Ξ̂k +
γ

Nk
∇Lk(Θ̂k+1)‖2F

∆Vk =− ‖Θ̂k − Ξ̂k‖2F

∆Vk =
γ2

N2
k

‖∇Lk(Θ̂k+1)‖2F −
2γ

Nk
Tr[Ξ̃>k∇Lk(Θ̂k+1)]

∆Vk = + (1− β)2‖Θk − Ξ̂k‖2F − ‖Θ̂k − Ξ̂k‖2F

∆Vk = +
2γ(1− β)

Nk
Tr[(Θk − Ξ̂k)>∇Lk(Θ̂k+1)]

∆Vk = +
γ2

N2
k

‖∇Lk(Θ̂k+1)‖2F

∆Vk =
2γ2

N2
k

‖∇Lk(Θ̂k+1)‖2F −
2γ

Nk
Tr[Θ̃>k+1∇Lk(Θ̂k+1)]

∆Vk =− 2γ

Nk
Tr[(Ξ̂k − Θ̂k+1)>∇Lk(Θ̂k+1)]

∆Vk = + ‖Θk − Ξ̂k‖2F − ‖Θ̂k − Ξ̂k‖2F
∆Vk =− β(2− β)‖Θk − Ξ̂k‖2F

∆Vk = +
2γ(1− β)

Nk
Tr[(Θk − Ξ̂k)>∇Lk(Θ̂k+1)]



∆Vk =
2γ2‖φk‖2

N2
k

‖Θ̃k+1φk‖2 −
2γ

Nk
‖Θ̃k+1φk‖2

∆Vk = + ‖Θk − Ξ̂k‖2F − ‖Θ̂k − Ξ̂k‖2F
∆Vk =− β(2− β)‖Θk − Ξ̂k‖2F

∆Vk = +
2γ(1− β)

Nk
Tr[(Θk − Ξ̂k)>∇Lk(Θ̂k+1)]

∆Vk = +
2γ

Nk
Tr[(Θ̂k+1 − Ξ̂k)>∇Lk(Θ̂k+1)]

∆Vk = − 2γ

Nk

(
1− γ‖φk‖2

Nk

)
‖Θ̃k+1φk‖2

∆Vk = + ‖Θ̂k −
γβ

Nk
∇Lk(Θ̂k)− Ξ̂k‖2F − ‖Θ̂k − Ξ̂k‖2F

∆Vk =− β(2− β)‖Θk − Ξ̂k‖2F

∆Vk = +
4γ(1− β)

Nk
Tr[(Θk − Ξ̂k)>∇Lk(Θ̂k+1)]

∆Vk = − 2γ

Nk

(
1− γ‖φk‖2

Nk

)
‖Θ̃k+1φk‖2

∆Vk = +
γ2β2

N2
k

‖∇Lk(Θ̂k)‖2F

∆Vk =− 2γβ

Nk
Tr[(Θ̂k − Ξ̂k)>∇Lk(Θ̂k)]

∆Vk =− β(2− β)‖Θk − Ξ̂k‖2F

∆Vk = +
4γ(1− β)

Nk
Tr[(Θk − Ξ̂k)>∇Lk(Θ̂k+1)]

∆Vk = − 2γ

Nk

(
1− γ‖φk‖2

Nk

)
‖Θ̃k+1φk‖2

∆Vk =− γ2β2

N2
k

‖∇Lk(Θ̂k)‖2F

∆Vk =− 2γβ

Nk
Tr[(Θk − Ξ̂k)>∇Lk(Θ̂k)]

∆Vk =− β(2− β)‖Θk − Ξ̂k‖2F

∆Vk = +
4γ(1− β)

Nk
Tr[(Θk − Ξ̂k)>∇Lk(Θ̂k+1)]

∆Vk = − 2γ

Nk
(1− γ‖φk‖2

Nk
)‖Θ̃k+1φk‖2

∆Vk =− γ2β2

N2
k

‖∇Lk(Θ̂k)‖2F

∆Vk =− 2γβ

Nk
φ>k (Θk − Ξ̂k)>(Θk − β(Θk − Ξ̂k)−Θ∗

∆Vk = + Θ̂k −Θk + β(Θk − Ξ̂k))φk

∆Vk =− β(2− β)‖Θk − Ξ̂k‖2F

∆Vk = +
4γ(1− β)

Nk
φ>k (Θk − Ξ̂k)>Θ̃k+1φk

∆Vk = − 2γ

Nk
(1− γ‖φk‖2

Nk
)‖Θ̃k+1φk‖2

∆Vk =− γ2β2

N2
k

‖∇Lk(Θ̂k)‖2F

∆Vk =− 2γ2β2

N2
k

φ>k (Θk − Ξ̂k)>∇Lk(Θ̂k)φk

∆Vk =− 2γβ2

Nk
‖(Θk − Ξ̂k)φk‖2

∆Vk =− β(2− β)‖Θk − Ξ̂k‖2F

∆Vk = +
2γ(2− 3β)

Nk
φ>k (Θk − Ξ̂k)>Θ̃k+1φk

∆Vk ≤ −
2γ

Nk
(1− γ‖φk‖2

Nk
)‖Θ̃k+1φk‖2

∆Vk =− γ2β2

N2
k

‖∇Lk(Θ̂k)‖2F

∆Vk =− 2γ2β2

N2
k

φ>k (Θk − Ξ̂k)>∇Lk(Θ̂k)φk

∆Vk =− 2γβ2

Nk
‖(Θk − Ξ̂k)φk‖2

∆Vk =− β(2− β)‖φk‖2

Nk
‖Θk − Ξ̂k‖2F

∆Vk = +
2γ(2− 3β)

Nk
φ>k (Θk − Ξ̂k)>Θ̃k+1φk

∆Vk ≤ −
2γ

Nk
(1− γ‖φk‖2

Nk
)‖Θ̃k+1φk‖2

∆Vk =− γ2β2

N2
k

‖∇Lk(Θ̂k)‖2F

∆Vk = +
2γ2β2‖φk‖2

N2
k

‖Θk − Ξ̂k‖F ‖∇Lk(Θ̂k)‖F

∆Vk =− 2γβ2

Nk
‖(Θk − Ξ̂k)φk‖2

∆Vk =− β(2− β)‖φk‖2

Nk
‖Θk − Ξ̂k‖2F

∆Vk = +
2γ|2− 3β|‖φk‖

Nk
‖(Θk − Ξ̂k)‖F ‖Θ̃k+1φk‖

∆Vk ≤ −
2γ

Nk
(1− γ‖φk‖2

Nk
)‖Θ̃k+1φk‖2

∆Vk =− γ2β2

N2
k

‖∇Lk(Θ̂k)‖2F

∆Vk = +
2γ2β2‖φk‖
N

3/2
k

‖Θk − Ξ̂k‖F ‖∇Lk(Θ̂k)‖F

∆Vk =− 2γβ2

Nk
‖(Θk − Ξ̂k)φk‖2

∆Vk =− β(2− β)‖φk‖2

Nk
‖Θk − Ξ̂k‖2F

∆Vk = +
2γ|2− 3β|‖φk‖

Nk
‖Θk − Ξ̂k‖F ‖Θ̃k+1φk‖.

where the above inequalities use the fact that Nk ≥ ‖φk‖2
and require 0 < β < 2 and γ > 0. We now complete squares



with the ‖∇Lk(Θ̂k)‖F terms and the ‖φk‖2‖Θk−Ξ̂k‖2F term
to obtain

∆Vk ≤ −
2γ

Nk
(1− γ‖φk‖2

Nk
)‖Θ̃k+1φk‖2

∆Vk =− γ2β2

Nk

( 1√
Nk
‖∇Lk(Θ̂k)‖F − ‖φk‖‖Θk − Ξ̂k‖F )2

∆Vk =− 2γβ2

Nk
‖(Θk − Ξ̂k)φk‖2

∆Vk =− β(2− (1 + γ2)β)‖φk‖2

Nk
‖Θk − Ξ̂k‖2F

∆Vk = +
2γ|2− 3β|‖φk‖

Nk
‖Θk − Ξ̂k‖F ‖Θ̃k+1φk‖

We then complete squares with the Θ̃>k+1φk terms and the
‖φk‖2‖Θk−Ξ̂k‖2 term and note that 1−γ ≤ 1− γ‖φk‖2

Nk
≤ 1

to obtain

∆Vk ≤ −
γ

Nk

(
2(1− γ)− γ(2− 3β)2

β(2− (1 + γ2)β)

)
‖Θ̃k+1φk‖2

∆Vk =− γ2β2

Nk

( 1√
Nk
‖∇Lk(Θ̂k)‖F − ‖φk‖‖Θk − Ξ̂k‖F

)2

∆Vk =− 2γβ2

Nk
‖(Θk − Ξ̂k)φk‖2

∆Vk =− β(2− (1 + γ2)β)

Nk

( γ|2− 3β|
β(2− (1 + γ2)β)

‖Θ̃k+1φk‖

∆Vk = −β(2− (1 + γ2)β)

Nk
..− ‖φk‖‖Θk − Ξ̂k‖F

)2

∆Vk ≤ 0

if 0 < β < 2, γ > 0, 2 − (1 + γ2)β > 0, and 2(1 − γ) −
γ(2−3β)2

β(2−(1+γ2)β) > 0.
This is sufficient to prove that Vk is a Lyapunov function.

However, in order to prove Theorem 2, we need the incre-
ment in terms of εk+1. Rearranging (26)-(27) and using (14),
we obtain

Θ̃k+1φk = (Θk − β(Θk − Ξ̂k)−Θ∗)φk

Θ̃k+1φk =
(

1− γβ‖φk‖2

Nk

)
Θ̃kφk − β(Θk − Ξ̂k)φk

Θ̃k+1φk =
(

1− γβ‖φk‖2

Nk

)
εk+1 − β(Θk − Ξ̂k)φk, (45)

‖Θ̃k+1φk‖2 =
(

1− γβ‖φk‖2

Nk

)2

‖εk+1‖2

‖Θ̃k+1φk‖2 =− 2β
(

1− γβ‖φk‖2

Nk

)
φ>k (Θk − Ξ̂k)>εk+1

‖Θ̃k+1φk‖2 = + β2‖(Θk − Ξ̂k)φk‖2 (46)

Finally, defining α as

α = 2(1− γ)− γ(2− 3β)2

β(2− (1 + γ2)β)
> 0, (47)

we substitute the expression above into the Lyapunov incre-
ment and rearrange to yield

∆Vk ≤ −
γα

Nk
‖Θ̃k+1φk‖2

∆Vk =− 2γβ2

Nk
‖(Θk − Ξ̂k)φk‖2

∆Vk = − γα
Nk

(
1− γβ‖φk‖2

Nk

)2

‖εk+1‖2

∆Vk = +
2γβα

Nk

(
1− γβ‖φk‖2

Nk

)
φ>k (Θk − Ξ̂k)>εk+1

∆Vk =− γβ2(2 + α)

Nk
‖(Θk − Ξ̂k)φk‖2

Completing the square with the εk+1 and (Θk − Ξ̂k)>φk
terms and noting that 1− γβ < 1− γβ‖φk‖2

Nk
≤ 1, we obtain

the final expression:

∆Vk ≤ −
γα(1− γβ)2

Nk

(
1− α

2 + α

)
‖εk+1‖2

∆Vk =− γ(2 + α)

Nk

( α

2 + α

(
1− γβ‖φk‖2

Nk

)
εk+1

∆Vk = −γ(2 + α)

Nk
..− β(Θk − Ξ̂k)>φk

)2

∆Vk ≤ 0

since α > 0 =⇒ 1 − α
2+α > 0, and the restrictions on γ

and β imply that γβ < 1.
In summary, we have

∆Vk ≤ −γα(1− γβ)2
(

1− α

2 + α

)‖εk+1‖2

Nk
≤ 0. (48)

D. Proof of Theorem 2

Consider the Lyapunov function in (32). From Proposition
3, we know that Vk ≥ 0 and ∆Vk ≤ 0. It follows
immediately that

0 ≤ lim
k→∞

Vk ≤ V0 =⇒

0 ≤ V0 +

∞∑
k=0

∆Vk ≤ V0 =⇒

−V0 ≤
∞∑
k=0

∆Vk ≤ 0 =⇒

lim
k→∞

∆Vk = 0. (49)

Substituting (48), we get

lim
k→∞

‖εk+1‖2

Nk
= 0. (50)

The remainder of the proof proceeds identically to
that of Theorem 1. Equation (50) implies that either (1)
limk→∞ ‖εk‖ = 0 or (2) limk→∞

‖εk+1‖
‖xpk‖ = 0. If case (1)

holds, then the proof is complete. Under case (2), the proof
is completed using the same Lyapunov analysis as found in
Subsection B.



E. A LARGER REGION OF ALLOWABLE HIGH-ORDER
TUNER GAINS

In this section, we rewrite the increment of the Lyapunov
function in (32) in a different manner than in Section C
in order to graphically show a larger range of allowable
hyperparameters γ and β. From Section C, we have

∆Vk = − 2γ

Nk

(
1− γ‖φk‖2

Nk

)
‖Θ̃k+1φk‖2

∆Vk =− γ2β2

N2
k

‖∇Lk(Θ̂k)‖2F

∆Vk =− 2γβ

Nk
Tr[(Θk − Ξ̂k)>∇Lk(Θ̂k)]

∆Vk =− β(2− β)‖Θk − Ξ̂k‖2F

∆Vk = +
4γ(1− β)

Nk
Tr[(Θk − Ξ̂k)>∇Lk(Θ̂k+1)]

∆Vk = − 2γ

Nk

(
1− γ‖φk‖2

Nk

)
‖Θ̃k+1φk‖2

∆Vk =− γ2β2‖φk‖2

N2
k

‖εk+1‖2

∆Vk =− 2γβ

Nk
φ>k (Θk − Ξ̂k)>εk+1

∆Vk =− β(2− β)‖Θk − Ξ̂k‖2F

∆Vk = +
4γ(1− β)

Nk
φ>k (Θk − Ξ̂k)>Θ̃k+1φk

Define

λk =
‖φk‖2

Nk
∈ [0, 1]. (51)

Now, we apply (45), (46), and (51) to obtain

∆Vk = − 2γ

Nk
(1− γλk)(1− γβλk)2‖εk+1‖2

∆Vk = +
4γβ

Nk
(1− γλk)(1− γβλk)φ>k (Θk − Ξ̂k)>εk+1

∆Vk =− 2γβ2

Nk
(1− γλk)‖(Θk − Ξ̂k)φk‖2

∆Vk =− γ2β2λk
Nk

‖εk+1‖2

∆Vk =− 2γβ

Nk
φ>k (Θk − Ξ̂k)>εk+1

∆Vk =− β(2− β)‖Θk − Ξ̂k‖2F

∆Vk = +
4γ(1− β)

Nk
(1− γβλk)φ>k (Θk − Ξ̂k)>εk+1

∆Vk =− 4γβ(1− β)

Nk
‖(Θk − Ξ̂k)φk‖2

∆Vk ≤ −
2γ

Nk
(1− γλk)(1− γβλk)2‖εk+1‖2

∆Vk = +
4γβ

Nk
(1− γλk)(1− γβλk)φ>k (Θk − Ξ̂k)>εk+1

∆Vk =− 2γβ2

Nk
(1− γλk)‖(Θk − Ξ̂k)φk‖2

∆Vk =− γ2β2λk
Nk

‖εk+1‖2

∆Vk =− 2γβ

Nk
φ>k (Θk − Ξ̂k)>εk+1

∆Vk =− β(2− β)

Nk
‖(Θk − Ξ̂k)φk‖2

∆Vk = +
4γ(1− β)

Nk
(1− γβλk)φ>k (Θk − Ξ̂k)>εk+1

∆Vk =− 4γβ(1− β)

Nk
‖(Θk − Ξ̂k)φk‖2

∆Vk = − γ

Nk
(2(1− γλk)(1− γβλk)2 + γβ2λk)‖εk+1‖2

∆Vk = +
2γ

Nk
(2β(1− γλk)(1− γβλk)− β

∆Vk = +
2γ

Nk
.+ 2(1− β)(1− γβλk))φ>k (Θk − Ξ̂k)>εk+1

∆Vk =− β

Nk
(2γβ(1− γλk) + 2− β

∆Vk = − β

Nk
.+ 4γ(1− β))‖(Θk − Ξ̂k)φk‖2

∆Vk = −a(γ, β, λk)

Nk
‖εk+1‖2

∆Vk = +
2b(γ, β, λk)

Nk
φ>k (Θk − Ξ̂k)>εk+1

∆Vk =− c(γ, β, λk)

Nk
‖(Θk − Ξ̂k)φk‖2

∆Vk = −
(
a(γ, β, λk)− b2(γ, β, λk)

c(γ, β, λk)

)‖εk+1‖2

Nk

∆Vk =− c(γ, β, λk)

Nk

∥∥∥(Θk − Ξ̂k)φk −
b(γ, β, λk)

c(γ, β, λk)
εk+1

∥∥∥2

Define

d(γ, β, λk) = a(γ, β, λk)− b2(γ, β, λk)

c(γ, β, λk)
, (52)

c(γ, β) = min
λk∈[0,1]

c(γ, β, λk), (53)

d(γ, β) = min
λk∈[0,1]

d(γ, β, λk). (54)

Then,

∆Vk ≤ −d(γ, β)
‖εk+1‖2

Nk
≤ 0 (55)

if c(γ, β) > 0 and d(γ, β) > 0.
Analytical expressions for values of γ and β under which

c(γ, β) > 0 and d(γ, β) > 0 are difficult to obtain,
and any such expression would be both cumbersome and
not particularly illuminating. We thus opt for a graphical
approach in which we discretize γ ∈ [0, 4], β ∈ [0, 2], and



Fig. 3. (to be viewed in color) The color map displays d(γ, β) at all
coordinates (γ, β) wherever c(γ, β) > 0 and d(γ, β) > 0, and a constant
negative value elsewhere. The region of allowable hyperparameters is thus
the region of colors other than indigo. For each β, the red line indicates the
maximum value of γ allowed under Proposition 3.

λk ∈ [0, 1], and at each value of γ and β, calculate the
minima of c(γ, β, λk) and d(γ, β, λk) over all λk. Finally, we
alter the graphical approximation of d(γ, β) to be negative
at all points where c(γ, β) ≤ 0. The resulting graphical
approximation of the region of allowable hyperparameters
is shown in Figure 3. Note that the color map displays the
value of d(γ, β) whenever it is positive, but that the value is
changed to −maxγ,β d(γ, β) wherever d(γ, β) ≤ 0 in order
to clearly show the border between the allowable and non-
allowable regions. Allowable hyperparameters are thus any
coordinate pair with coloring other than indigo.

Figure 3 clearly shows a much larger range of allowable
hyperparameters than the range given in Proposition 3. It
was necessary to draw from this extended range of allowable
hyperparameters in order to obtain the simulation results in
Section V.
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