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Abstract— This paper presents a new control approach for
guaranteed safety (remaining in a safe set) subject to actuator
constraints (the control is in a convex polytope). The control
signals are computed using real-time optimization, including
linear and quadratic programs subject to affine constraints,
which are shown to be feasible. The control method relies on a
new soft-minimum barrier function that is constructed using a
finite-time-horizon prediction of the system trajectories under
a known backup control. The main result shows that: (i) the
control is continuous and satisfies the actuator constraints, and
(ii) a subset of the safe set is forward invariant under the control.
We also demonstrate this control on numerical simulations of
an inverted pendulum and a double-integrator ground robot.

I. INTRODUCTION

Robots and autonomous systems are often required to
respect safety-critical constraints while simultaneously achiev-
ing a specified task [1], [2]. Safety constraints can be achieved
by determining a control that makes a designated safe set Ss
forward invariant with respect to the closed-loop dynamics [3],
that is, designing a control for which the state is guaranteed
to remain inside Ss. Approaches that address safety using set
invariance include reachability methods [4], model predictive
control [5], and barrier function (BF) methods (e.g., [6]–[12]).

In particular, BFs have been employed in a variety of
ways. For example, they have been used for Lyapunov-
like control design and analysis [6]–[9]. In contrast, the
control barrier function (CBF) approaches in [10]–[12]
compute the control signal using real-time optimization. These
optimization-based methods are modular in that they combine
a nominal performance controller (which may not attempt
to respect safety) with a safety filter that performs a real-
time optimization using CBF-based constraints to generate a
control that guarantees safety. This real-time optimization is
often formulated as an instantaneous minimum-intervention
problem, that is, the problem of finding a control at the current
time that is as close as possible to the nominal performance
control while satisfying the CBF-based safety constraints.

Barrier-function methods typically rely on the assumption
that Ss is control forward invariant (i.e., there exists a control
that makes Ss forward invariant). For systems without actuator
constraints (i.e., input constraints), control forward invariance
is satisfied under relatively minor structural assumptions
(e.g., constant relative degree). In this case, the control
can be generated from a quadratic program that employs
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feasible CBF-based constraints (e.g., [10]–[12]). In contrast,
actuator constraints can prevent Ss from being control forward
invariant. In this case, it may be possible to compute a
control forward invariant subset of Ss using methods such
as Minkowski operations [13], sum-of-squares [14], [15],
approximate solutions of a Hamilton-Jacobi partial differential
equation [16], or sampling [17]. However, these methods may
not scale to high-dimensional systems.

Another approach to address safety with actuator con-
straints is to use a prediction of the system trajectories into
the future to obtain a control forward invariant subset of Ss.
For example, [18] uses the trajectory under a backup control
to address safety with actuator constraints. However, [18]
uses an infinite time horizon prediction. In contrast, [19], [20]
determine a control forward invariant subset of Ss from a BF
constructed from a finite-horizon prediction under a backup
control. This BF uses the minimum function; thus, it is not
continuously differentiable and cannot be used directly to form
a BF-based constraint for real-time optimization. Instead, [19],
[20] replace the original BF by a finite number of continuously
differentiable BFs—each of which are used to form BF-based
constraints for real-time optimization. However, the number
of substitute BFs (and thus optimization constraints) increases
as the prediction horizon increases. In addition, the multiple
BF-based constraints can be conservative. Finally, it is worth
noting that [19], [20] do not guarantee feasibility of these
multiple BF-based constraints.

This paper presents a novel soft-minimum BF that uses
a finite-horizon prediction of the system’s trajectory under
a backup control. We show that this BF describes a control
forward invariant (subject to actuator constraints) subset of
Ss. Since the soft-minimum BF is continuously differentiable,
it can be used to form a single non-conservative BF-
based constraint for optimization regardless of the prediction
horizon. The advantages of the soft-minimum BF facilitate the
paper’s second contribution, namely, a real-time optimization-
based control that guarantees safety with actuator constraints.
Notably, the control is continuous, and the required optimiza-
tion is convex with feasible constraints.

II. SOFT MINIMUM

Let ρ > 0, and consider the function softminρ : R× · · · ×
R→ R defined by

softminρ(z1, . . . , zN ) ≜ −1

ρ
log

N∑
i=1

e−ρzi , (1)

which is the soft minimum. The next result shows that soft
minimum is a lower bound on minimum.
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Fact 1. Let z1, . . . , zN ∈ R. Then,

min {z1, . . . , zN} −
logN

ρ
≤ softminρ(z1, . . . , zN )

< min {z1, . . . , zN},

Fact 1 shows that as ρ → ∞, softminρ converges to the
minimum. Thus, softminρ is a smooth approximation of the
minimum.

III. PROBLEM FORMULATION

Consider the system

ẋ(t) = f(x(t)) + g(x(t))u(t), (2)

where x(t) ∈ Rn is the state, x0 = x(0) is the initial
condition, and u(t) ∈ Rm is the control. Let Au ∈ Rr×m

and bu ∈ Rr, and define

U ≜ {u ∈ Rm : Auu ≤ bu} ⊂ Rm, (3)

which is the set of admissible controls. We assume that U is
bounded and not empty. We call u an admissible control if
for all t ≥ 0, u(t) ∈ U .

Let hs : Rn → R be continuously differentiable, and define
the safe set

Ss ≜ {x ∈ Rn:hs(x) ≥ 0}. (4)

Note that Ss is not assumed to be control forward invariant
with respect to (2) where u is an admissible control. In other
words, there may not exist an admissible control u such that
if x0 ∈ Ss, then for all t ≥ 0, x(t) ∈ Ss.

Next, consider the desired control ud : [0,∞) → Rm.
We note that ud is not necessarily an admissible control. In
addition, Ss is not necessarily forward invariant with respect
to (2) where u = ud.

The objective is to design a full-state feedback control
u : Rn → Rm such that for all initial conditions in a subset
of Ss, the following hold:

(O1) For all t ≥ 0, x(t) ∈ Ss.
(O2) For all t ≥ 0, u(x(t)) ∈ U .
(O3) For all t ≥ 0, ∥u(x(t))− ud(t)∥2 is small.

The following notation is needed. For a continuously
differentiable function η : Rn → R, the Lie derivatives
of η along the vector fields of f and g are defined as

Lfη(x) ≜
∂η(x)

∂x
f(x), Lgη(x) ≜

∂η(x)

∂x
g(x).

IV. PRELIMINARY RESULTS ON BARRIER FUNCTIONS
USING TRAJECTORY UNDER BACKUP CONTROL

Consider a continuously differentiable backup control ub :
Rn → U . Let hb : Rn → R be continuously differentiable,
and define the backup safe set

Sb ≜ {x ∈ Rn:hb(x) ≥ 0}. (5)

We assume Sb ⊆ Ss and make the following assumption.

Assumption 1. If u = ub and x0 ∈ Sb, then for all t ≥ 0,
x(t) ∈ Sb.

Assumption 1 states that Sb is forward invariant with
respect to (2) where u = ub. However, Sb may be small
relative to Ss.

Consider f̃ : Rn → Rn defined by

f̃(x) ≜ f(x) + g(x)ub(x), (6)

which is the right-hand side of the closed-loop dynamics under
the backup control ub. Next, let ϕ : Rn×[0,∞)→ Rn satisfy

ϕ(x, τ) = x+

∫ τ

0

f̃(ϕ(x, σ)) dσ, (7)

which implies that ϕ(x, τ) is the solution to (2) at time τ
with u = ub and initial condition x.

Let T > 0 be a time horizon, and consider h∗ : Rn → R
defined by

h∗(x) ≜ min

{
hb(ϕ(x, T )), min

τ∈[0,T ]
hs(ϕ(x, τ))

}
, (8)

and define
S∗ ≜ {x ∈ Rn:h∗(x) ≥ 0}. (9)

Note that for all x ∈ S∗, the solution (7) under ub does not
leave Ss and reaches Sb within time T . The next result relates
S∗ to Sb and Ss. The result is similar to [19, Proposition 6].
The proof is omitted due to space limitations.

Proposition 1. Sb ⊆ S∗ ⊆ Ss.

The next result shows that S∗ is forward invariant with
respect to (2) where u = ub. In fact, not only is S∗ forward
invariant but the state converges to Sb ⊆ S∗ by time T . The
proof is omitted due to space limitations.

Proposition 2. Consider (2), where u = ub and x0 ∈ S∗.
Then, the following statements hold:
(a) For all t ≥ T , x(t) ∈ Sb.
(b) For all t ≥ 0, x(t) ∈ S∗.

Since Proposition 2 implies that S∗ is forward invariant
with u = ub and ub is admissible, it follows that for all
x0 ∈ S∗, the backup control ub satisfies (O1) and (O2).
However, ub does not address (O3). One approach to address
(O3) is to use h∗ as a BF in a minimum intervention quadratic
program. However, h∗ is not continuously differentiable and
cannot be used directly to construct a BF-based constraint.
Instead of using h∗ as the BF, [19] uses multiple BFs—one
for each argument of the minimum in (8). However, (8) has
an infinite number of arguments because the minimum is over
[0, T ]. This issue is addressed in [19] by using a sampling
of times. Specifically, let N be a positive integer, and let
Ts ≜ T/N . Then, consider h̄∗ : Rn → R defined by

h̄∗(x) ≜ min

{
hb(ϕ(x,NTs)), min

i∈{0,1,...,N}
hs(ϕ(x, iTs))

}
,

(10)
and define

S̄∗ ≜ {x ∈ Rn: h̄∗(x) ≥ 0}. (11)

The next result relates S̄∗ to S∗ and Ss. The proof is
omitted due to space limitations.



Proposition 3. S∗ ⊆ S̄∗ ⊆ Ss.

The next result shows that for all x0 ∈ S̄∗, the backup
control ub forces x to converge to Sb by time T . In addition,
the result shows that for all x0 ∈ S̄∗, the state is in S̄∗ at the
sample times Ts, 2Ts, . . . , NTs. The proof is omitted due to
space limitations.

Proposition 4. Consider (2), where u = ub and x0 ∈ S̄∗.
Then, the following statements hold:
(a) For all t ≥ T , x(t) ∈ Sb.
(b) For all i ∈ {0, 1, . . . , N}, x(iTs) ∈ S̄∗.

Proposition 4 does not provide any information about the
state in between the sample times. Thus, Proposition 4 does
not imply that S̄∗ is forward invariant with respect to (2) with
u = ub. However, we can determine a superlevel set of h̄∗
such that for all initial conditions in that superlevel set, ub

keeps the state in S∗ for all time. To define this superlevel
set, let ls be the Lipschitz constant of hs with respect to the
Euclidean norm, and define

lϕ ≜ sup
x∈S̄∗

∥f(x) + g(x)ub(x)∥2,

which is finite if Ss is bounded. Define the superlevel set

S̄∗ ≜

{
x ∈ Rn : h̄∗(x) ≥

1

2
Tslϕls

}
. (12)

The following result shows that S̄∗ is a subset of S∗. The
proof is omitted due to space limitations; however, it relies,
in part, on arguments similar to those in [19, Theorem 1].

Proposition 5. S̄∗ ⊆ S∗ ⊆ S̄∗ ⊆ Ss.

Together, Propositions 2 and 5 imply that for all x0 ∈ S̄∗,
the backup control ub keeps the state in S∗ for all time. Thus,
ub satisfies (O1) and (O2) but does not address (O3).

Since h̄∗ is not continuously differentiable, [19] addresses
(O3) using a minimum intervention quadratic program with
N +1 BFs—one for each of the arguments in (10). However,
this approach has 3 drawbacks. First, the number of BFs
increases as the time horizon T increases or the sample time
Ts decreases (i.e., as N increases). Thus, the number of affine
constraints and computational complexity increases as N
increases. Second, although imposing an affine constraint for
each of the N +1 BFs is sufficient to ensure that h̄∗ remains
positive, it is not necessary. In particular, these N + 1 affine
constraints are conservative. In other words, the N +1 affine
constraints can significantly limit the set of feasible control.
Third, the method in [19] does not guarantee feasibility of
the quadratic program solved to obtain the control. In the
next subsection, we use a soft minimum BF to approximate
h̄∗ and present a control synthesis approach with guaranteed
feasibility and where the number of affine constraints is fixed
(i.e., independent of N ).

V. SAFETY-CRITICAL CONTROL USING SOFT MINIMUM
BARRIER FUNCTION

This section presents a continuous control that guarantees
safety subject to the constraint that the control is admissible

(i.e., contained in U). The control is computed using a
minimum intervention quadratic program with a soft minimum
BF constraint. The control also relies on a linear program to
provide a feasibility metric, that is, a measure of how close
the quadratic program is to becoming infeasible. Then, the
control continuously transitions to the backup control ub if
the feasibility metric or the soft minimum BF is less than a
user-defined threshold.

Let ρ > 0, and consider h : Rn → R defined by

h(x) ≜ softminρ(hs(ϕ(x, 0)), hs(ϕ(x, Ts)), hs(ϕ(x, 2Ts)),

. . . , hs(ϕ(x,NTs)), hb(ϕ(x,NTs))), (13)

which is continuously differentiable. Define

S ≜ {x ∈ Rn:h(x) ≥ 0}. (14)

Fact 1 implies that for all x ∈ Rn, h(x) < h̄∗(x). Thus,
S ⊂ S̄∗. Fact 1 also implies that for sufficiently large ρ >
0, h(x) is arbitrarily close to h̄∗(x). Thus, h is a smooth
approximation of h̄∗. Note that the if ρ > 0 is small, then
h can be a conservative approximation of h̄∗. In contrast, if
ρ > 0 is large, then h is a less conservative approximation
of h̄∗. However, in this case, ∂h(x)

∂x can have a large norm
at the points where h̄∗ is not differentiable. Thus, selecting
ρ is a trade-off between the conservativeness of h and the
magnitude of the norm of ∂h(x)

∂x .
Next, let α > 0 and ϵ ∈ [0, supx∈S h(x)). Consider

β:Rn → R defined by

β(x) ≜ Lfh(x) + α(h(x)− ϵ) + max
û∈U

Lgh(x)û, (15)

where for all x ∈ Rn, β(x) exists because U is not empty.
Define

B ≜ {x ∈ Rn:β(x) ≥ 0}, (16)

and the next result follows immediately from (15) and (16).

Proposition 6. For all x ∈ B, there exists û ∈ U such that

Lfh(x) + Lgh(x)û+ α(h(x)− ϵ) ≥ 0.

Consider γ:Rn → R defined by

γ(x) ≜ min{h(x)− ϵ, β(x)}, (17)

and define
Γ ≜ {x ∈ Rn: γ(x) ≥ 0}. (18)

Note that Γ ⊆ B. For all x ∈ Γ, define

u∗(x) ≜ argmin
û∈U

∥û− ud(x)∥2 (19a)

subject to
Lfh(x) + Lgh(x)û+ α(h(x)− ϵ) ≥ 0. (19b)

Since Γ ⊆ B, Proposition 6 implies that for all x ∈ Γ, the
quadratic program (19) has a solution.

Let κ > 0, and consider a continuous function σ : R →
[0, 1] such that for all a ∈ (−∞, 0], σ(a) = 0; for all a ∈
[κ,∞), σ(a) = 1; and σ is strictly increasing on a ∈ [0, κ].
The following example provides one possible choice for σ.



Example 1. Consider σ : R→ [0, 1] given by

σ(a) =


0, if a < 0,
a
κ , if 0 ≤ a ≤ κ,

1, if a > κ.

Finally, define the control

u(x) =

{
[1− σ(γ(x))]ub(x) + σ(γ(x))u∗(x), if x ∈ Γ,

ub(x), else.
(20)

Since the soft-minimum BF h is continuously differentiable,
the quadratic program (19) requires only the single affine
constraint (19b) as opposed to the N + 1 affine constraints
used in [19]. Since (19) has only one affine constraint (19b),
we can define the feasible set B as the 0-superlevel set of
β, which relies on the solution to the linear program in (15).
Thus, since there is only one affine constraint, we can use
the homotopy in (20) to smoothly transition from u∗ to ub

as x leaves Γ.
The next theorem is the main result on the control (13)–

(20) that uses the soft-minimum BF approach. Note that bdA
denotes the boundary of the set A.

Theorem 1. Consider (2) and the control u given by (13)–
(20), where U is bounded, nonempty, and given by (3), and
ub is continuously differentiable and satisfies Assumption 1.
Then, the following conditions hold:

(a) u is continuous on Rn.
(b) For all x ∈ Rn, u(x) ∈ U .
(c) Assume x(t) ∈ bd S̄∗. Then, there exists τ ∈ (0, Ts]

such that x(t+ τ) ∈ S̄∗ ⊆ Ss.
(d) Assume x0 ∈ S∗, and let ϵ ≥ 1

2Tslϕls. Then, for all
t ≥ 0, x(t) ∈ S∗ ⊆ Ss.

Parts (a) and (b) guarantee that the control is continuous
and admissible. Part (c) does not guarantee that x stays in the
safe set Ss; however, (c) implies that if x leaves Ss in between
sample times, then it must return to Ss by the next sample
time. This is a result of the fact that h is constructed from a
sampling of time. Finally, (d) states that if ϵ ≥ 1

2Tslϕls, then,
S∗ is forward invariant under the control (13)–(20). In this
case, x is in the safe set Ss for all time.

The control (13)–(20) relies on the Lie derivatives in (15)
and (19b). To calculate Lfh and Lgh, note that

∂h(x)

∂x
=

1

e−ρh(x)

(
e−ρhb(ϕ(x,NTs)h′

b(ϕ(x,NTs))Q(x,NTs)

+

N∑
i=0

e−ρhs(ϕ(x,iTs)h′
s(ϕ(x, iTs))Q(x, iTs)

)
,

(21)

where h′
b, h

′
s:Rn× → R1×n are defined by

h′
b(x) ≜

∂hb(x)

∂x
, h′

s(x) ≜
∂hs(x)

∂x
, (22)

and Q : Rn × [0,∞)→ Rn×n is defined by

Q(x, τ) ≜
∂ϕ(x, τ)

∂x
. (23)

Differentiating (7) with respect to x yields

Q(x, τ) = I +

∫ τ

0

f̃ ′(ϕ(x, s))Q(x, s) ds, (24)

where f̃ ′:Rn → Rn×n is defined by f̃ ′(x) ≜ ∂f̃(x)/∂x.
Next, differentiating (24) with respect to τ yields

∂Q(x, τ)

∂τ
= f̃ ′(ϕ(x, τ))Q(x, τ). (25)

Note that for all x ∈ Rn, Q(x, τ) is the solution to (25),
where the initial condition is Q(x, 0) = I . Thus, for all
x ∈ Rn, Lfh(x) and Lgh(x) can be calculated from (21),
where ϕ(x, τ) is the solution to (2) under ub on the interval
τ ∈ [0, T ] with ϕ(x, 0) = x, and Q(x, τ) is the solution to
(25) on the interval τ ∈ [0, T ] with Q(x, 0) = I . In practice,
these solutions can be computed numerically at each time
instant where the control algorithm (20) is executed (i.e.,
the time instants where the control is updated). Algorithm 1
summarizes the implementation of (20), where δt > 0 is the
time increment for a zero-order-hold on the control.

Algorithm 1: Control using the soft-minimum BF
quadratic program

Input: ud, ub, hb, hs, N , Ts, ϵ, κ, σ, δt, ρ
1 for k = 0, 1, 2, . . . do
2 x← x(kδt)
3 Solve (7) numerically to obtain {ϕ(x, iTs)}Ni=0

4 Solve (25) numerically to obtain {Q(x, iTs)}Ni=0

5 Compute Lfh(x) and Lgh(x) using (21) and (22)
6 h← (13)
7 β ← solution to linear program (15)
8 γ ← min{h− ϵ, β}
9 if γ < 0 then

10 u← ub(x)
11 else
12 u∗ ← solution to quadratic program (19)
13 u← [1− σ(γ)]ub(x) + σ(γ)u∗
14 end
15 end

VI. NUMERICAL EXAMPLES

Inverted Pendulum. Consider the inverted pendulum
modeled by (2), where

f(x) =

[
θ̇

sin θ

]
, g(x) =

[
0
1

]
, x =

[
θ

θ̇

]
,

and θ is the angle from the inverted equilibrium. Let ū = 1.5
and U = {u ∈ R:u ∈ [−ū, ū]}. The safe set is Ss is given
by (4), where hs(x) = π − ∥x∥p, ∥·∥p is the p-norm, and
p = 100. The backup control is ub(x) = csat Kx, where
csat:R→ U is a continuously differentiable approximation of
the saturation function, and K = [−3 − 3 ]. Let hb(x) =



cb−xTPbx, where cb = 0.07 and Pb = [ 1.25 0.25
0.25 0.25 ], and note

that it can be confirmed using Lyapunov’s direct method that
Assumption 1 is satisfied. The desired control is ud = 0,
which implies that the objective is to stay inside Ss using
instantaneously minimum control effort.

We implement the soft-minimum BF control (13)–(20),
where ρ = 100, α = 1, and σ is given by Example 1 where
κ = 0.05. We let δt = 0.1 s, N = 50, and Ts = 0.1 s, which
implies that the time horizon is T = 5 s.

Figure 1 shows Ss, Sb, S, and S̄∗. Note that S ⊂ S̄∗.
Figure 1 also provides the closed-loop trajectories for 8
initial conditions, specifically, x0 = [ θ0 0 ]T, where θ0 ∈
{±0.5,±1,±1.5,±2}. We let ϵ = 0 for the initial conditions
with θ0 ∈ {0.5, 1, 1.5, 2}, and we let ϵ = 1

2Tslϕls for the
initial conditions with θ0 ∈ {−0.5,−1,−1.5,−2}, which are
the reflection of the first 4 across the origin. For the cases
with ϵ = 1

2Tslϕls, part (d) of Theorem 1 implies that S∗
is forward invariant under the control (20). Note that the
trajectories with ϵ = 1

2Tslϕls are more conservative than
those with ϵ = 0.

Figures 2 and 3 provide time histories for the case where
x0 = [ 0.5 0 ]T and ϵ = 0. Figure 2 shows θ, θ̇, u, ud, ub,
and u∗. The top row of Figure 3 shows that h, hs, and h̄∗
are nonnegative for all time. The bottom row of Figure 3
shows γ, h, and β. Note that β is positive for all time, which
implies that (19) is feasible at all points along the closed-loop
trajectory. Since γ is positive for all time but is less than κ
in steady state, it follows from (20) that u in steady state
is a blend of ub and u∗ (as shown in Figure 2). Note that
ub takes the pendulum back to Sb but does not satisfy the
objective of using instantaneously minimum control effort.

Ground Robot. Consider the double-integrator ground
robot modeled by (2), where

f(x) =


q̇x
q̇y
0
0

, g(x) =


0 0
0 0
1 0
0 1

, x =


qx
qy
q̇x
q̇y

, u =

[
u1

u2

]
,

and qx and qy are the positions in an orthogonal coordinate
frame. Let ū = 1 and U = {[u1 u2 ]

T ∈ R2 : u1, u2 ∈
[−ū, ū]}. The safe set Ss projected into the qx–qy plane is
shown in Figure 4. Note that Ss is bounded in the q̇x and
q̇y directions. The technical details of its construction are
omitted for brevity. The backup control is

ub(x) =

[
csat K1(x− xb)
csat K2(x− xb)

]
,

where csat:R → [−ū, ū] is a continuously differentiable
approximation of saturation, K1 = [−3.16 0 −4.04 0 ], K2 =
[ 0 −3.16 0 −4.04 ], and xb = [−0.1 −0.3 0 0 ]

T.
Let hb(x) = cb − (x − xb)

TPb(x − xb), where cb =
0.0034 and Pb ∈ R4×4 is determined using Lyapunov’s direct
method in order to ensure that Assumption 1 is satisfied.
Figure 4 shows as projection of Sb into the qx–qy plane.
The desired control is ud =

[
K1(x− xg) K2(x− xg)

]T
,

where xg ∈ R4 is the desired value of the state (i.e., the goal
location).

Fig. 1. Ss, Sb, S, S̄∗, and closed-loop trajectories for 8 initial conditions.

Fig. 2. θ, θ̇, u, ud, ub and u∗ for x0 = [0.5 0]T and ϵ = 0.

Fig. 3. h, hs, h̄∗, γ, h− ϵ, β and κ for x0 = [0.5 0]T and ϵ = 0.

We implement the soft-minimum BF control (13)–(20),
where ρ = 100, ϵ = 0.1, α = 1, and σ is given by Example 1
where κ = 0.1. We let δt = 0.02 s, N = 30 and Ts = 0.1 s.

Figure 4 shows the closed-loop trajectories for 3 different
values of the goal xg. In each case, x converges to the goal



Fig. 4. Ss, Sb, and 2 closed-loop trajectories with Algorithms 1.

xg while satisfying safety and the actuator constraints.
Figures 5 and 6 provide time histories for the case where

xg = [−0.7 0.1 0 0 ]
T. Figure 5 shows qx, qy, q̇x, q̇y, u, ud,

ua, and u∗. Figure 6 shows h, hs, h̄∗, γ, h− ϵ, and β. For
all t ∈ [0, 1.75], γ < κ because h− ϵ < κ. Thus, during this
time u is computed from a blending of ub and u∗ according
to (20). For all t > 1.75, γ > κ, which implies that during
this time u = u∗. In fact, u∗ = ud for all t > 1.75.

Fig. 5. qx, qy , q̇x, q̇y , u, ud, ua and u∗ for Algorithm 1 with xg =
[−0.7 0.1 0 0 ]T.
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