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Abstract— We consider a path guarding problem in dynamic
Defender-Attacker Blotto games (dDAB), where a team of
robots must defend a path in a graph against adversarial
agents. Multi-robot systems are particularly well suited to this
application, as recent work has shown the effectiveness of
these systems in related areas such as perimeter defense and
surveillance. When designing a defender policy that guarantees
the defense of a path, information about the adversary and
the environment can be helpful and may reduce the number of
resources required by the defender to achieve a sufficient level
of security. In this work, we characterize the necessary and
sufficient number of assets needed to guarantee the defense of
a shortest path between two nodes in dDAB games when the
defender can only detect assets within k-hops of a shortest path.
By characterizing the relationship between sensing horizon
and required resources, we show that increasing the sensing
capability of the defender greatly reduces the number of
defender assets needed to defend the path.

I. INTRODUCTION

The emergence of new technologies in multi-robot systems
and their applications in surveillance [1], pick-and-place [2],
delivery [3], etc., have motivated a large area of research
on determining how to delegate tasks to each robot [4], [5]
and how to allocate robotic resources to different regions [6],
[7]. With an increased understanding of how to perform this
task assignment comes improvements in the overall operation
of the system and the potential to complete jobs with less
physical resources.

One particular area where multi-robot systems can of-
fer new opportunities is in environments with adversarial
operators [8]. The use of security or defense systems has
been studied in many different contexts including cross-
fire attacks in network-routing [9], [10], security against
malicious groups [11], defending networks of sub-systems
from multiple attackers [12], [13], and many more. Within
each of these settings, the defender’s ability to offer security
guarantees in the face of unknown adversarial actions is
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Fig. 1. Illustration of the limited-visibility path defense problem. At each
node, the defender (blue) and the attacker (red) each posses a number of
assets that they sequentially maneuver through the network. The objective
of the defender is to guarantee each node on the double-line path has more
defender assets than attacker assets at every time step. The defender can
only detect attacker assets within its sensing horizon, represented as the
shaded green region.

hard [14] and depends on their knowledge of the system
environment and the adversary’s capabilities. In this work,
we seek to understand how increasing information about
the adversary and the environment can improve a defender’s
ability to provide security guarantees with limited resources.

The interactions between a defender and an attacker (or
adversary) can be described by a two-player zero-sum game,
where each of the decision-makers’ objectives is inversely
aligned. One model that captures the key principles of
these interactions are Colonel Blotto games [15], where
two players each posses a finite reserve of troops that they
allocate to various battlefields; at each battlefield, whichever
player has allotted more troops wins the battlefield. The
Colonel Blotto game has been used to develop algorithms
and deploy security strategies in many domains including
airport security, border control, and wildlife protection [16]–
[18]. Additionally, researchers have used these games to
study the interactions of defenders and attackers when there
is incomplete information about the value of battlefields [19],
[20] or the budget of the opposing colonel [21], [22]. Though
these results provide a first glimpse at how information
affects defender decision making, the results focus on each
colonel’s ability to win battlefields in a one-shot setting.
Instead, we wish to investigate the conditions under which
a defender may guarantee a defense objective against a
dynamic adversary.
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In this work, we study the dynamic Defender-Attacker
Blotto (dDAB) game where a defender and attacker sequen-
tially maneuver assets in a network; on each node, whichever
decision maker possesses more assets takes control of it.
Originally introduced in [23], the dDAB game was used
to address what strategies a team of robots can use to
defend every node in a network from adversarial intervention.
Here, we focus on the path guarding problem, where the
defender must maintain control of each node in a shortest
path between an origin and destination (Fig. 1). We then
address how increased information about the adversary and
the surrounding environment (in terms of visibility from
the shortest path) affects the amount of defender resources
required to obtain security guarantees. This work is closely
connected to perimeter defense problems [24]–[27] and espe-
cially their multi-defender versions [28]–[30]; however, here
we specifically focus on paths in networks and introduce a
setting where the defender has limited information about the
adversary.

For a defender with a limited sensing horizon (measured
by how many hops from the chosen path the defender can de-
tect an adversary, potentially using implemented surveillance
equipment), we characterize the necessary and sufficient
number of defender assets required to guarantee that the
defender can maintain control of a shortest path between
a start and a target node (Fig. 2). We also provide an
initial deployment and algorithm that realizes this guarantee.
Our result shows that as the sensing horizon (and defender
information) increases, the required number of assets to
guarantee defense decreases.

II. PROBLEM FORMULATION

In a finite graph G = (V, E), we consider the problem of
path defense, where a defender seeks to defend a predeter-
mined path P from an adversary. We define the path P with
cardinality |P| as a path graph with vertices p1, . . . , p|P| and
|P|−1 edges denoted by (p1, p2), (p2, p3) . . . , (p|P|−1, p|P|).
We assume |P| ≥ 3 to avoid trivially short paths. Denote the
start node S and the target T as the first and last nodes in
the path respectively, so that p1 ≡ S and p|P| ≡ T . We will
now make an assumption on the structure of P , using the
distance d(v1, v2) to denote the minimum length of any path
(as measured by the number of edges) between v1 and v2:

Assumption 1. P is a shortest S − T path in G, i.e.

d(S, T ) = |P| − 1. (1)

Together, P and G define the environment in which a
specific instance of the game is played. Since most of
the operations and functions that follow depend on these
parameters, we will omit the dependence on P and G when
the relationship is clear.

The path defense game is played by a defender and an
adversary. Both players have a finite amount of resources
(or assets) at their disposal, denoted by X ∈ R>0 for
the defender and Y ∈ R>0 for the adversary. Each player
distributes their assets over the vertices of G in a determin-
istic and centralized fashion. The resulting asset distribution

Fig. 2. Visibility in a larger network, where a node’s distance from the
defended, shortest path is denoted by its color. As the sensing distance
k increases, the defender requires fewer assets to defend the path. The
necessary and sufficient number of defender assets (X), relative to the
number of attacker assets (Y ) are given in the table above and are precisely
those defined in (10) where here |P| = 23.

for each player is a point within the standard simplex of
dimension |V|, scaled so that the sum over elements is equal
to the total resources of the player. For the defender, the asset
distribution x is a vector defined as

x ∈
{
z ∈ R|V|

≥0

∣∣∣ |V|∑
i=1

zi = X, zi ≥ 0
}
. (2)

The adversary asset distribution y is defined as above with
X replaced by Y . The scalar amounts of resources for the
defender and adversary at vertex v are defined as xv and yv
respectively.

The game terminates with an adversary win if the adver-
sary has more assets than the defender on any of the path
nodes, i.e. if ∃v ∈ P such that yv > xv . Otherwise, the path
is defended. We define the safe set, C, as follows:

C = {[x, y] | xv ≥ yv,∀v ∈ P} . (3)

In this paper, we consider the dynamic version of the
path defense game, where the game is played out over a
series of timesteps t. Accordingly, the defender and ad-
versary allocations become time-varying vectors x(t) and
y(t) respectively. When the game begins, the defender and
adversary select some initial states x(0) and y(0). We wish to
consider only non-trivial starting conditions, i.e. we assume
that [x(0), y(0)] ∈ C. Because the adversary can choose any
arbitrary y(0), we will allow the defender to observe y(0)
before deciding its own initial state x(0).

Given states x(t) and y(t), the game timestep t consists
of the defender first transitioning its assets according to the
function

x(t+ 1) = KD(t) · x(t), (4)

where KD ∈ R|V|×|V| is a column stochastic state transition
matrix (this enforces that the total number of defender assets
remains unchanged over time). All elements of KD must
be nonnegative and entry KD

i,j > 0 only if (vi, vj) ∈ E .
These constraints capture the notion that at every time step
the defender can only move its assets up to one hop away



Fig. 3. Sequence of events at every step of the game. The defender
first moves its assets based on the current adversary state, after which the
adversary observes before making its own move. Finally, the game outcome
is evaluated.

from their current positions, and that assets may only be
transferred along edges in G.

In the same timestep t, after the defender transitions its
assets, the adversary transitions its own assets according to

y(t+ 1) = KA(t) · y(t) (5)

and the result of the game is evaluated. If [x(t+1), y(t+1)] /∈
C, then the game is terminated and declared an adversary
win. Otherwise, the game continues to the next timestep t+1.
This order of play is shown in Figure 3.

We make no assumptions on how KA(t) is generated, but
it must obey the graph and resource preservation constraints.
Note that in this formulation, the problem takes the form of
a Stackelberg game at every timestep since the adversary
may observe the defender’s action before taking its own.
In contrast, the defender must generate its strategy without
knowing where the attacker will move.

In this work, we are particularly interested in under-
standing the effect that information has on the defender’s
capability to maintain defense of the path. While both players
know the state of their own assets and the adversary can
observe the state of the defender’s assets, the defender may
not be able to fully observe adversarial assets. Let k be
the defender’s sensing distance and define the visible region
Uk ⊆ V as the set of vertices where the defender is able
to observe the adversary’s assets. If we define the minimum
path distance function d∗(v) for a vertex v ∈ V as

d∗(v) = min
pi∈P

d(v, pi) (6)

then the visible region Uk for a specific k is given as

Uk = {v ∈ V | d∗(v) ≤ k}. (7)

Since the defender can only observe adversary assets when
they are in Uk, the defender only observes a sub-vector of the
adversary state y(t). We call this sub-vector the observable
adversary state ŷ(t) and define it as

ŷ(t) = {yv(t) | v ∈ Uk} (8)

where yv(t) is the adversary assets at vertex v during time
t. We can now specify the form of KD(t) as

KD(t) = πD(x(t), ŷ(t)) (9)

where πD : R2|V| → R|V|×|V| is the control policy of the
defender.

In this paper, we are interested in investigating how to
determine πD and the minimum number of defender assets
X required to ensure that the path is always defended, i.e.
that [x(t), y(t)] ∈ C ∀ t. We will also investigate how the
required amount of defender assets changes as a function of
the sensing distance k.

Fig. 4. Number of defending assets needed over various sensing distances.
The number of defender assets needed to guarantee defense on a shortest
path P decreases as the sensing horizon increases. When the sensing horizon
is k > |P|/2 only 3Y defender assets are needed.

A. Properties of Path Guarding Games

We make a few observations about the dDAB problem
as specified by the preceding problem formulation. First, no
vertex v ∈ V \ P can be connected to a pair of path nodes
pi, pj ∈ P such that d(pi, pj) > 2. This follows because of
the assumption that P is a shortest path between S and T
in G, as if it were not true then a shorter path would exist
through v. Additionally, from this property, we may also
see that each node may be connected to at most 3 distinct
path vertices, because otherwise the distance between the
connected path vertices would exceed 2. In this case, the 3
path vertices must also be consecutive.

Another observation we make is that each vertex v ∈ V has
its own static path distance d∗(v). We may then organize the
vertices in terms of their path distances. This also means that
every visible region with a certain sensing distance is always
a subset of a visible region with a greater sensing distance,
i.e. k ≤ m =⇒ Uk ⊆ Um. Intuitively, this means that as the
sensing distance increases, the corresponding visible region
grows to include nodes that are farther from the path, e.g.
for k = 0 the visible region is just P , for k = 1 the visible
region is P and all 1-hop neighbors of P , etc.

III. MAIN RESULT

We seek to understand how additional information can aid
the defender when operating in an uncertain environment
against an adversary. In such settings, the environment (i.e.
network structure) may influence how difficult it is for the
defender to maintain their objective; however, it may be
difficult or impossible for the defender to know this a priori.
We therefore derive a scheme for defense policies that will
succeed in any, considered network structure.

To understand how information can help a defender
maintain their objective of securing P , Theorem 1 char-
acterizes the necessary and sufficient amount of defender
assets needed to guarantee that P is defended against any
adversarial strategies.

Theorem 1. Let P be a path to be defended which satisfies
the shortest path condition (1) in G. For a given defender



sensing horizon k, the condition

X ≥
(
3
⌊

|P|
2k+3

⌋
+min

{
mod(|P|, 2k + 3), 3

})
Y (10)

is sufficient for P to be defended in any graph G and
necessary for P to be defended across all graph structures
G.

Here, mod(⋄,■) denotes the remainder of the Euclidean
division of ⋄ by ■. The proof of Theorem 1 appears in
Section IV with various parts separated into subsections.

In Fig. 4, we show how the number of assets needed,
quantified by (10), decreases as the sensing horizon in-
creases. Quantifying this improvement provides insights into
the returns of investing in additional information.

We can further our understanding of the value of informa-
tion by comparing (10) with the number of defender assets
needed when there is no visibility constraint.

First, note that if the defender has full visibility (i.e.,
k → ∞), then in any network G we have that X ≥ 3Y
defender assets are necessary and sufficient to guarantee path
guarding. This follows when the sensing distance is great
enough, as for any sensing distance k such that 2k+3 > |P|,
then X = 3Y is necessary and sufficient from (10).

We can see that the defender need only have sensing
distance k = |P|/2 to guarantee defense with the same
number of assets as the full visibility case. Accordingly, in
Fig. 4 we see that number of needed defender assets quickly
decreases and saturates for k ≥ |P|/2.

IV. PROOF OF THEOREM 1

To prove Theorem 1, we start by assuming the adversary
possesses a single, unsplittable asset; as such Y = 1 and
X only takes integer values. We will show in Section IV-C
that the results from this approach can be generalized to the
case where any number of adversary assets can be split into
multiple subgroups, including fractional assets.

The proof proceeds in two major parts. In subsection IV-A,
we construct a strategy which shows that (10) is sufficient
for guarding, and thus, an upper bound on the number of
defenders required. In subsection IV-B, we show that (10)
is necessary for guarding, and thus, a lower bound on
the number of defenders required. Together, these results
quantify the relationship between the sensing distance and
the amount of resources required to defend P . The proof
of Theorem 1 relies on several lemmas, the proofs of these
lemmas can be found in an online appendix.

A. Sufficient Algorithm

In order to show that (10) is sufficient, we present a de-
fender algorithm which ensures that all nodes are defended.
First, we split P into disjoint partitions of size 2k + 3
each. There may be one partition smaller than 2k + 3 if
mod(|P|, 2k+3) ̸= 0. For partition ω, we denote the center
index as cω , i.e. pcω is the center node of the partition. We
call a platoon a group of three unit defenders in consecutive
nodes within a partition, which always move together and
maintain single spacing. The node index for the center of

Fig. 5. Example illustrating the distance dA from a single adversary,
distance dD from the partition’s center defender, and calculated advantage
a for each path node. Here, path nodes are shown by the bold circles at the
bottom and are connected by double lines. Nodes with defender units are
filled with blue, and the adversary’s node is filled with red. Note that within
each partition, defenders move as a platoon. In this example, k = 1 and so
the partition size is 2 ·1+3 = 5. Since there are negative advantage values
(highlighted in red), the defenders in each partition must move towards the
center so as to prevent the adversary from winning the game.

the platoon is termed lω , and therefore one unit of defenders
will be distributed at each of plω−1, plω , and plω+1. An
example of this distribution is shown in Figure 5. For the
special case where the partition is of size 1 or 2, there is one
unit defender asset placed on each node within the partition,
and the assets do not move. As a result, the nodes within
this smaller partition are always guarded and so we do not
consider this partition in our analysis below.

Given a path node pi and the adversarial asset’s node
location vA, define the minimum adversary distance dAi as

dAi = d(pi, vA). (11)

Since the position of the defender’s asset may vary over time,
dAi may also change over time but we omit this dependence
for notational brevity when considering a single timestep.
If the adversary’s asset is unobserverable then dAi = ∞.
Similarly, define the minimum defender distance dDi as the
minimum distance of the platoon center to a path node pi
within the platoon’s partition, i.e.

dDi = d(pi, lω) (12)

for pi in partition ω. Then, we define the advantage ai at
path node pi as

ai = dAi − dDi . (13)

Example values of dAi , d
D
i , and ai can be found in Figure 5.

Lemma 1. Assume that the defender uses platoons to defend
each partition. It is necessary in any adversary winning
configuration that ai ≤ −2 for some i ∈ [1, |P|].

Proof. For the adversary to win, it must place its asset on
some path node pi ∈ P , and therefore, dAi = 0.

We observe that dDi ≥ 2, since otherwise pi would be
occupied by one of the three defender assets in the partition’s
platoon. Therefore ai ≤ −2.

Corollary 1. Since Lemma 1 describes a necessary condition
for the adversary to win, a sufficient condition for the
defender to successfully defend indefinitely is

ai ≥ −1 ∀i ∈ [1, |P|],∀t. (14)

Defender Strategy: The defenders in each partition cal-
culate the advantage values independently for the nodes in



Algorithm 1: DefenderStep transition function.
Input: Adversary position nA, current platoon

location indices L = {l1, . . . , l|L|}
Output: Updated platoon locations L

1 for Each partition {pi, . . . , pj} with index ω do
2 Compute advantages {ai, . . . , aj}
3 Compute advantage frontier F
4 if ai > 0 ∀ai ∈ F then
5 lω ←− lω + sign(cω − lω)

6 else if ∃ak ∈ {ai, . . . , aj} s.t. ak < 0 then
7 lω ←− lω + sign(k − lω)
8 lω ←− max(min(lω, j − 1), i+ 1)

9 Return L

Algorithm 2: Initialization procedure.
Data: Adversary position nA, platoon location

indices L = {l1, . . . , l|L|}
1 Observe nA

2 Initialize L such that lω = cω ∀ω
3 while ∃ai < −1 do
4 L←− DEFENDERSTEP(nA, L)

5 Initialize platoons according to L

their own partitions to decide how to transition at each
timestep. If the advantage value for any node in its partition
is negative, then platoon moves towards that node along
P . Otherwise, the platoon considers the advantage values
of all nodes (inclusive) between its own center and the
closest partition boundary, which we call the set of frontier
advantages F . If every advantage value in F is positive, the
platoon moves towards the middle of the partition. If neither
of these conditions holds, then the defenders remain at their
current position. Note that platoons are restricted to move
within their partition, i.e. if partition ω consists of nodes pi
through pj with i < j then lω ∈ [i+1, j−1]. This procedure,
repeated once every timestep, is described in Algorithm 1.

Defender Initialization: To initialize the defender posi-
tions, the defender may simply repeat this procedure until all
advantage values are greater than or equal to −1. Then, the
resulting configuration is selected as the initial distribution.
This approach is described in Algorithm 2.

With this strategy, the platoon only moves in one of two
directions, either towards S or T . Because of this, it is not
clear what should be done when negative advantage values
appear on both sides of a platoon (i.e. if there is a negative
advantage between the platoon and S, and also between the
platoon and T ). We will now show that this situation will
never arise under the assumption that P is a shortest path.

Lemma 2. Assume that (P,G) satisfies (1). Then, for each
partition, the defense strategy specified by Algorithm 1 will
have negative advantage values on at most one side of the
platoon within that partition. If a negative advantage value
exists on one side of the platoon, the advantage values on
the opposite side must all be positive.

Proof. Suppose, towards a contradiction, that there are neg-
ative advantage values on one side of the platoon and
nonpositive advantage values on the other side. Without loss
of generality, denote the path vertex with negative advantage
pi and path vertex with nonpositive advantage pj . Call the
center vertex of the platoon lω and the vertex of the adversary
vA. Since ai < 0 and aj ≤ 0, we can say that dAi < dDi
and dAj ≤ dDj directly from the definition of the advantage.
Adding these two inequalities yields dAi + dAj < dDi + dDj ,
meaning that the length of the path from pi to pj through vA
is shorter than the path through lω . Since lω must be located
on P between pi than pj , this contradicts the assumption that
P is a shortest path and therefore negative advantage values
will never appear on both sides of the platoon. If negative
advantage values do appear, the advantage values within the
partition on the other side of the platoon must be positive by
similar reasoning.

Corollary 2. When a platoon moves one step towards a
negative advantage value ai, no negative advantage values
will appear on the opposite side (from ai) of the platoon
within the partition.

From Lemma 2, we know that when a platoon moves
towards negative advantage values, the advantage values
within the partition on the opposite side must all be positive.
Since the defender can only change any advantage value by 1
with a single platoon move, the advantage values in question
must be nonnegative after the move.

Lemma 3. If the adversary moves out of Uk at timestep t,
the platoons move back to the center of their partitions at
timestep t+ 1.

Proof. First, we will show that the distance of the platoon
center pl from its partition center pc is bounded by a function
of d∗(vA) where vA is the node location of the adversary.
In particular, we claim that d(p+l , pc) ≤ k − d∗(vA) + 1,
where p+l is the center of the platoon after the defender
moves its assets at any timestep. We see that this is true
when d∗(vA) = k, as the only vertices with possibly negative
advantage values lie on the end of the partition. For all other
vertices, dDi ≤ k and so ai ≥ 0. Therefore, the platoon
will move at most 1 step away from the center to decrease
dDi from k + 1 to k for the end vertices, and we have
d(p+l , pc) ≤ k − k + 1 = 1.

To show that this is true for all d∗(vA), we show that
increasing or decreasing the value of d∗(vA) preserves the
bound. First, suppose that d∗(vA) decreases from r to r−1.
In the worst case, the platoon will be located at the edge of
the bound such that d(pl, pc) = k − r + 1, since all other
initial locations will obey d(p+l , pc) ≤ k− r+1 after any 1-
hop move. Therefore, at worst the platoon will move 1 more
step away from pc, resulting in a distance from the center of
d(pl, pc) = k − r + 1 + 1 = k − (r − 1) + 1, showing that
the bound is preserved.

Now suppose d∗(vA) increases from r to r+ 1. Consider
the platoon at the edge of the proposed bound such that
d(pl, pc) = k − r + 1. We know that since the partition



has k + 1 nodes to either side of pc, the distance to the
closer end of the partition is bounded by r. Recall from (7)
that d∗(v) ∈ [0, k] ∀v ∈ Uk and d∗(v) ≤ d(pi, v) ∀pi ∈ P .
Therefore, when d∗(vA) increases from r to r+1, dAi ≥ r+1
for all path nodes and therefore the frontier advantage values
are all positive, i.e. ai > 0 ∀ ai ∈ F . This means that under
the proposed control law, the platoon will move towards pc.
If we instead consider a platoon located 1 step away from
the boundary (i.e. d(pl, pc) = k− r) we see that the frontier
advantages would be nonnegative, and so the platoon will not
move towards its closest partition boundary. In either case,
d(p+l , pc) ≤ k − r. Since all other initial platoon positions
will satisfy d(p+l , pc) ≤ k− r regardless of how they move,
the bound holds when d∗(vA) decreases.

Since we know that the inequality d(p+l , pc) ≤ k −
d∗(vA) + 1 holds for the case when d∗(vA) = k and when
d∗(vA) changes, we know it holds for all d∗(vA). Notice that
before the adversary leaves the sensing radius, d∗(vA) = k
and so d(p+l , pc) ≤ 1, implying that the platoon can return
to pc within 1 step if the adversary leaves Uk.

Lemma 4. Using Algorithm 2, the defender can achieve a
starting configuration such that ai ≥ −1 ∀ i ∈ [1, |P|] in
finite time.

Proof. Because of Lemma 2, we know that each defender
step is possible since there will never be negative advantage
values on both sides of the platoon. As Corollary 2 states, we
are also guaranteed that moving a platoon towards a negative
advantage will never result in negative advantage values on
the other side of the platoon after the move is made.

Additionally, the platoon will never have to leave its
partition to achieve the stated condition since the platoon
center can be moved to within one hop of any node in the
partition. Therefore dDi ≤ 1 can be achieved for any single
partition node, bounding the advantage as ai ≥ −1. Thus, we
conclude that repeatedly moving the platoons in the direction
of negative advantage values will eventually result in a state
where ai ≥ −1 ∀ i ∈ [1, |P|]. Since the number of nodes
in the partition is finite, we also conclude that Algorithm 2
terminates in finite time.

Since the proposed algorithm requires no more than the
amount of resources specified by (10), we will now prove
sufficiency for Theorem 1 by showing that the proposed
algorithm guarantees path guarding.

Proof of sufficiency for Theorem 1. From Lemma 4 we
know that initially ai ≥ −1 ∀ i ∈ [1, |P|]. During its turn, the
defender can move towards the node with negative advantage
value to restore the advantage values from −1 to 0 if the
adversary is not at the end of the partition. This is possible
since the negative advantage value only appears on one side
of the platoon as shown in Lemma 2. Negative advantage
values will also not appear on the opposite site of the platoon
after the move, as stated in Corollary 2. Any adversary move
can change the advantage value at each node by at most
1, and so the defender can repeat this procedure at every
timestep with the same result.

For an adversary at the end of the partition, the platoon
is not able to restore the advantage value for the edge of
the partition to be nonnegative, as the platoon would have
to move out of the partition to do so. However, in this case
the partition is still guarded by one of the defender assets
adjacent to the center of the platoon. The adversary is also
not able to further decrease the advantage in this case, as
either moving out of the partition or towards the platoon
would increase the advantage value at the partition edge.

Note that if the adversary asset leaves Uk, it does not have
to reappear at the same node from which it left. However,
it is always true that d ∗ (vA) = k whenever the asset first
reappears after leaving Uk, and from Lemma 3 we know that
the dDi ≤ k + 1, so ai ≥ −1. Therefore, the defender can
guarantee that ai ≥ −1 for all time. As stated in Corollary 1,
this means that the defender can guard P indefinitely.

B. Necessary Defender Assets

In this subsection, we show that (10) is necessary to
guarantee the defense of the path P when any additional
graph structure can be realized outside of P such that no
shorter path exists between S and T . In Section IV-A, we
provided a sufficient algorithm where we chose to place
defender assets only on P; we now show that any defense
strategy that allocates assets throughout G can be replicated
by a defense strategy that allocates assets only on P .

Lemma 5. Consider a defender policy πD. The defender
can guarantee the same defense of the path P in the graph
G with the same number of assets X , by using a policy π̂D

that only has assets on P at each time step, i.e. xp(t) = 0
if p /∈ P .

Proof. Consider an attacker trajectory {y(t)}Tt=0 and de-
fender trajectory {x(t)}Tt=1 that results from the defender
policy πD, where T is the termination round1. Consider that
the defender wins the nodes in the path Dt ⊆ P at each time
t ≥ 1.

Now, we define a new defender trajectory {x̂}Tt=1 that wins
the same nodes {Dt}Tt=1 and only places assets on P , i.e.,
x̂p(t) ≥ xp(t) if p ∈ P for all t ∈ {1, . . . , T}, and x̂p(t) = 0
if p /∈ P for all t ∈ {1, . . . , T}. We can realize a policy
that gives such a trajectory by using the algorithm from
Section IV-A. For every original defender asset, generate an
initial allocation and policy using the center asset position of
Algorithm 1 while treating the old defender as the adversary.
If the new defender updates after the original defender action
in the same timestep, then Section IV-A shows that the new
defender will coincide with the old defender on P (defending
the same nodes {Dt}Tt=1) while never leaving P .

Next, we show a winning condition for the attacker based
on the defender’s starting configuration.

Lemma 6. A winning attacker strategy exists in some graph
G if there exist three consecutive nodes pα−1, pα, pα+1 in

1If the policy πD can guarantee defense in perpetuity, let T → ∞.



the path P which the defender cannot move an asset onto
each of in k defender actions.

Proof. Consider three consecutive nodes {pα−1, pα, pα+1}
in the path P where the defender cannot move one de-
fender asset onto each node within k time steps. Construct
G, such that there exists a node pξ ∈ V\P with edges
(pξ, pα−1), (pξ, pα), (pξ, pα+1) ∈ E and pξ and can be
reached from a node outside the sensing horizon in k-hops.
Node pξ is one hop off P , thus the attacker can move their
asset from outside the region of visibility to pξ in k attacker
actions, i.e., if the attacker starts this movement at time t,
their asset will reach pξ at time t + k. The defender will
first detect the attacker at time t + 1. If the defender could
not move assets onto each of {pα−1, pα, pα+1} in k time
steps, then at least one of these nodes will be uncovered by
a defender asset in time t+ k+1. In the attacker’s action at
t+k+1, they can move their asset to any of {pα−1, pα, pα+1}
and thus could move to whichever node does not have a
sufficient number of defender assets and take it.

Now, we prove that (10) is necessary to guarantee defense
across all graph structures. Consider the case where the
attacker starts outside of the region of visibility; because
this is a valid strategy for the attacker, defending against it
generates a necessary condition. Following Lemma 6: when
|P| = 1, one defending asset is necessary to defend P , when
|P| = 2, two defending assets are necessary to defend P ,
and when |P| = 3, three defending assets are necessary to
defend P . The following remark will allow us to compare
the necessary number of defender assets in different paths.

Remark 1. If X defender assets are necessary to defend P ,
then at least X defender assets are necessary to defend P ′

if |P ′| > |P|.

Thus, at least three defending assets are necessary for
all |P| > 3. Next, consider two necessary conditions for
defending subsets of P:

1) A node p ∈ P is defended only if it is within k-hops
of a defender asset.

2) For i ∈ {1, . . . , |P| − 2}, the nodes {pi, pi+1, pi+2}
are guaranteed-defended only if the nodes
{p[i−k]+ , . . . , pi+k+2} are initially allocated 3
defender assets.

If the first were contradicted, an attacker asset could enter the
region of visibility and reach node pi in k attacker actions
while the defender asset would require k + 1 actions. If
the second were contradicted, then the defender would not
be able to move assets into the three-in-a-row configuration
described in Lemma 6 over {pi, pi+1, pi+2} in k defender
turns and the attacker could take one of these nodes.

Now, for some β ∈ {1, . . . , L} consider the task of
deploying additional defender assets when the defender’s
deployment on {p1, . . . , pβ} is already given. Regardless
of how many, or where, the assets in {p1, . . . , pβ} are
initially deployed, they cannot reach node pβ+k+1 in k-hops,
so (from necessary condition 1), pβ+k+1 is not defended

by defender assets in {p1, . . . , pβ}, and (from necessary
condition 2) there must be three assets deployed on nodes
{pβ+1, . . . , pβ+2k+3}, regardless of the deployment of assets
on nodes {p1, . . . , pβ}. As such, because we can pick any
β ∈ {0, . . . , L − 1} any continuous sequence of nodes of
length 2k + 3 must have at least three assets deployed on
them. From this, a shortest path of length |P| = (2k + 3)n
must have 3n defender assets, as we can form n disjoint,
connected sequences of nodes in P that must each possess
3 defending assets, or X ≥

(
3 L
2k+3

)
Y .

Next, consider |P| = (2k+3)n+1 and {p1, . . . , p(2k+3)n}
are fully defended by 3n assets. From necessary condition
2, there must be 3 defending assets within the first k + 3
nodes. From necessary condition 1, these assets cannot reach
(and thus defend) any node further than p2k+3, i.e., node
p2k+3+1 cannot be reached (or defended) by the first 3
defender assets. If n > 1, from necessary condition 2,
nodes {pk+3+1, . . . , p3k+6} must posses 3 defending assets,
and from necessary condition 1, these assets cannot reach
(and thus defend) any node further than p2(2k+3); so, node
p2(2k+3)+1 cannot be reached (or defended) by the first 6
defender assets. Following this logic for any n ≥ 1, we can
see that 3n assets that fully defend the first (2k+3)n nodes
cannot reach p(2k+3)n+1 and one additional asset is needed.

Similarly, if |P| = (2k+3)n+2 or |P| = (2k+3)n+3,
and the {p1, . . . , p(2k+3)n} are fully defended by 3n assets,
then nodes p(2k+3)n+1, p(2k+3)n+2, and p(2k+3)n+3 cannot
be reached by the first 3n assets and 2 or 3 additional assets
are needed respectively.

From Remark 1, when |P| ∈ {(2k + 3)n + 3, . . . , (2k +
3)(n+1)}, the same number of defender assets (3n+3) are
necessary. Therefore, the necessary number of assets is as
expressed in (10).

C. Generalization to Fractional Attacker Strategies

We now relax our assumption that attacker has an unsplit-
table unit mass of assets to extend the results of Section IV-
A and Section IV-B to the general adversary problem. Since
there are no restrictions on the number of assets that may
pass through an edge, and since the motions of assets are
not affected by the motions of other assets, we may simply
consider a series of parallel games for each adversary asset.
For example, if the adversary divides its assets in a 70:30
split between two nodes, the defender can respond by first
splitting its assets (independently at each node) proportion-
ally in a 70:30 split and then playing two independent games.
The first 70% of defenders track the 70% of adversaries,
and the second group of 30% defenders follow the 30% of
adversaries. Additional splits by the adversary can prompt
this defender response recursively. Since the graph is finite,
the number of games the defender must play is also finite.

Because the attacker strategy of moving each of their
assets in the same mass remains viable, the necessary num-
ber of defender assets remains the same and matches the
sufficient number proposed by Section IV-A.

Finally, note that a split of adversarial assets in the un-
observable region does not change this result. The defender



Fig. 6. Illustrative scenarios under the proposed defender control algorithm. In (a), the defender platoon follows the adversary asset’s movement to ensure
guarding. In (b), two platoons move to the boundary between their partitions to ensure P is guarded when an adversary passes through a partition boundary.
In (c), the platoon returns to the center of its partition when the adversary leaves Uk , resetting its state so that it may guard against an asset reappearing
anywhere within Uk .

naturally does not react to adversarial actions outside the
unobservable region, and once the adversarial assets appear
in the visible region path defense can be treated as before
by allocating defender resources proportionally and playing
multiple independent games.

V. ILLUSTRATIVE SCENARIOS

We now show example scenarios of potential adversarial
actions and the defender’s response under the proposed
sufficient defender transition function (Alg. 1). Consider the
states presented in Fig 6, which are taken after the defender
action at time t, after the adversary action at time t, and after
the defender action at time t+ 1.

In scenario (a), the adversary is shown moving toward P to
the right of the defender platoon. As expected, the defender
also shifts its position towards the right at time t+1 to guard
against the adversary asset.

In scenario (b), the adversary is already located on P but
is guarded by the platoon in the left partition. As it moves
towards the boundary between partitions, the platoon in the
right partition responds by moving towards the partition
boundary, ensuring that the path remains guarded. This
example illustrates the hand-off of defending adversarial
assets between platoons of different partitions.

In scenario (c), the adversary leaves the visible region,
which is shaded in green. Note that at time t, the platoon is
not located at the center of its partition. However, once the
adversary leaves Uk, the platoon restores its position to the
center of the partition, thereby ensuring path defense should
the adversary’s assets reappear at another location.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the necessary and sufficient
number of defenders required to defend a path on an arbitrary

graph in the dDAB game as a function of the defender’s
sensing distance. We derived an expression which lower
bounds the amount of defender resources required to defend
a shortest path as a function of the sensing distance, and
also described a defender strategy that guarantees guarding
of the path while matching our lower bound. Together, these
results quantify the relationship between the sensing distance
and the resources required to defend a shortest path.

Future work will examine key variations to the dDAB
game such as additional motion models for the players (e.g.,
allowing the adversary to move faster than the defender) as
well as different objective-region types (e.g., cycles).
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