
Discrete-Time High Order Tuner With A

Time-Varying Learning Rate∗

Yingnan Cui†and Anuradha M. Annaswamy

Abstract

We propose a new discrete-time online parameter estimation algorithm that combines two
different aspects, one that adds momentum, and another that includes a time-varying learning
rate. It is well known that recursive least squares based approaches that include a time-varying
gain can lead to exponential convergence of parameter errors under persistent excitation, while
momentum-based approaches have demonstrated a fast convergence of tracking error towards zero
with constant regressors. The question is when combined, will the filter from the momentum
method come in the way of exponential convergence. This paper proves that exponential con-
vergence of parameter is still possible with persistent excitation. Simulation results demonstrated
competitive properties of the proposed algorithm compared to the recursive least squares algorithm
with forgetting.

1 Introduction

An essential part of any adaptive control algorithm is reliable, fast online parameter estimation [1,2].
Beyond the basic gradient descent method, a large amount of works have focused on proposing provably
stable, more efficient algorithms for online parameter estimation in adaptive control [3–7].

It is well known that the introduction of a time-varying learning rate leads to exponential learning
of the parameters in the presence of persistent excitation. Both recursive least squares (RLS) and
RLS with forgetting have been frequently adopted for parameter estimation [8]. This idea of adopting
time-varying learning rate has also led to some major breakthroughs in the optimization community.
AdaGrad, for example, adapts the learning rate to the adjustment of parameters, applying larger
updates for infrequently adjusted parameters and smaller updates for frequently adjusted parameters
[9]. AdaDelta adopts an exponential decaying average of the past gradients to address AdaGrad’s
aggressive, monotonically decaying learning rate [10].

Yet another recent set of results that leads to accelerated performance, such as fast reduction of a
loss function, is through the addition of momentum. It is a well observed fact that gradient descent
method often performs badly around saddle points and local optima [11], and provides a convergence
rate in O(1/k), where k is the iteration number. In contrast, Nesterov’s acceleration, which adopts the
idea of momentum, is a method that helps accelerate gradient descent and can lead to a convergence
rate of O(1/k2) when the loss function is smooth [12]. In problems of parameter estimation, it has
been shown more recently that momentum-based methods, also known as high-order tuners (HT), can
lead to acceleration even with time-varying regressors if the loss is strongly convex [4].

In real-time systems, it is of paramount importance to have both acceleration in performance, i.e.
in a fast decrease of the loss function, and in learning, i.e. fast convergence of the parameter estimates
to their true values. The question therefore is if HT can be combined with time-varying learning rates
and lead to both accelerated performance and accelerated learning. Since HT includes an additional
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filter, it needs to be ensured that the filtering action does not compromise the property of fast learning
in the presence of time-varying gains. In this paper, we show that is not the case and that persistent
excitation guarantees exponential convergence of the parameter estimates to the true value.

The specific HT that we consider is that based on Heavy Ball method (HB) that is proposed by
Polyak [13]. We add a time-varying gain matrix in addition to the momentum term that is present
in the HB method. Through careful adjustment of the time-varying gain matrix, we show that the
gain matrix remains bounded, does not go to zero with persistent excitation, and that the parameter
estimates converge to their true values exponentially. This is the central contribution of this paper.
All results are in the context of a nonlinear ARMA model with unknown parameters that are to be
estimated.

Section 2 states the problem we want to solve. Section 3 presents the algorithm. We discuss
stability properties of the algorithm in section 4 and show numerical simulations in section 5. Section
6 summarizes the paper and discusses future works.

2 Problem Statement

We consider a class of discrete-time nonlinear plant models of the form

yk = −
n∑
i=1

a∗i yk−i +

m∑
j=1

b∗juk−j−d +

p∑
`=1

c∗`f`(yk−1, . . . , yk−n, uk−1−d, . . . , uk−m−d), (1)

where a∗i , b
∗
j and c∗` are unknown parameters that are constant and need to be identified, and d is

a known time-delay. The function f` is an analytic function and is assumed to be such that the
system in (1) is bounded-input-bounded-output (BIBO) stable. Denote zk−1 = [yk−1, . . . , yk−n]> and
vk−d−1 = [uk−1−d, . . . , uk−m−d]

>. We rewrite (1) in the form of a linear regression

yk = φ>k θ
∗, (2)

where φk = [z>k−1, v
>
k−d−1, f1(z>k−1, v

>
k−d−1), . . . , fp(z

>
k−1, v

>
k−d−1)]> is a regressor determined by exoge-

nous signals and θ∗ = [a∗1, . . . , a
∗
n, b
∗
1, . . . , b

∗
m, c

∗
1, . . . , c

∗
` ]
> is the underlying unknown parameter vector.

We propose to identify the parameter θ∗ as θk using an estimator

ŷk = φ>k θk, (3)

which leads to a prediction error
ey,k = φ>k θ̃k, (4)

where ey,k = ŷk − yk is the output prediction error and θ̃k = θk − θ∗ is the parameter error. The

goal of parameter identification is to design an iterative procedure such that the parameter error ‖θ̃k‖
converges to zero exponentially fast.

The iterative procedure for estimating the parameters is based on a squared loss function,

Lk(θk) =
1

2
e2
y,k =

1

2
θ̃>k φkφ

>
k θ̃k, (5)

where the subscript k in Lk denotes kth iteration. In the literature, a normalized gradient descent
algorithm has been shown to be stable although having a slow convergence rate [2]

θk+1 = θk − α
∇Lk(θk)

Nk
, 0 < α < 2, (6)

where Nk is a normalizing signal and is defined as Nk = 1 + ‖φk‖2.
The following definitions will be utilized for proving the main results.



Definition 2.1. The regressor φk is said to satisfy the persistent excitation (PE) condition over an
interval ∆T , if for all k ≥ 0,

ε1I ≤
k−1∑

i=k−∆T

φiφ
>
i ≤ ε2I. (7)

Definition 2.2 (From [14]). For any fixed p ∈ [1,∞), a sequence of scalars ξ = {ξ0, ξ1, . . .} is defined
to belong to `p if

‖ξ‖∞ ≡

(
lim
k→∞

k∑
i=0

‖ξi‖p
)1/p

<∞. (8)

When p =∞, ξ ∈ `∞ if
‖ξ‖`∞ ≡ sup

i≥0
‖ξi‖ <∞ (9)

Let k ≥ 0 and consider the following time-varying dynamic system

xk+1 = f(k, xk), (10)

where xk ∈ D, k ≥ 0, D is an open set such that 0 ∈ D, f : N × D → Rn is continuous and for all
k ∈ N, f(k, 0) = 0. The following definition and theorem of uniform global exponential stability is
modified from [15, Page 783-785].

Definition 2.3 (Uniform global exponential stability). The origin in (10) is uniformly globally expo-
nentially stable if there exist scalars c1 > 0 and c2 > 1 such that ‖xk‖ ≤ c1‖x0‖ exp(−c−1

2 k), for all
x0 ∈ Rn.

Theorem 2.1. If there exist a continuous function V : N+ × D → R and positive constants ᾱ, β̄, γ̄
such that

ᾱ‖x‖2 ≤ V (k, x) ≤ β̄‖x‖2, (k, x) ∈ N+ ×D, (11)

∆V ≤ −γ̄‖x‖2, (k, x) ∈ N+ ×D, (12)

then the origin in (10) is uniformly globally exponentially stable.

3 The Algorithm

The Heavy Ball method, initially proposed in [13], achieves acceleration by adding a momentum term
in addition to normalized gradient descent method

θk+1 = θk − γ̄
∇Lk(θk)

Nk
+ β̄(θk − θk−1), (13)

where γ̄ is the learning rate constant and β̄ is a constant that controls the momentum. In this work, we
consider a time-varying matrix Fk as an alternative to the constant γ̄ in an effort to not only achieve
fast convergence of the output error to zero but also have parameter error θ̃k to zero. We propose the
resulting algorithm as

ϑk+1 = ϑk − Fk
∇Lk(θk+1)

Nk
, (14)

θk+1 = θk − β(θk − ϑk), (15)

where Nk = 1 + ηφ>k Fk−1φk and Fk is updated as

Fk = λ

(
Fk−1 − κ

Fk−1φkφ
>
k Fk−1

Nk

)
. (16)



In (14), (15) and (16), λ, κ, β and η ≥ κ are positive hyperparameters whose bounds will be defined
later. The update of Fk is similar to the covariance matrix update in recursive least squares (RLS)
algorithm with forgetting [2] but differs in the choice of the normalization and in the update of Fk.
The main contribution of this paper is to show that the algorithm in (14)-(16) results in exponential
convergence under PE.

4 Stability Analysis

In this section, we show that the algorithm in (14), (15) and (16) guarantees exponential convergence
for suitable choices of the hyperparameters λ, κ, β and η. Let

µ = min{c1, c2}, (17)

where

c1 =

(
1− 1

λ

)
F−1

max ≥ 0, (18)

c2 =

{
1− (1− β)2

[
1

λ
+

κ

λ(η − κ)
+

4λ

η2

]}
F−1

max ≥ 0, (19)

and Fmax is the upper bound of Fk under the persistent excitation in Definition 2.1. When λ = 1,
there is no forgetting in Fk and from (16), Fk ≤ Fk−1. Therefore Fmax = σmax{F0}. When λ > 1, the
following lemma gives the upper bound for Fk.

Lemma 4.1. When the regressor φk satisfies PE condition in Definition 2.1, the hyperparameters

in (13), (14) and (15) satisfy κε1(λ−1)
λ(λ∆T−1)

> (η − κ) maxi ‖φi‖2 and F0 ≤ Fmax

λ∆T−1 I, there exists F−1
max =

κε1(λ−1)
λ(λ∆T−1)

− (η − κ) maxi ‖φi‖2 ∈ R+ such that Fk ≤ FmaxI for all k ≥ 0.

Proof. Denote ∆max = 1 + (η − κ)Fmax maxi ‖φi‖2. From (16), for all k ≥ 0, F−1
k ≤ λF−1

k+1 and

φkφ
>
k /∆max ≤ λF−1

k /κ. Since F0 ≤ Fmax

λ∆T−1 I, Fk ≤ FmaxI for all 0 ≤ k ≤ ∆T − 1. For all k ≥ ∆T ,
apply the PE definition, we obtain

ε1I

∆max
≤

k−1∑
i=k−∆T

φiφ
>
i

∆max

≤ λ

κ
(1 + λ+ · · ·+ λ∆T−1)F−1

k−1

≤ λ

κ

λ∆T − 1

λ− 1
F−1
k−1

Therefore F−1
k−1 ≥ F−1

maxI for all k ≥ ∆T .

Remark 1. Due to the differences in the update of the learning rates between our algorithm and RLS,
certain constraints on the hyperparameters have to be assumed for proof of the upper bound of Fk.
This is mainly due to the choice of the denominator Nk in (16).

When λ = 1, it can be shown that under PE Fk → 0 as k →∞. The following lemma gives a lower
bound on Fk under PE when λ > 1.

Lemma 4.2. When the regressor φk satisfies PE condition in Definition 2.1, there exists Fmin ∈ R+,
where F−1

minI = F−1
∆T−1 + κε2I

λ(1−1/λ∆T )
, such that Fk ≥ Fmin for all k ≥ 0.



Proof. From (16), F−1
k ≤ λF−1

k+1, therefore for all k ≥ ∆T ,

F−1
k ≤ 1− 1/λ

1− 1/λ∆T

k+∆T−2∑
i=k−1

F−1
i+1

≤ 1− 1/λ

1− 1/λ∆T

(
1

λ

k+∆T−2∑
i=k−1

F−1
i +

κ

λ
ε2I

)

≤ 1− 1/λ

1− 1/λ∆T

(
1

λk

∆T−1∑
i=0

F−1
i +

κ

λ

1− 1/λk

1− 1/λ
ε2I

)

≤ λ∆T−kF−1
∆T−1 +

κ

λ

1− 1/λk

1− 1/λ∆T
ε2I

≤ F−1
∆T−1 +

κε2I

λ(1− 1/λ∆T )

= F−1
minI

Remark 2. When λ > 1, from the expressions of Fmax and Fmin, we can observe that Fmax and ε1 are
inversely correlated, Fmin and ε2 are inversely correlated. In the presence of weak excitation signals,
Fmax increases and can potentially become infinite, which is similar to the covariance matrix update
in RLS with forgetting.

The following theorem states accelerated learning properties of the proposed algorithm, and corre-
sponds to the main result of this paper.

Theorem 4.3. With λ ≥ 1, κ < 2λ, 0 < β < 2 and η ≥ max
{
λ(κ+2λ)+λ

√
5κ2−4λκ+4λ2

2λ−κ , 4λ(1−β)2

λ−(1−β)2

}
, the

update law in (14), (15) and (16) will result in (i) ϑk − θ∗ ∈ `∞, θk − ϑk ∈ `∞, and (ii) ‖ϑk − θ∗‖2 +
‖θk − ϑk‖2 ≤ exp(−µk)V0, where µ is defined in (17).

Proof. Applying matrix inversion lemma to (16), we obtain

F−1
k =

1

λ
F−1
k−1 +

κ

λ

φkφ
>
k

Nk − κφ>k Fk−1φk
(20)

Consider the candidate Lyapunov function

Vk = (ϑk − θ∗)> F−1
k−1 (ϑk − θ∗) + (θk − ϑk)>F−1

k−1(θk − ϑk) (21)

The increment ∆Vk := Vk+1 − Vk may be expanded as

∆Vk

= (ϑk+1 − θ∗)>F−1
k (ϑk+1 − θ∗) + (θk+1 − ϑk+1)>F−1

k (θk+1 − ϑk+1)

− (ϑk − θ∗)>F−1
k−1(ϑk − θ∗)− (θk − ϑk)>F−1

k−1(θk − ϑk)

=

[
ϑk − θ∗ − Fk

∇Lk(θk+1)

Nk

]>
F−1
k

[
ϑk − θ∗ − Fk

∇Lk(θk+1)

Nk

]
+

[
θk − β(θk − ϑk)− ϑk + Fk

∇Lk(θk+1)

Nk

]>
F−1
k

[
θk − β(θk − ϑk)− ϑk + Fk

∇Lk(θk+1)

Nk

]
− (ϑk − θ∗)>F−1

k−1(ϑk − θ∗)− (θk − ϑk)>F−1
k−1(θk − ϑk)

= (ϑk − θ∗)>F−1
k (ϑk − θ∗) + (1− β)2(θk − ϑk)>F−1

k (θk − ϑk)



− 2

Nk
(ϑk − θ∗)>∇Lk(θk+1) +

2(1− β)

Nk
(θk − ϑk)>∇Lk(θk+1)

+
2

N 2
k

[∇Lk(θk+1)]
>
Fk∇Lk(θk+1)

− (ϑk − θ∗)>F−1
k−1(ϑk − θ∗)− (θk − ϑk)>F−1

k−1(θk − ϑk)

=
1

λ
(ϑk − θ∗)>F−1

k−1(ϑk − θ∗) +
κ

λ[1 + (η − κ)φ>k Fk−1φk]
(ϑk − θ∗)>φkφ>k (ϑk − θ∗)

+
(1− β)2

λ
(θk − ϑk)>F−1

k−1(θk − ϑk) +
κ(1− β)2

λ[1 + (η − κ)φ>k Fk−1φk]
(θk − ϑk)>φkφ

>
k (θk − ϑk)

− 2

Nk
(ϑk − θ∗)>∇Lk(θk+1) +

2(1− β)

Nk
(θk − ϑk)>∇Lk(θk+1)

+
2

N 2
k

[∇Lk(θk+1)]
>
Fk∇Lk(θk+1)

− (ϑk − θ∗)>F−1
k−1(ϑk − θ∗)− (θk − ϑk)>F−1

k−1(θk − ϑk)

Now substitute ∇Lk(θk+1) = φkφ
>
k θ̃k+1 into the above, we get

∆Vk =
1

λ
(ϑk − θ∗)>F−1

k−1(ϑk − θ∗) +
κ

λ[1 + (η − κ)φ>k Fk−1φk]
‖(ϑk − θ∗)>φk‖2

+
(1− β)2

λ
(θk − ϑk)>F−1

k−1(θk − ϑk) +
κ(1− β)2

λ[1 + (η − κ)φ>k Fk−1φk]
‖(θk − ϑk)>φk‖2

− 2

Nk
(ϑk − θ∗)>φkφ>k θ̃k+1 +

2(1− β)

Nk
(θk − ϑk)>φkφ

>
k θ̃k+1

+
2

N 2
k

[∇Lk(θk+1)]
>
Fk∇Lk(θk+1)

− (ϑk − θ∗)>F−1
k−1(ϑk − θ∗)− (θk − ϑk)>F−1

k−1(θk − ϑk)

Since θ̃k+1 = θk+1 − ϑk + ϑk − θ∗ = (1− β)(θk − ϑk) + (ϑk − θ∗),

∆Vk =
1

λ
(ϑk − θ∗)>F−1

k−1(ϑk − θ∗) +
κ

λ[1 + (η − κ)φ>k Fk−1φk]
‖(ϑk − θ∗)>φk‖2

+
(1− β)2

λ
(θk − ϑk)>F−1

k−1(θk − ϑk) +
κ(1− β)2

λ[1 + (η − κ)φ>k Fk−1φk]
‖(θk − ϑk)>φk‖2

− 2

Nk
‖(ϑk − θ∗)>φk‖2 −

2(1− β)

Nk
(ϑk − θ∗)>φkφ>k (θk − ϑk)

+
2(1− β)2

Nk
‖(θk − ϑk)>φk‖2 +

2(1− β)

Nk
(θk − ϑk)>φkφ

>
k (ϑk − θ∗)

+
2

N 2
k

[∇Lk(θk+1)]
>
Fk∇Lk(θk+1)

− (ϑk − θ∗)>F−1
k−1(ϑk − θ∗)− (θk − ϑk)>F−1

k−1(θk − ϑk)

=
1

λ
(ϑk − θ∗)>F−1

k−1(ϑk − θ∗) +
κ

λ[1 + (η − κ)φ>k Fk−1φk]
‖(ϑk − θ∗)>φk‖2

+
(1− β)2

λ
(θk − ϑk)>F−1

k−1(θk − ϑk) +
κ(1− β)2

λ[1 + (η − κ)φ>k Fk−1φk]
‖(θk − ϑk)>φk‖2

− 2

Nk
‖(ϑk − θ∗)>φk‖2 +

2(1− β)2

Nk
‖(θk − ϑk)>φk‖2 +

2

N 2
k

θ̃>k+1φkφ
>
k Fkφkφ

>
k θ̃k+1

− (ϑk − θ∗)>F−1
k−1(ϑk − θ∗)− (θk − ϑk)>F−1

k−1(θk − ϑk)



Let Ak = 2λ
η2N 3

k
[(η − κ)Nk + κ](Nk − 1), the above becomes

∆Vk =
1

λ
(ϑk − θ∗)>F−1

k−1(ϑk − θ∗) +
κ

λ[1 + (η − κ)φ>k Fk−1φk]
‖(ϑk − θ∗)>φk‖2

+
(1− β)2

λ
(θk − ϑk)>F−1

k−1(θk − ϑk) +
κ(1− β)2

λ[1 + (η − κ)φ>k Fk−1φk]
‖(θk − ϑk)>φk‖2

− 2

Nk
‖(ϑk − θ∗)>φk‖2 +

2(1− β)2

Nk
‖(θk − ϑk)>φk‖2

+Ak
[
‖(θk − ϑk)>φk‖2 + ‖(ϑk − θ∗)φk‖2 + 2(θk − ϑk)>φkφ

>
k (ϑk − θ∗)

]
− (ϑk − θ∗)>F−1

k−1(ϑk − θ∗)− (θk − ϑk)>F−1
k−1(θk − ϑk)

Combining similar terms,

∆Vk =

(
1

λ
− 1

)
(ϑk − θ∗)>F−1

k−1(ϑk − θ∗) +

[
(1− β)2

λ
− 1

]
(θk − ϑk)>F−1

k−1(θk − ϑk)

+

{
κη

λ[(η − κ)Nk + κ]
− 2

Nk
+Ak

}
‖(ϑk − θ∗)>φk‖2

+

{
κη

λ[(η − κ)Nk + κ]
+

2

Nk
+Ak

}
(1− β)2‖(θk − ϑk)>φk‖2

+ 2Ak(1− β)(θk − ϑk)>φkφ
>
k (ϑk − θ∗)

=

(
1

λ
− 1

)
(ϑk − θ∗)>F−1

k−1(ϑk − θ∗) +

[
(1− β)2

λ
− 1

]
(θk − ϑk)>F−1

k−1(θk − ϑk)

+

{
κη

λ[(η − κ)Nk + κ]
− 2

Nk
+ 2Ak

}
‖(ϑk − θ∗)>φk‖2

+

{
κη

λ[(η − κ)Nk + κ]
+

2

Nk
+ 2Ak

}
(1− β)2‖(θk − ϑk)>φk‖2

−Ak[(ϑk − θ∗)>φk − (1− β)(θk − ϑk)>φk]2

From Cauchy-Schwarz inequality,

1

Nk
‖(θk − ϑk)>φk‖2 ≤

1

η
(θk − ϑk)>F−1

k−1(θk − ϑk)

Therefore

∆Vk ≤
(

1

λ
− 1

)
(ϑk − θ∗)>F−1

k−1(ϑk − θ∗) +

[
(1− β)2

λ
− 1

]
(θk − ϑk)>F−1

k−1(θk − ϑk)

+

{
κη

λ[(η − κ)Nk + κ]
− 2

Nk
+ 2Ak

}
‖(ϑk − θ∗)>φk‖2

+

{
κηNk

λ[(η − κ)Nk + κ]
+ 2 + 2AkNk

}
(1− β)2

η
(θk − ϑk)>F−1

k−1(θk − ϑk)

−Ak[(ϑk − θ∗)>φk − (1− β)(θk − ϑk)>φk]2

Since

κηNk
λ[(η − κ)Nk + κ]

≤ κη

λ(η − κ)
,

and

AkNk ≤
2λ

η



and also since λ ≥ 1, κ < 2λ, 0 < β < 2, η ≥ max
{
λ(κ+2λ)+λ

√
5κ2−4λκ+4λ2

2λ−κ , 4λ(1−β)2

λ−(1−β)2

}
, under

persistent excitation and from Lemma 4.1, we get

∆Vk ≤ −c1‖ϑk − θ∗‖2 − c2‖θk − ϑk‖2

−Ak[(ϑk − θ∗)>φk − (1− β)(θk − ϑk)>φk]2

≤ 0

where c1 and c2 are defined in (18)-(19). Thus ϑk − θ∗ ∈ `∞ and θk − ϑk ∈ `∞. Furthermore,

∆Vk ≤ −µ
(
‖ϑk − θ∗‖2 + ‖θk − ϑk‖2

)
,

where µ is defined in (17).
Since F−1

max(‖ϑk − θ∗‖2 + ‖θk − ϑk‖2) ≤ Vk ≤ F−1
min(‖ϑk − θ∗‖2 + ‖θk − ϑk‖2), and ∆Vk ≤

−µ
(
‖ϑk − θ∗‖2 + ‖θk − ϑk‖2

)
, according to Theorem 2.1, ‖ϑk − θ∗‖ → 0 and ‖θk − ϑk‖ → 0 globally

uniformly exponentially fast.

Remark 3. Theorem 4.3 states that under PE, both ‖ϑk − θ∗‖ and ‖θk − ϑk‖ go to zero exponentially
fast. Together, ‖ϑk − θ∗‖2 + ‖θk − ϑk‖2 goes to zero exponentially fast.

Remark 4. Note that directly applying the covariance matrix update in RLS with forgetting to (14)
leads to Lyapunov stability in only very limited cases such as when F0 is small. It is the introduction of
new hyperparameters in the update of Fk that gives more flexibility in the choice of hyperparameters
and made global uniform exponential convergence possible.

Remark 5. From (16) and (20), under weak or no excitation, the eigenvalues of Fk keep increasing.
To avoid the values of Fk getting too large when excitation is weak, a barrier function such as the
one in [16] can be applied to the update of Fk in (16), or a variable forgetting factor such as the one
introduced in [6] can be considered. A complete proof of this case is beyond the scope of this paper
and will be addressed in future work.

Remark 6. Exponential decrease of Vk still happens when there is no persistent excitation in the
regressors. However, that does not mean θk keeps converging to its true value. As an extreme example,
when φk = 0, Vk converges to zero exponentially, due to the exponential increase of Fk, but both θk
and ϑk are not changing.

Remark 7. As we will show in Section 5, the additional benefits of the proposed algorithm compared
to RLS with forgetting become apparent under weak excitation signals. The presence of momentum
helps boost both output error and parameter error convergence towards zero.

5 Numerical Simulations

A linear discrete system is given by

G(q) =
−0.6213q + 0.5839

q2 − 1.8403q + 0.8591
. (22)

The problem is that the coefficients of (22) are unknown and we use the proposed algorithm to identify
them.

5.1 Exponential Parameter Convergence Under Persistent Excitation

For identification, we apply the following signal as an input

u(k) = 1 + sin

(
3πk

4

)
+ sin

(
2πk

5

)
+ sin

(
πk

5

)
. (23)



The proposed algorithm in (13)-(15) is tested. The forgetting factor in our algorithm is set to be
λ = 1.01 and the initial values of the learning rate matrices are set to be 100I. The regressors and
estimated parameters are all set to be zero at the initial step. For the proposed algorithm, we set
β = 0.6, κ = 0.7 and η = 3.6, satisfying the assumptions in Theorem 4.3.

Figure 1 and Figure 2 show output errors and parameter errors in semi-log scale, respectively.
Figure 3 shows histories of the learning rate matrix in the algorithm. In this case, both the output
error and parameter error converge exponentially towards zero.

0 500 1000 1500

10-10

100

Figure 1: Output error ‖e‖ of the proposed algorithm under PE.

5.2 Comparison To RLS With Forgetting Under Increasingly Weaker Ex-
citation

RLS algorithm with a forgetting factor (RLS-FF) has been a widely used algorithm for online parameter
estimation, and is quite similar to the algorithm proposed in this paper. In RLS-FF, the parameters
are updated as follows [2]:

Pk =
1

λ̄
Pk−1 −

Pk−1φkφ
>
k Pk−1

λ̄+ φ>k Pk−1φk
, (24)

θk+1 = θk +
Pk−1φk(yk+1 − φ>k θk)

λ̄+ φ>k Pk−1φk
, (25)

where Pk is the covariance matrix and λ̄ is the forgetting factor. The difference between Pk in (24)
and Fk in (16) can be seen to be slight, but still makes a distinction as shown below. The other major
difference is an HT aspect (see (14)-(15)) in our algorithm, while a gradient descent idea is employed
in (25).

To demonstrate the added benefits of our algorithm compared to RLS with forgetting, we apply
the following signal as an input to the system in (22):

u(k) =



0 500 1000 1500
10-15

10-10

10-5

100

Figure 2: Parameter error ‖θ̃‖ of the proposed algorithm under PE.
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Figure 3: Learning rate matrix histories of the proposed algorithm.

1 + exp(−0.03k)

[
sin

(
3πk

4

)
+ sin

(
2πk

5

)
+ sin

(
πk

5

)]
which is an increasingly weaker excitation signal. To ensure a fair comparison, we choose hyperpa-
rameters and initial values to be λ̄ = 1/λ = 0.99, κ = 1.06, η = 3, β = 0.5, F0 = P0 = 100I and
θ0 = 0 such that the time-varying matrices in the two algorithms are roughly the same as k increases,
see Figure 4. Figure 5 shows the output error comparison and Figure 6 shows the parameter error
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Figure 4: Comparison of the max eigenvalues of time-varying gain matrices between the proposed
algorithm and RLS with forgetting.

comparison. Our algorithm demonstrates faster convergence results in this case. We speculate that
the main reason for this faster convergence is the momentum term in the HB method, which in turn
allows fast decrease in output error e. The time-varying Fk exploits persistent excitation and ensures
that this fast decrease in performance error translates into fast decrease in learning error.

6 Conclusion

We introduced an online parameter estimation algorithm that adopts the ideas of momentum and time-
varying learning rate. Under persistent excitation, the algorithm results in exponential convergence of
the parameter error towards zero. Compared to recursive least squares with a forgetting factor, the
presence of momentum in the update provides more flexibility. As shown in the simulation results,
this flexibility translates into better performance and learning when the excitation is weak. Similar to
recursive least squares with forgetting, one disadvantage of the algorithm is the unboundedness of the
learning rate matrix when persistent excitation is not assured. In that case, projection operators need
to be included to regulate the behavior of the learning rate matrix, which will be considered in future
works.
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