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ADMM based Distributed State Observer Design

under Sparse Sensor Attacks
Vinaya Mary Prinse and Rachel Kalpana Kalaimani

Abstract—This paper considers the design of a distributed
state-observer for discrete-time Linear Time Invariant (LTI)
systems in the presence of sensor attacks. We assume there is
a network of observer nodes, communicating with each other
over an undirected graph, each with partial measurements of
the output corrupted by some adversarial attack. We address
the case of sparse attacks where the attacker targets a small
subset of sensors. An algorithm based on Alternating Direction
Method of Multipliers (ADMM) is developed which provides an
update law for each observer which ensures convergence of each
observer node to the actual state asymptotically.

Index Terms—Distributed observers, cyber-physical systems,
secure state estimation, sparse sensor attacks, ADMM.

I. INTRODUCTION

O
ver the past few decades, a distributed approach is being

adopted for large scale and complex Cyber-Physical

Systems (CPSs) such as smart grids, industrial control systems,

robotic systems etc. to enhance flexibility, robustness and

computational performance. However, the susceptibility of

these systems to attacks is a reality as highlighted in [1] and [2]

and a few examples include the Ukrainian power grid hack [3],

the worldwide Wannacry ransomware attack and the Stuxnet

attack [4]. Hence, the security of CPSs is of primary concern.

We consider the problem of estimating the state of linear

dynamical systems when few sensors are corrupted, called

sparse sensor attacks. We adopt a distributed approach for

an observer design and assume a network of observers where

each observer has access to partial measurements of the output.

Since each observer need not be observable, state estimation

by the observers require communication with each other.

A centralized state observer for Linear Time Invariant

(LTI) systems under sparse sensor attacks is proposed in [5]

and [6] considers sparse actuator attacks also. Design of a

distributed observer for state estimation without sensor attacks

is discussed in [7] for discrete time LTI systems and in [8] for

continuous time LTI systems.

While an observer is a dynamic process, which uses new

measurements to update the current state value, a static ap-

proach is to just estimate the initial condition using a batch of

measurements and then use the system dynamics to construct

the current state. Now, additionally when there are sensor

attacks, estimating the state using the above static approach is

known as Secure State Estimation (SSE) problem in literature.

When a distributed approach is used, the above problem is

referred to as Distributed SSE (DSSE) where each agent
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estimates the initial state based on its own (limited) state

measurements and the information from neighbours despite

sparse sensor attacks. DSSE has been addressed in [9] and

[10]. The latter has an additional sparsity assumption on the

initial state. DSSE with secure preselectors is discussed in [11]

but has a complicated parameter design as mentioned in [4].

A distributed observer for LTI systems with Byzantine

attacks is studied in [12]. In Byzantine attacks, adversaries are

allowed to send differing state estimates to different neighbors

at the same instant of time, State estimation for this kind

of adversaries is addressed for stronger assumptions on the

network graph. We consider a simpler case, where the attacker

tampers only a few measurements of the system and therefore

require a comparatively weaker assumption of just the graph

being connected.

A distributed observer design in case of sparse attacks is

proposed in [13] for linear continuous time systems. This

involves an attack indicator signal with exponential compu-

tational complexity. We propose a distributed observer design,

for discrete time LTI systems, under sparse sensor attacks. The

main contributions of our work are as follows:

1) Design a distributed observer when there are sparse sen-

sor attacks. An algorithm based on Alternating Direction

Method of Multipliers (ADMM) is used to update each

observer.

2) The DSSE can be recovered as a special case of the

above algorithm. We compare this with the DSSE algo-

rithm in [10].

3) We also compare the centralized implementation of our

algorithm with [5] which discusses a centralized state

observer under sparse sensor attacks.

A. Notation

N,R denote the set of natural and real numbers respectively.

Γ̄ denotes complement of a set Γ. bT represents transpose

of vector b. In is the identity matrix of dimension n. For a

vector y ∈ Rn, l0 norm of y i.e. ‖y‖0 refers to the number

of nonzero components in y and ‖y‖r represents r norm of

y. (x, y) denotes the vector [xT yT ]T ⊂ Rn1 × Rn2 where

x ∈ Rn1 and y ∈ Rn2 .

|K| represents cardinality of a set K . A vector x ∈ Rn

is said to be s sparse when |supp(x)| ≤ s. A block vector

given by y = (y1, ..., yp) ∈ Rpτ , where y1, ..., yp ∈ Rτ are

blocks, is block s-sparse if at most s blocks are nonzero. We

use s-sparse instead of the term block s-sparse and Spτs ⊂ Rpτ

denotes the set of these vectors.

An undirected graph is represented by G = (V , E ,A) where

V = {1, 2, .., N} is the vertex set, E ⊂ V×V is the undirected
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edge set and A = {aij}N×N is the adjacency matrix where

aij = 1 if (i, j) ∈ E i.e. it indicates that nodes i and j are

connected, else aij = 0. We will assume a graph without loops

or multiple edges i.e. aii = 0. The neighbourhood set of the

ith node is defined as Ni = {j : (i, j) ∈ E}. A graph is said to

be connected if there exists a path to traverse between every

pair of distinct nodes i and j in G.

Hereafter the paper organization is as follows. Section II

formally states the problem objective. The main results of this

paper are given in Section III which includes optimization

problem reformulation followed by the distributed observer

design and simulation results for DSSE and centralized ob-

server implementations in addition. The paper is concluded in

section IV.

II. PROBLEM FORMULATION

Consider the following discrete-time LTI system, whose

measurements are corrupted.

x[t+ 1] = Ax[t] +Bu[t],

y[t] = Cx[t] + a[t], (1)

where x[t] ∈ R
n is the state vector, y[t] ∈ R

p is the

measurement vector and a[t] ∈ Rp is the s sparse attack vector

assuming that at most s sensors are attacked. The objective is

to construct a distributed observer for the above system which

estimates the system state and attack vector (thereby the set

of corrupted sensors) at time t by communication within the

network.

It is well known that a sufficient condition which guarantees

exact state estimation despite an s sparse sensor attack is the

2s-sparse observability condition [5]. A system is said to be s-

sparse observable if the system remains observable even after

removing any s sensors i.e. for every set Γ ⊂ {1, .., p} with

|Γ| = s, the observability matrix of (A,CΓ̄) has full rank (CΓ̄

indicates the matrix resulting on elimination of rows indexed

by Γ from C).

For the distributed framework, we assume that there are N
local observers (or agents) each with a set of sensors which

measures a part of the output, yi[t] ∈ Rpi ,
∑N

i=1 pi = p. This

measurement is corrupted by ai[t] ∈ Rpi . The communication

network is depicted by a graph, whose vertices represent the

observers and edges represent the existence of a commu-

nication channel between two observers. Using the partial,

corrupted measurement and additionally communicating with

its neighbours, each observer should be able to estimate the

state vector of the system in (1).

Next we list the assumptions on our system model:

Assumption 1:

1) The graph representing the communication network of

the distributed observers is connected.

2) The system (A,C) is 2s-sparse observable

3) The attack vector a[t] is s sparse (provided s < p
2 [14])

The set of corrupted sensors is assumed to be fixed over

time. However, it is important to note that the effect of the

attack is propagated to the neighboring observers of a local

observer receiving corrupted sensor measurements, through the

communication network. Next we formally state our problem

of designing a distributed observer under sensor attacks.

Problem 1: Consider a set of N agents/observers, each with

partial and corrupted measurements of the output, interacting

with each other to estimate the state of the system in (1),

satisfying conditions in Assumption 1. Let x̃i[t] ∈ Rn denote

an estimate of the state that an observer i has at time t. Design

an update law for each agent, that can be implemented in a

distributed manner, such that the following holds:

lim
t→∞

‖x̃i[t]− x[t]‖ → 0, ∀ i

III. RESULTS

A. Optimization Formulation

In [5], in order to obtain an observer, an optimization prob-

lem is formulated first and then recursively solved. We follow

a similar approach to get a distributed observer. By collecting

the sequence of last τ observed outputs (τ ∈ N, τ ≤ n) at time

t ≥ τ , a delayed version of the system state i.e. x[t − τ + 1]
can be reconstructed.

Let Ej [t] ∈ Rτ denote the vector of attack signals on the

jth sensor from time t− τ + 1 to t, i.e. Ej [t] = (aj [t− τ +
1], ..., aj[t]). This vector is stacked for all sensors to obtain

E[t] i.e. E[t] = (E1[t], ..., Ep[t]). The attack signal on the jth

sensor, aj [t], can be expressed as

aj [t] = yj [t]− Cjx[t] (2)

Hence, if we have an estimate of x[t− τ + 1], then using the

above equation (2) and the system dynamics in (1), we can

obtain an estimate of the state and attack vectors from time

t− τ + 1 to t.
Consider the vector z(t) defined as z[t] = (x[t], E[t]). Let

Ȳ (t) ∈ R
pτ denote the set of past τ outputs collected for all

the sensors i.e. Ȳ [t] = (Ȳ1[t], ..., Ȳp[t]) where Ȳj [t] = (yj [t−
τ + 1], ..., yj[t]). Then from [5], we obtain the dynamics of

z(t) and a relation between Ȳ (t) and z(t) as follows:

z[t] = Āz[t− 1] +Ny[t] (3)

Ȳ [t] = Qz[t] (4)

where Ā =





A 0 ··· 0
G1 S ··· 0

...
. . .

Gp 0 ··· S



, Q =

[ O1

... Ipτ
Op

]

and N =





0
N1

...
Np



.

Here, Gj =





0
...
0

−CjA
τ



, S =





0 1 ··· ··· 0
0 0 1 ··· 0
...

...
. . .

0 0 ··· ··· 1
0 0 ··· ··· 0



 and Nj =





0
...
0
bj





where bj represents the jth standard basis vector and Oj =
[

CT
j (CjA)

T . . . (CjA
τ−1)T

]T
.

Since we are interested in an observer, for simplifying the

analysis, we ignore the external input in the system dynamics.

Let x̃[t] denote the estimate of x[t − τ + 1] and Ẽ[t] denote

the estimate of E[t]. Then estimate of z[t] denoted as z̃[t] is

the vector (x̃[t], Ẽ[t]).
In order to obtain the estimate z̃(t) at a given time t, the

following optimization problem is solved:

min
z̃∈Rn×S

pτ
s

1

2
‖Ȳ [t]−Qz̃[t]‖22 (5)
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Note that Ẽ part of the variable z̃ in the above optimization

problem is constrained to be in Spτs due to the sparse structure

of the attack vector. According to Theorem 3.2 in [5], for

a 2s-sparse observable system, this problem has a unique

minimum, (x∗, E∗) in the set Rn×Spτs . Hence, this problem is

reformulated as an l0 norm minimization problem for Ẽ. The

optimal solution, which is the most sparse Ẽ will be the unique

s-sparse vector E∗ in this case. Thus, the sparse nature of the

attack vector is utilised to reformulate the above problem into

the following l0 norm optimization problem A:

A : min
z̃=(x̃,Ẽ)

‖Ẽ‖0 s.t. Qz̃ = Ȳ (6)

Note that problem A is not convex. Hence we consider the

following convex relaxation of problem A known as the basis

pursuit problem:

B : min
z̃=(x̃,Ẽ)

‖Ẽ‖1 s.t. Qz̃ = Ȳ (7)

The following lemma provides a condition when the two prob-

lems are equivalent. [14, Proposition 6] and [15, Proposition 3]

discuss similar conditions and hence we skip the proof.

Lemma 1: Let (x̃0, Ẽ0) and (x̃1, Ẽ1) be the solutions to

the optimization problems A and B respectively. Then for a

2s-sparse observable system, the following are equivalent:

1) (x̃1, Ẽ1) = (x̃0, Ẽ0)
2) For all Γ ⊂ {1, ..., p} with |Γ| = s, the following holds:

∑

i∈Γ

|(Ox̃)i| <
∑

i∈Γ̄

|(Ox̃)i|, ∀ x̃ ∈ R
n\{0} (8)

where O = [OT
1 · · · OT

p ]
T is part of the Q in (4).

These results are utilised to reformulate the optimization

problem in (5) into a basis pursuit problem in the following

theorem.

Theorem 1: Let the discrete time LTI system defined in (1)

be 2s-sparse observable. Then the optimization problems in

(5) and (7) are equivalent provided condition (8) holds ∀ Γ ⊂
{1, ..., p} with |Γ| = s.

The proof is straightforward from the re-formulated optimiza-

tion problem A in (6) and Lemma 1. �

Problem B needs to be formulated in a distributed set up in

order to address our main objective of proposing a distributed

observer. Each local observer in the network will have access

to a part of the measurements of the system and collection

of these measurements from time t − τ + 1 to t gives Yi[t]
for the ith observer. Now an observer/agent i can have an

estimate of the state vector x[t − τ + 1] and of the attack

vector corresponding to the measurements received by them

denoted by x̃i[t] and Ẽi[t] respectively. Similar to the output

equation given in (4), the output equation for observer i can

be written as follows:

Yi[t] =









O1+
∑i−1

j=1
pj

... Ipiτ

Opi+
∑i−1

j=1
pj









[

x̃i[t]

Ẽi[t]

]

= Qiz̃i[t] (9)

where Ẽi[t] is a vector extracted from Ẽ[t] corresponding

to the attack on observer i and Qi refers to the matrix

in the above equation. Each agent gets an estimate of the

initial condition and attack vectors, z̃i[t] = (x̃i[t], Ẽi[t]), by a

distributed approach. In this regard, an optimization problem

that is equivalent to B is formulated in the following Lemma.

Lemma 2: The optimization problem B in (7) is equivalent

to the following optimization problem:

min
z̃i=(x̃i,Ẽi),bi

‖Ẽ1‖1 + ‖Ẽ2‖1 + ...+ ‖ẼN‖1 (10)

s.t. Qiz̃i = Yi ∀i = 1, ..., N

x̃i = bj, ∀(i, j) ∈ E

x̃i = bi, ∀i = 1, ..., N

where Qi is defined in (9) and bi is an auxiliary variable.

Proof: In problem B, the objective function ‖Ẽ‖1 can be

written as the sum of ‖Ẽi‖1s by definition of one norm. The

constraint Qz̃ = Ȳ , is decomposed for each observer i in (9).

Consequently, each observer maintains its own estimate of the

initial condition, x̃i. Next, to enforce consensus on the state

estimates i.e. to achieve x̃1 = ... = x̃N in a distributed/parallel

manner, we need to introduce auxiliary variables. We adopt the

approach proposed in [16] which uses one auxiliary variable

per node, say bi. Then the consensus constraint equations can

be written as x̃i = bj ∀(i, j) ∈ E and x̃i = bi ∀i = 1, ..., N .

Since the objective function and constraints are equivalent, the

optimization problems given in (7) and (10) are equivalent. �

B. Distributed Observer

In this section, we first propose an ADMM based algorithm,

that can be implemented in a distributed manner, to solve

the optimization problem formulated in Lemma 2. Then for

the observer, a suitable recursive implementation is proposed

incorporating new measurements at each time.

Consider the augmented Lagrangian for the optimization

problem given in (10) (by dualizing only the consensus

constraints) :

Lρ =
N
∑

i=1

(‖Ẽi‖1 +
∑

j∈Ni

λT
ij(x̃i − bj) +

ρ

2

∑

j∈Ni

‖x̃i − bj‖
2

+ λT
ii(x̃i − bi) +

ρ

2
‖x̃i − bi‖

2)

where λij , λii ∈ R
n are the Lagrange multipliers associated

with the constraints x̃i = bj and x̃i = bi respectively. The

primal and dual update steps for each agent are as follows:

z̃i
k = argmin

z̃i=(x̃i,Ẽi)

‖Ẽi‖1 +
∑

j∈Ni

(λk−1
ij + λk−1

ii )T x̃i+

ρki
2

∑

j∈Ni∪i

‖x̃i − bk−1
j ‖2 s.t. Qiz̃i = Yi

bki = argmin
bi

−
∑

j∈Ni

(λk−1
ij +λk−1

ii )T bi+
ρki
2

∑

j∈Ni∪i

‖x̃j
k−bi‖

2

λk
ij = λk−1

ij + ρki (x̃i
k − bkj ) ∀(i, j) ∈ E

λk
ii = λk−1

ii + ρki (x̃i
k − bki )

Note that both the primal and dual updates are in a distributed

manner, where only the information from neighbouring agents

are required for each update.
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The primal and dual residuals of the ith agent at the kth

iteration i.e. rki and ski respectively, used to monitor the con-

vergence of the algorithm, are defined as rki = ‖x̃i
k − bki ‖2 +

∑

j∈Ni
‖x̃i

k − bkj ‖2 and ski = ρ‖bki − bk−1
i ‖2 respectively.

For better convergence, the varying penalty parameter scheme

described in [17] is followed:

ρk+1
i = νρki if ‖rki ‖2 > µ1‖s

k
i ‖2

= ρki /ν if ‖ski ‖2 > µ2‖r
k
i ‖2

= ρki otherwise

where ν > 1 and µ1, µ2 > 1 are parameters.

In order to process new measurements and use the state

estimate computed at the previous time step, in the sense of

an observer, a time update step based on the system dynamics

in (3) is performed i.e.

z̃Ti(t) = Āiz̃i(t− 1) +Niȳi(t)

where,

Āi =













A 0 · · · 0
G1+

∑i−1

j=1
pj

S · · · 0

...
. . .

Gpi+
∑i−1

j=1
pj

0 · · · S













, Ni =













0
N1+

∑i−1

j=1
pj

...

Npi+
∑i−1

j=1
pj













and ȳi(t) denotes the measurement vector at time t for the ith
observer. With the updated measurements, the optimization

problem is again solved to get a better estimate of the state.

The above steps are made precise in Algorithm 1 where the

time update step forms the outer loop and the inner loop solves

an optimization problem at each step to get a better estimate

of the state in comparison to the previous time step.

Stopping criterion: According to [17], the primal and dual

residuals converge to zero as ADMM proceeds and when the

primal and dual residuals are small, the objective suboptimality

also must be small. Hence, suitable tolerances are chosen for

the primal and dual residuals to be used as stopping criteria

for the algorithm.

Remark 1: At each time step, it is required to initialise

the parameters λii, λij , bi and ρi. Since an optimization

problem is solved at each time step to get better state estimates

with updated measurements, we use the final values from the

previous time step to initialize the parameters λii, λij and ρi.
The parameter bi introduced for consensus of state variable

among observers is initialized to x̃Ti(t), the state estimate

obtained after time update at the current time step.

Remark 2: Convergence of Algorithm 1 - Algorithm 1

recursively solves the optimization problem in (10) which is

convex as both objective function and constraints are convex.

We start with τ > 0 measurements collected from time t = t0
to t = t0 + τ − 1 and use them to construct the matrices in

the optimization problem in (10). Solving this problem gives

the initial condition x(t0) and the attack vectors from time

t = t0 to t = t0 + τ − 1. The primal and dual update steps

in Section III-B are the steps of a standard ADMM algorithm

which provide the optimal solution. This along with residual

monitoring constitute the inner loop of Algorithm 1. Since

the ADMM algorithm converges (Theorem 22 in [18]), the

check condition in Step 6 of the algorithm would definitely be

Algorithm 1 ADMM based Distributed Observer under Sparse

Sensor attack
1: Initialize τ > 0 and collect measurements from time t0 to

t0 + τ − 1
2: Initialize t = t0 + τ , λ0

ii, λ
0
ij , ρ

1
i , r

t−1
i , st−1

i and z̃i(t− 1)
For each observer i:

3: while rt−1
i ≥ α or st−1

i ≥ β do

4: Time Update: z̃Ti(t) = Āiz̃i(t− 1) +Niyi(t)
5: Initialize k=1, b0i = x̃Ti(t), r

t
i = rt−1

i , sti = st−1
i

6: while rti ≥ (1− ν)rt−1
i or sti ≥ (1− ν)st−1

i do

7: z̃i
k = argmin

z̃i=(x̃i,Ẽi)

‖Ẽi‖1+
∑

j∈Ni
(λk−1

ij +λk−1
ii )T x̃i+

ρk
i

2

∑

j∈Ni∪i ‖x̃i − bk−1
j ‖22 s.t. Qiz̃i = Yi(t)

8: bki = argmin
bi

−
∑

j∈Ni
(λk−1

ij + λk−1
ii )T bi +

ρk
i

2

∑

j∈Ni∪i ‖x̃j
k − bi‖

2
2

9: λk
ij = λk−1

ij + ρki (x̃i
k − bkj ) ∀(i, j) ∈ E

10: λk
ii = λk−1

ii + ρki (x̃i
k − bki )

11: rti =
∑

j∈Ni∪i ‖x̃i
k − bkj ‖2

12: sti = ρki ‖b
k
i − bk−1

i ‖2
13: if ‖rti‖2 > µ1‖s

t
i‖2 then

14: ρk+1
i = νρki

15: else if ‖sti‖2 > µ2‖r
t
i‖2 then

16: ρk+1
i = ρki /ν

17: else if no update rules are triggered then

18: ρk+1
i = ρki

19: end if

20: k = k + 1
21: end while

22: z̃i(t) = z̃i
k−1, ρ1i = ρki , λ

0
ii = λk−1

ii , λ0
ij =

λk−1
ij ∀ (i, j) ∈ E

23: t = t+ 1
24: end while

Fig. 1. Three inertia system [10]

satisfied and hence the inner loop terminates. At each instance

that the inner loop terminates, the time update (Step 4) is done.

This update may increase disagreement among state values and

cause the residual value to increase. Therefore the inner-loop,

i.e. the ADMM algorithm, is performed again to reduce this

increase in residual caused by the time-update. Since the check

condition in Step 6 ensures that the residuals decrease across

time, the outer loop terminates and the algorithm converges.

Example: The proposed Algorithm 1 is implemented for

the three-inertia system shown in Figure 1 (considered in [9],

[10], [19]) which is 4-sparse observable and has dynamics



5

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Fig. 2. Evolution of the consensus error in the state estimates of all local
observers across time

represented by the following continuous time state space

equation:

ẋ[t] = Acx[t]

y[t] = Ccx[t] + a[t] (11)

where

Ac =

















0 1 0 0 0 0

− k1

J1

− b1
J1

k1

J1

0 0 0

0 0 0 1 0 0
k1

J2

0 −k1+k2

J2

− b2
J2

k2

J2

0

0 0 0 0 0 1

0 0 k2

J3

0 − k2

J3

− b2
J3

















Cc =

















1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 −1 0 0 0
1 0 0 0 −1 0
0 0 1 0 −1 0

















=





C1

C2

C3





where J1 = 0.01 kgm2, J2 = 0.02 kgm2, J3 = 0.03 kgm2 are

the inertias of drive motor, middle body and load respectively,

K1 = K2 = 1.4N/rad are the torsional stiffness of two

shafts, B1 = B2 = B3 = 0.005N/(rad/s) are the mechanical

damping of three inertias and x = [θ1, ω1, θ2, ω2, θ3, ω3] where

θ1, θ2, θ3 are the absolute angular positions of three inertias,

ω1, ω2, ω3 are the speeds of three inertias and the output

measurements are the three angular positions and the three

relative angular positions. To obtain a discrete-time model,

the system in (11) is discretized with a sampling period of

h = 0.1s. The undirected communication graph of the 3 local

observers is connected and the adjacency matrix of this graph

is A =
[

0 1 1
1 0 0
1 0 0

]

. The initial state of the system is taken as

x[0] = [0, 0, 0, 0, 0.9644, 0]T . The third and fourth sensors

are attacked and the attack vectors are generated at random.

We have τ = 3 measurements collected at t = 0, 1, 2 and

the algorithm is initialised at t = 3. Penalty parameter ρ
is initialised as 1 for all agents and ν, µ1, µ2 are chosen as

10, 2.5 and 1.1 respectively. The stopping condition used is a

tolerance of 0.1 for the primal and dual residuals.

The comparison of consensus error associated with all the

local observers is shown in Figure 2 and the evolution of error

in state estimate of all the observers across time is shown

1 2 3 4 5 6 7
0

2

4

6

8

10

12

Fig. 3. Evolution of error in the state estimate of all agents across time
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Fig. 4. Evolution of consensus error in the agent state estimates in case of
implementation as Distributed Secure State Estimator

in Figure 3. In this case, the average number of inner loop

iterations the observer algorithm takes in a time step is 40.

We next adapt Algorithm 1 for the DSSE problem and

the design of a centralized observer with sensor attacks and

compare the performance with the existing algorithms in

literature.

1) Case 1 - Implementation as Distributed Secure State

Estimator: Algorithm 1 is modified to address the DSSE

problem by executing the inner loop alone with loop guard

as rki ≤ α, ski ≤ β, for some small α, β, instead of

rti ≤ (1− ν)rt−1
i , sti ≤ (1− ν)st−1

i to solve the optimization

problem given in (10) i.e. to estimate the initial state x[t0]
using a batch of measurements collected from time t = t0 to

t = t0 + τ − 1.

This idea is implemented and compared with the DSSE

algorithm in [10] for the system considered earlier. Since the

0 100 200 300 400 500 600 700 800 900 1000
0
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Fig. 5. Comparison of the error in state estimate of agent 2
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Fig. 6. Comparison of the evolution of error (in logarithmic scale) in the
system state estimate of both the algorithms. The stopping condition used is
a tolerance of 10

−5 for the primal residual.

DSSE algorithm assumes a sparse initial state, the initial state

for the system is taken as x[0] = [0, 0.7196, 0, 0, 0, 0]T and

the third and sixth sensors are attacked. Penalty parameter

ρ is initialised as 1 for all agents and ν, µ1, µ2 are chosen

as 10, 2, 2 respectively. Both the algorithms are run for 1000

iterations. Figure 4 shows the comparison of consensus error

associated with all the agents for our ADMM-based algorithm

and Figure 5 shows the error in state estimate of agent 2 for

both the algorithms. We observe that our algorithm converges

faster.

2) Case 2 - Implementation as Centralized Observer:

Since centralized observer under sparse sensor attacks exists

in literature, we adapt our distributed observer in Algorithm 1

for the centralized case and compare its performance with the

ETPL observer in [5]. This is given as Algorithm 2.

Algorithm 2 ADMM based Centralized Observer

1: Initialize τ > 0 and collect measurements from time t0 to

t0 + τ − 1
2: Initialize t = t0 + τ , λ0, ρ > 0, rt−1 and z̃(t− 1)
3: while rt−1 ≥ α do

4: Time Update: z̃T (t) = Āz̃(t− 1) +Ny(t)
5: Initialize k = 1, rt = rt−1

6: while rt ≥ (1− ν)rt−1 do

7: z̃k = argmin
z̃=(x̃,Ẽ)

‖Ẽ‖1 + (λk−1)T (Qz̃ − Ȳ ) + ρ
2‖Qz̃ −

Ȳ ‖22
8: λk = λk−1 + ρ(Qz̃k − Ȳ )
9: rt = ‖Qz̃k − Ȳ ‖2

10: k = k + 1
11: end while

12: z̃(t) = z̃k−1, λ0 = λk−1

13: t = t+ 1
14: end while

We consider the system in (11) with initial state x[0] =
[0.5453, 0.6888, 0.1474, 0.7776, 0.3991, 0.8983]T . The third

and fourth sensors are attacked. Penalty parameter ρ is chosen

as 1 for Algorithm 2. Figure 6 shows the evolution of the error

in state estimate for both the algorithms. It can be observed

that our algorithm converges significantly faster.

IV. CONCLUSION

In this paper, we addressed the problem of designing a

distributed observer for the state estimation of a discrete

time LTI system under sparse sensor attack. An algorithm

based on ADMM was proposed, for the update of each local

observer, by which a network of observers were able to

asymptotically estimate the system state using each of their

limited, corrupt measurements and by communication with

their neighbours. The proposed algorithm was adapted to solve

the DSSE problem and also design a centralized observer. The

performance was compared with other algorithms in literature

for a well-studied system. As future work, adoption of event

triggering techniques to reduce the number of communications

among agents and distributed observer design under attack for

directed networks could be of interest.
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