
Risk-Awareness in Learning Neural Controllers for Temporal Logic Objectives

Navid Hashemi∗, Xin Qin∗, Jyotirmoy V. Deshmukh∗,
Georgios Fainekos†, Bardh Hoxha†, Danil Prokhorov†, Tomoya Yamaguchi†

∗University of Southern California, †Toyota Motor North America R&D.

Abstract— In this paper, we consider the problem of synthe-
sizing a controller in the presence of uncertainty such that the
resulting closed-loop system satisfies certain hard constraints
while optimizing certain (soft) performance objectives. We
assume that the hard constraints encoding safety or mission-
critical task objectives are expressed using Signal Temporal
Logic (STL), while performance is quantified using standard
cost functions on system trajectories. In order to prioritize the
satisfaction of the hard STL constraints, we utilize the frame-
work of control barrier functions (CBFs) and algorithmically
obtain CBFs for STL objectives. We assume that the controllers
are modeled using neural networks (NNs) and provide an
optimization algorithm to learn the optimal parameters for
the NN controller that optimize the performance at a user-
specified robustness margin for the safety specifications. We use
the formalism of risk measures to evaluate the risk incurred by
the trade-off between robustness margin of the system and its
performance. We demonstrate the efficacy of our approach on
well-known difficult examples for nonlinear control such as a
quad-rotor and a unicycle, where the mission objectives for each
system include hard timing constraints and safety objectives.

I. INTRODUCTION

Safety-critical cyber-physical systems typically have hard
safety specifications that must be met by all system behaviors
to guarantee system safety. Additionally, due to efficiency
concerns, system designers often specify performance ob-
jectives, and seek controllers to optimize these objectives.
For example, consider an autonomous vehicle (AV) follow-
ing another vehicle. Here, the AV must satisfy the safety
specification of maintaining a minimum safe distance (dsafe)
from the lead vehicle. However, the system designer may
also want to minimize the travel time for the AV. Clearly, the
vehicle can be safe with a high robustness margin by driving
slower than required (maintaining distance much greater than
dsafe), but this leads to sub-optimal performance w.r.t. the
travel time objective. In many cases, designing for safety
and performance objectives may require design trade-offs.
While designers must never violate safety requirements in
favor of performance, they can trade-off the safety margin
against performance. This trade-off thus generates some risk:
from a safety perspective how risky is to use a controller that
may perform better with a lower safety margin? In this paper,
we systematically study this problem.

We assume that safety specifications are provided in a real-
time temporal logic such as Signal Temporal Logic (STL)
[1]. STL has recently emerged as a powerful specification
language in the various cyber-physical system applications
[2]–[5]. In STL properties, predicates over real-valued sig-
nals form atomic subformulae which can be combined using
Boolean logic connectives (such as and, or, not), and tem-
poral logic operators (such as eventually, always, until) that

are indexed by time intervals. For example consider a design
objective for a quadcopter: “The quadcopter must rendezvous
in one of two designated regions R1 or R2 exactly 5 to 7
minutes after takeoff before getting as close as possible to a
given target destination within 20 mins, while avoiding no-fly
zones.” Let p(·) denote the position of the quadcopter. The
hard safety specifications in this objective can be expressed
by the following STL formula:

ϕqc ≡ F[5,7](p ∈ R1 ∨ p ∈ R2)∧G[0,20](p 6∈ Rnofly) (1)

The soft specification requires us to minimize d(p, ptarget),
where d is a distance function and ptarget is the target. An
advantage of STL is that we can quantify how robustly a
given system behavior satisfies an STL property using the
notion of a robustness value [6]. Given a system behavior
and a specification, the robustness can be thought of as
a signed distance from the given system behavior to the
set of behaviors satisfying the property. We can say that a
system has safety robustness margin ρ∗ > 0 if the minimum
robustness value across all its system behaviors exceeds ρ∗.
We assume that a performance objective is specified as any
differentiable, real-valued function of the system behavior.

There has been considerable amount of research on the
problem of synthesizing controllers that guarantee STL
specifications. For example, using approaches from motion
planning [7], [8], model predictive control [3], [9], [10],
reactive synthesis [11], [12], reinforcement learning [13],
[14], imitation learning [15], [16], and through the use of
control barrier functions [17], [18]. Of these approaches,
the most relevant to our paper is the one based on using
control barrier functions (CBFs) [19]. A CBF describes a set
C such that for all system states sk ∈ C, there exists a control
action that ensures that sk+1 ∈ C. Control synthesis from
CBFs has seen a lot of recent work [19]–[21]. Recent work
has focused on CBFs that provide more general classes of
invariants such as timed reachability [22], [23] and fragments
of STL [24]. Prima facie, synthesis of controllers to satisfy
STL specifications may look like a well-studied problem,
however, several open problems remain:

1) Existing work may use hand-crafted CBFs over limited
fragments of STL [17]. E.g., existing work does not address
disjunctive STL specifications (see Eq. (1)).

2) Existing approaches do not consider the trade-off be-
tween safety and performance. A naı̈ve encoding of the
problem using Lagrange multipliers (as we show in this
paper) does not scale, thus demonstrating the need for a more
nuanced approach.

3) Many existing approaches focus on control of linear

ar
X

iv
:2

21
0.

07
43

9v
1

 [
ee

ss
.S

Y
]

 1
4

O
ct

 2
02

2

systems or simple nonlinear systems.
4) Existing work does not quantify risk awareness in

trading off safety margin versus system performance.
To address all the above challenges, we first formulate an

objective function that combines a CBF for STL-based safety
specifications with performance objectives using Lagrange
multipliers. We then demonstrate that the Lagrangian opti-
mization approach does not scale. We provide an algorithm
to automatically generate the CBF for the STL specification
directly from its structure. An important consideration in the
CBF is our use of the weighted average of subformula CBFs
to generate the CBF for a disjunctive formula.

Next, we introduce deep neural network (DNN)-based
controllers to handle arbitrary nonlinear systems. We train
the DNN-based controllers in a model-free fashion using a
stochastic gradient optimization method that uses adaptive
moments. Our optimization formulation is similar to the
problem of training a recurrent neural network (RNN),
where a cascade of NNs for a given temporal horizon is
trained. A crucial aspect of our optimization algorithm is
to explicitly guide the search for DNN parameters using a
robustness margin parameter: across iterations, the optimizer
alternates between satisfying safety and performance based
on the robustness of the DNN controller vis-à-vis the desired
robustness margin.

Finally, we evaluate the risk-awareness for each designed
controller by picking different robustness margins as de-
sign parameters. For this analysis, we utilize the recently
formulated risk-aware verification approach [25] that uses
risk measures such as value-at-risk and conditional-value-at-
risk. We demonstrate the efficacy of our method on several
examples of nonlinear systems and disjunctive STL safety
specifications.

II. BACKGROUND

In this section, we provide the mathematical notation and
the overall problem definition. We use bold letters to indicate
vectors and vector-valued functions, and calligraphic letters
to denote sets.

Let s and a respectively be the variables denoting state and
control inputs taking values from compact sets S ⊆ Rn and
a ⊆ Rm, respectively. We use the words action and control
input interchangeably. We consider discrete-time nonlinear
feedback control systems of the following form1:

sk+1 = f(sk,ak). (2)

Here, sk and ak denote the values of the state and action
variables at time k. We assume that the controller can be
expressed as a parameterized function πθ, where θ is a vector
of parameters that takes values in Θ. Later in the paper,
we instantiate the specific parametric form using a neural
network for the controller. Given a fixed vector of parameters
θ, the parametric control policy πθ returns an action ak as
a function of the current state sk ∈ S and time k ∈ Z≥0.
Namely,

ak = πθ(sk, k) (3)

1Our technique can handle continuous-time nonlinear systems as well.
This requires zero-order hold discretization of the dynamics in a sound way
to account for system behavior between sample times.

We will be using the terms controller and control policy
interchangeably. Under a fixed policy, Eq. (2) is an au-
tonomous discrete-time dynamical system. For a given initial
state s0 ∈ I ⊆ S and dynamics f , a system trajectory σθs0,f
is a function from [0,K] ⊂ Z>0 to S, where σθs0,f (0) = s0,
and for all k ∈ [0,K − 1], σθs0,f (k + 1) = f(sk, πθ(sk, k)).
To address modeling inaccuracies, we also consider bounded
uncertainty in the model. We denote F as the family of
possible realizations of the model f ∈ F . If the policy πθ is
obvious from the context, we drop the θ in the notation σθs0,f .
The main objective of this paper is to formulate algorithms
to obtain the optimal policy πθ? that guarantees the satisfac-
tion of certain task objectives and safety constraints while
optimizing performance rewards. In the rest of the section,
we formulate controller synthesis as an optimization problem
that we seek to solve. In order to define this formally, we
first introduce a performance reward, and then introduce task
objectives/safety constraints.

Performance reward. In practical control applications, it is
common to quantify the control performance using a state-
based reward function [26], [27]. Formally,

Definition 1 (Performance reward for a trajectory) Given a
reward function r : S → R, and discount factor, γ ∈ [0, 1],
the performance reward of a trajectory initiating in state s0,
under policy πθ is defined in Eq. (4).

J perf(s0, f , θ) =

K∑
k=0

γkr(σθs0,f (k)) (4)

Task Objectives and Safety Constraints. We assume that
task objectives or safety constraints of the system are spec-
ified in a temporal logic known as Signal Temporal Logic
(STL) [1]. STL formulas are defined using the following
syntax:

ϕ = h(s) ./ 0 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | FIϕ | GIϕ | ϕ1UIϕ2

(5)
Here, ./∈ {≤, <,>,≥}, h is a function from S to R, and I
is a closed interval [a, b] ⊆ [0,K].

Semantics. The formal semantics of STL over discrete-time
trajectories have been previously discussed in [6]. We denote
the formula ϕ being true at time k in trajectory σs0,f
by σs0,f , k |= φ. We say that σs0,f , k |= h(s) ./ 0 iff
h(σs0,f (k)) ./ 0. The semantics of the Boolean operations
(∧, ∨) follow standard logical semantics of conjunctions
and disjunctions respectively. For temporal operators, we say
σs0,f |= FIϕ is true if there is a time k ∈ I where ϕ is true.
Similarly, σs0,f |= GIϕ is true iff ϕ is true for all k ∈ I .
Finally, σs0,f |= ϕ1UIϕ2 if there is a time k ∈ I where ϕ2

is true and for all times k′ ∈ [0, k) ϕ1 is true.
In addition to the Boolean satisfaction semantics, STL also

permits quantitative satisfaction semantics. These are defined
with a robustness function ρ evaluated over a trajectory.
We omit the formal definition; it can be found in [1],
[6]. Intuitively, the robustness function defines robustness
of predicates at a given time k to be proportional to the

signed distance of the state variable value at k from the
set of values satisfying the predicate. Conjunctions and
disjunctions map to minima and maxima of the robustness
of their subformulas respectively. Temporal operators can be
viewed as conjunctions/disjunctions (or their combinations)
over time. We denote ρϕ(s0, f) as the robustness of the
trajectory starting in state s0 for the dynamics f . Note that
if ρϕ(s0, f) > 0 then it implies that σs0,f |= ϕ.

Risk Measures. We now introduce two commonly used risk
measures that are used to provide probabilistic guarantees of
system correctness. We assume that we are provided with a
probability distribution DF on model uncertainties (which
is a distribution on F), and DI to denote a distribution
over the initial states of the system. A risk measure at a
given threshold ε (denoted rε) is a quantity that can be used
to provide the following probabilistic guarantee about the
robustness of a given STL specification for the system:

s0 ∼ DI , f ∼ DF =⇒ Pr(−ρϕ(s0, f) ≤ rε) ≥ ε (6)

We now include two of the standard risk measures used
in literature from [28].

Definition 2 (Value-at-Risk (VaR), Conditional-Value-at-
Risk (CVaR) [28]) Let Z be shorthand for ρϕ(s0, f). The
Value-at-Risk is defined as follows:

VaRε(−Z) = inf
ζ∈R
{ζ | Pr(−Z ≤ ζ) ≥ ε} (7)

The conditional-value-at-risk is defined as follows:

CVaRε(−Z) = E
−Z≥VaRε(−Z)

[−Z] (8)

Essentially, both risk measures provide probabilistic upper
bounds on the negative of the robustness value, or provide
lower bounds on the actual robustness value, as is required
in risk-aware verification [25], [28].

Problem Definition. (i) Learn an optimal policy πθ(sk, k)
such that it satisfies a given STL formula ϕ while maximiz-
ing the performance reward defined in Eq. (4).

θ? = arg max
θ∈Θ

E
s0,f∼U

[
J perf(s0, f , θ)

]
s.t. ∀s0 ∈ I, ∀f ∈ F : σs0,f |= ϕ

(9)

(ii) Given a confidence threshold ε, we will compute
the risk measure rε that guarantees that: (s0, f) ∼ (DI ×
DF) =⇒ Pr(−ρϕ(s0, f) ≤ rε) ≥ ε.

III. CONTROL BARRIER FUNCTIONS FOR STL

In [17], the authors introduce time-varying control barrier
functions that are used to synthesize controllers that are
guaranteed to satisfy a given STL specification. We first
adapt this notion to discrete-time nonlinear systems.

Definition 3 (Discrete-Time Time-Varying Valid Control
Barrier Functions (DT-CBF)) Let b : S × [0,K] → R be a
function that maps a state and a time instant to a real value.
Let B(k) = {sk | b(sk, k) ≥ 0} be a time-varying set. The
function b is a valid, discrete-time, time-varying CBF if it

1 Function stl2cbf(ϕ,σs0,f)
2 case ϕ = h(s, k) ≥ 0
3 return µ(h(sk, k))
4 case ϕ = ϕ1 ∧ ϕ2

5 return
softmin (stl2cbf(ϕ1,σs0,f), stl2cbf(ϕ2,σs0,f); η)

6 case ϕ = ϕ1 ∨ ϕ2

7 return
wavg (stl2cbf(ϕ1,σs0,f), stl2cbf(ϕ2,σs0,f);β

ϕ)

8 case ϕ = G[a,b]ϕ
9 return softmin

k∈[a,b]
(stl2cbf(ϕ,σs0,f); η)

10 case ϕ = F[a,b]ϕ
11 return wavg

k∈[a,b]

(stl2cbf(ϕ,σs0,f);β
ϕ)

12 case ϕ = ϕ1U[a,b]ϕ2

13 for k ← a to b do
14

stl2cbf(ϕ, σs0,f)← wavg
(
stl2cbf(ϕ, σs0,f),

softmin
(
stl2cbf(ϕ2, σs0,f),

stl2cbf(G[0,k−1]ϕ1, σs0,f); η
)
;βϕ

)
15

16 return stl2cbf(ϕ, σs0,f)

Algorithm 1: Recursive formulation of CBFs based on an
STL formula

satisfies the following condition:

The zero levelsets of the CBF are an envelope for any
system trajectory, i.e.,

∀s0 ∈ I, ∀f ∈ F : ∀k ∈ [0,K] : σs0,f (k) ∈ B(k) (10)

DT-CBF for STL. We formulate CBFs in a recursive fashion
based on the formula structure. We describe the overall
procedure in Algorithm 1. Before we describe the actual
algorithm, we introduce some helper functions. The softmin
function defined in Eq. (11) has been used in the past by
several approaches [16], [29], [30] as a smooth approxi-
mation for computing the minimum of a number of real-
valued quantities. In our softmin function, we introduce
an additional parameter η > 1 that is used to control
the level of conservatism in the approximation. Intuitively,
as larger values of η reduce the conservatism but require
greater numeric precision. Later, we discuss how the softmin
function appears as a part of a cost function to be optimized;
we include η as a part of this optimization process.

softmin(v1, . . . , vk; η) = −1

η
ln

(
k∑
i=1

e−ηvi

)
(11)

We also define the weighted average function wavg. We

are interested in two different form of wavg presented in
Eq. (12) and Eq. (13); here β = (β1, . . . , βk).

wavg1(v1, . . . , vk;β) =

k∑
i=1

(
β2
i∑k

i=1 β
2
i

)
vi, (12)

wavg2(v1, . . . , vk;β) =

k∑
i=1

(
exp(βi)∑k
j=1 exp(βj)

)
vi, (13)

where the former is more accurate but the latter is more
efficient for gradient descent. Finally, we articulate useful
properties of softmin and wavg in Lemma 3.1.

Lemma 3.1: For all v1, . . . , vk ∈ R, and for η ∈ R>1, the
following are true:

(mini vi) ≥ softmin(v1, . . . , vk; η) (14)
(mini vi) ≤ wavg(v1, . . . , vk;β) ≤ (maxi vi) (15)

We can now describe Algorithm 1. The function bφ
computes the CBF w.r.t. either an atomic signal predicate or
a conjunction of atomic predicates. The CBF for an atomic
predicate φ of the form h(sk) > 0 is defined using a function
µ that ensures that µ(h(sk)) is positive if h(sk) is positive,
0 if it is zero and negative otherwise. The CBF of the
conjunction of two predicates is simply the softmin of the
CBFs of the conjuncts. In the function stl2cbf(ϕ, σs0,f),
we consider four cases. If ϕ is a formula of the form G[a,b]φ,
then we return the softmin of bφ(s`, `) for all ` ∈ [a, b]. If ϕ
is of the form F[a,b]φ, then we return the weighted average
of the CBFs at all time instants in [a, b]. For conjunctions
of either kinds of temporal formulas, we again return the
softmin and for disjunctions, we return the weighted average.
Note that the function stl2cbf can be invoked with a
concrete trajectory whereupon it returns a numeric value.
It can also be invoked with a symbolic trajectory (where the
symbols sk indicate the symbolic state at time k), whereupon
it returns a symbolic candidate CBF that is the smooth
robustness of the trajectory and is a guaranteed lower bound
for trajectory robustness ρϕ(s0, f).

Lemma 3.2: For any formula ϕ belonging to STL,
for a given trajectory σs0,f = s0, s1, . . . , sn, if
stl2cbf(ϕ, σs0,f) > 0, then σs0,f |= ϕ.

Proof: We can prove this recursively over the formula
structure and from the identities in Lemma (3.1). It is
necessary to mention if stl2cbf() < 0 it does not imply
the STL specifications are violated.

Example 1: Consider the STL specification in Eq. (16).(
F[1,10] (s ∈ E1) ∨ F[1,10] (s ∈ E2)

)
∧G[1,20] (s 6∈ E3) (16)

Let c2 = (2, 8), c1 = (5, 5), c3 = (8, 2) and r =
√

1.5. Then,
in Eq. (16), for i ∈ [1, 3]: Ei = (s− ci)>(s−ci) ≤ r. We de-
fine the CBF µ(sk ∈ E1) to be (1− e−((sk−c1)>(sk−c1)−r)).
For j = 2, 3, we define µ(sk ∈ Ej) to be r−(sk − cj)>(sk−
cj). Then, the CBF w.r.t. the formula can be computed using
Algorithm. 1.

IV. LEARNING-BASED CONTROL SYNTHESIS

We remark that the trajectory σs0,f is essentially a re-
peated composition of f and the neural controller. Thus,
we can compute the gradient of the performance costs and

STL objectives (as expressed by the CBF) with respect to
the controller parameters θ using standard backpropagation
methods for neural networks.

A. Training Neural Networks to satisfy specifications
We explain the procedure for training a neural controller

w.r.t. performance and safety specifications in algorithm 2.
The training algorithm aims to approximate the solution
of Eq. (9). Thus, the first step is to reformulate it free
from constraints. Algorithm 1 provides the smooth trajectory
robustness for a given STL formula ϕ. This robustness is a
function of the common variable η that is used by all softmin
functions, and the tuple of β variables for each subformula
ψ of a disjunctive formula (denoted βψ). In addition to the
neural network parameters θ, we also treat the variables η and
the sets {βψ} as decision variables in the training process.
The β variables are already unconstrained; however, η is
constrained: η > 1. To remove this constraint, we introduce
η = λ2 + 1, and use λ as a decision variable. We denote the
tuple of conjunctive variable (λ) and all disjunctive variables
(βψ) with v. We also denote this robustness with J STL that
is a function of tuple (s0, f , θ, v),

J STL(s0, f , θ,v) = stl2cbf(ϕ, σs0,f), v = ({βψ}, λ).
(17)

We also sample a batch Î of initial states uniformly from I
for training purposes.

The training algorithm is primarily inspired by the La-
grange multiplier technique that transforms a constrained
optimization to non-constrained,

J = max
θ,v

∑
s0∈Î,f∈F

(
J perf(s0, θ) + ωs0J STL(s0, θ,v)

)
.

(18)
First order optimality conditions guarantee that as long
as the Lagrange multipliers are positive, the cost as de-
fined using J STL is positive. This in turn guarantees
the satisfaction of STL specifications along the trajectory.
Since J STL(s0, f , θ,v) is highly non-convex, optimiza-
tion (18) is quite intractable and the solution may not
satisfy the KKT optimality condition [31]. However, the
main role of the Lagrange multipliers ωs0,f is to per-
form a trade-off between J STL and J perf and one of
the contributions of this work is to propose a training
process that focuses on applying this trade off. The train-
ing algorithm utilizes the gradients ∇θJ perf(s0, f , θ) and
∇θ,vJ STL(s0, f , θ,v) (obtainable from Automatic differen-
tiation package [32]). In case, the cost specified with J STL

is less than a user-specified threshold, then the algorithm in-
creases this with a wise selection between ∇θJ perf(s0, f , θ)
and ∇θ,vJ STL(s0, f , θ,v) . Otherwise, it increases the per-
formance with∇θJ perf(s0, f , θ). We call the mentioned user
specified threshold as robustness margin (denoted by ρ).

We now describe Algorithm 2. We use the variable i
to denote the iteration number during training. We use the
notation (θ,v)i to denote the value of θ and v at the
beginning of iteration i. We initialize (θ,v)0 randomly.

At the beginning of each training iteration, in
line 3 we sample f from F , then in lines (4-
6), for all states in Î, we calculate the gradients

Algorithm 2: Sampling based algorithm for training
the parameterized policy.

1 i← 0, Initialize (θ,v)0, Sample I to obtain Î
2 while true do
3 Sample f ∈ F
4 foreach s0 ∈ Î do
5 δ1(s0)← [∇θJ perf(s0, f , θ), 0]
6 δ2(s0)←

[∇θJ STL(s0, f , θ,v), ∇vJ STL(s0, f , θ,v)]

// get states with the best grad. values

7 b1, b2← arg max
s0∈Î

‖δ1(s0)‖2, arg max
s0∈Î

‖δ2(s0)‖2

8 d1, d2 ← δ1(b1), δ2(b2)
// candidate parameter updates

9 (θ1,v1)← (θ,v)i + Adam(d1)

10 (θSTL,vSTL)← (θ,v)i + Adam(d2)

11 (θ1,slow,v1,slow)← (θ,v)i + Adam(d1)/τ

12 Sample si0 from I
/* Pick update giving best tradeoff

between perf. and safety */

13 if J STL(si0, f , (θ,v)i) ≤ ρ then
14 if J STL(si0, f , θ1,v1) ≥ J STL(si0, f , (θ,v)i)

then
15 (θ,v)i+1 ← (θ1,v1)

16 else
17 (θ,v)i+1 ← (θSTL,vSTL)

18 else
19 (θ,v)i+1 ← (θ1,slow,v1,slow)

∇θJ perf(s0, f , θ), ∇vJ perf(s0, f , θ) (stored in δ1(s0)), and
∇θJ STL(s0, f , θ,v) ∇vJ STL(s0, f , θ,v) (stored in δ2(s0)).
Of these, note that ∇vJ perf(s0, f , θ) is 0. We then compute
the state b1 (resp. b2) for which the 2-norm of δ1(s0) (resp.
δ2(s0)) is the highest. The gradient values of the states b1
and b2 are respectively stored in d1 and d2 (Line 8).

The next step is to compute potential updates to the
parameter values θ and the STL parameters v (Lines 9-11).
Roughly, the values (θ1,v1) represent the update to (θ,v)i

using only the inclusion of gradient for performance cost in
Adam optimizer. The values (θSTL,vSTL) represent the up-
date only using the gradient of smooth trajectory robustness
in Adam optimizer. Finally, (θ1,slow,v1,slow) represents a
slower update with gradient of performance for some τ > 1.

Next, we sample a state si0 uniformly at random and use
it for cost computation. If J STL(si0, f , (θ,v)i) < ρ, i.e., our
user-provided robustness margin (Line 13), then we need
to take steps to increase the smooth trajectory robustness.
We consider two cases: (1) If using the update based on
the gradient of the performance cost improves the smooth
trajectory robustness, we choose this update as it allows us
to improve both performance and robustness, i.e., satisfaction
robustness (Line 15). (2) Otherwise, we use the update based

on the gradient of the smooth trajectory robustness J STL

(Line 17).
If J STL(si0, f , (θ,v)i) ≥ ρ, then we are robustly satis-

fying our STL constraints. In further quest to improve the
performance cost, we need to take care that we do not reduce
the robustness margin w.r.t. STL constraints. Hence, we use
a slower learning rate that takes smaller steps in trying to
improve the performance (Line 19).

Remark 1: Considering that this algorithm only focuses
on increasing J STL up to ρ ≥ 0, once the STL specification
is satisfied then it focuses on optimizing performance. In a
sense, this switching strategy plays a role similar to that of
Lagrange multipliers: performance cost is optimized only if
the robustness is above the user-provided threshold.

B. Risk estimation

The minimum number of samples to guarantee the con-
fidence on the verification results is proposed in [33]. We
generate N = 106 samples (s0, f) uniformly from (I ×
F) and simulate the corresponding trajectories σs0,f . We
compute the robustness ρϕ(s0, f) for every single trajectory
and calculate VaR through obtaining the ε ∗ 100 percentile
of the negation of the robustness values [34] and calculate
CVaR according to definition 2.

V. EXPERIMENTAL EVALUATION

A. Unicycle Dynamics

We demonstrate the efficacy of our technique on a nonlin-
ear unicycle model. We define the uncertainty for the initial
condition as:

I =
{
s0 | (x0, y0, α0) ∈ [0.6, 1.4]× [0.6, 1.4]×

[
2π
5 ,

3π
5

]}
The unicycle dynamics with uncertainties are defined as
follows,

xk+1

yk+1

αk+1

 =

(1 + δ)xk + vk/ωk (sin(αk + ωk)− sin(αk))
(1 + δ)yk + vk/ωk (cos(αk)− cos(αk + ωk))

(1 + δ)αk + ωk

 ,
(19)

where δ ∈ [−0.01, 0.01] and the control inputs, vk, ωk
are bounded: vk ∈ [0, 1], ωk ∈ [−0.5, 0.5]. To restrict
the controller in proposed bounds we fix the last hidden
layer of neural controller [sigmoid, tanh] and include it to
model. Thus, we reformulate the dynamics by replacing the
controllers with:

vk ← sigmoid(0.5a1(k)), a1(k) ∈ R
ωk ← 0.5 tanh(0.5a2(k)), a2(k) ∈ R

B. Quadrotor Dynamics

In another attempt we consider controlling a quadrotor
with uncertain dynamics. We define the uncertainty for the
initial condition as a spherical set, I = Br(c) with center,
c = [0.025, 0.025, 0, 0, 0, 0]> and radius r = 0.0125. The

Fig. 1: Figures (a) and (b) present the evolution of performance cost
(blue) vs trajectory robustness (green) over the training process of unicycle
dynamics for ρ = 0.5, 0.3 respectively. The horizontal axis is presented
in log form.

Fig. 2: Presents the evolution of performance cost (blue)
vs trajectory robustness (green) over the training process in
quadrotor example for ρ = 0.1. The horizontal axis is in log
form.

Example Training Validation

ρ τ Controller Activation Iterations Runtime Expected value Expected value
Dimension Function (secs) Performance J STL / ρϕ

Unicycle 0.3 1e2 [4,5,2,2] tanh 40000 1048 35.3430 0.6108 / 0.6109
Unicycle 0.5 1e2 [4,5,2,2] tanh 40000 1067 33.3528 0.8456 / 0.8518

Quadrotor 0.1 5e4 [7,10,3,3] tanh 10000 155 24.3024 0.6729 / 0.7516

TABLE I: Training and Validation Results

Example CBF for atomic propositions, bφi
(sk, k) Reward discount

φ1 : σs0(k) ∈ E1, k ∈ [1, 10] φ2 : σs0(k) ∈ E2, k ∈ [1, 10] φ3 : σs0(k) /∈ E3, k ∈ [1, 20]

Unicycle 1− 2
3 ((xk − 2)2 + (yk − 8)2) 1− 2

3 ((xk − 8)2 + (yk − 2)2) 1− exp(1− 2
3 ((xk − 5)2 + (yk − 5)2)) 10 exp

(
− (xk−8)2+(yk−8)2

36

)
0.9

Quadrotor 1− (x(k)−0.025)2+(y(k)−0.1)2+z(k)2

0.00023438 1− (x(k)−0.1)2+(y(k)−0.025)2+z(k)2

0.00023438 1− exp(1− (x(k)−0.0625)2+(y(k)−0.0625)2)+z(k)2

0.00023438) 10 exp
(
− (x(k)−0.1)2+(y(k)−0.1)2+(z(k)+0.0375)2

0.0056

)
0.9

TABLE II: Shows the CBFs and reward functions we utilize in training process.

Fig. 3: (a) Represents sample trajectories with the random initial value for θ, (b,c) respectively show sample trajectories for trained θ
with robustness margin ρ = 0.3 and 0.5. This figure clearly shows the trajectories shift towards the center of E1 when the robustness
margin ρ increases. For this simulation we sample 500 different (s0, f) uniformly at random from (I ×F) and simulate the trajectories.
The green plots satisfy the STL specifications while its darkness shows the level of performance. There exists 2 red trajectories in (b)
that are marginally violating the STL specs.

quadrotor also follows the following uncertain dynamics,
x(k + 1)
y(k + 1)
z(k + 1)
vx(k + 1)
vy(k + 1)
vz(k + 1)

 =

(1 + δ)x(k) + 0.05vx(k)
(1 + δ)y(k) + 0.05vy(k)
(1 + δ)z(k) + 0.05vz(k)

(1 + δ)vx(k) + 0.4905 tan(u1(k))
(1 + δ)vy(k)− 0.4905 tan(u2(k))
(1 + δ)vz(k) + 0.05(g − u3(k))

 ,
discretized with ZOH for timestep T = 0.05 sec. Here
δ ∈ [−0.01, 0.01] and the control inputs, u1(k) ∈
[−0.1, 0.1], u2(k) ∈ [−0.1, 0.1], u3(k) ∈ [7.81, 11.81]. The
parameter g = 9.81 is the gravity. To impose bounds on the
controller, like the Unicycle example, we fix the last hidden
layer of the neural controller, [tanh, tanh, tanh] and include

Confidence Unicycle Dynamics Quadrotor Dynamics

Threshold ρ = 0.3 ρ = 0.5 ρ = 0.1

ε −VaRε −CVaRε −VaRε −CVaRε −VaRε −CVaRε
0.95 0.246 0.132 0.540 0.417 0.527 0.455
0.98 0.133 0.036 0.421 0.311 0.452 0.395
0.99 0.059 -0.027 0.336 0.239 0.406 0.360
0.999 -0.133 -0.191 0.121 0.067 0.305 0.284

TABLE III: Risk measures with one million data points.

it in the model,

u1(k) ← 0.1 tanh(0.1a1(k)), a1(k) ∈ R
u2(k) ← 0.1 tanh(0.1a2(k)), a2(k) ∈ R
g − u3(k) ← 2 tanh(0.1a3(k)), a3(k) ∈ R

C. Results

The STL specifications for both examples are adopted
from [15] and are introduced in Eq. (16) (Example 1).
Regions E1, E2 and E3 for unicycle and quadrotor examples
are introduced in Fig 3 and Fig. 4 respectively. The unicycle
and quadrotor approaches to the target O = [8, 8]

>
, O =

[0.1, 0.1, −0.0375]
> respectively. They are planned to ap-

proach O with the highest possible level of performance (fast
and close) within K = 20 time steps. The reward function
and CBFs are defined in table II for both examples. We
train a controller to satisfy the performance and STL task for
unicycle and quadrotor dynamics. Table I shows the training
result for ρ = 0.3, 0.5 in unicycle and ρ = 0.1 in quadrotor
example. This table shows the trade-off between performance
and STL robustness for the unicycle example.

We utilized (12) and (13) in training the disjunctive param-
eters β for unicycle and quadrotor respectively. Fig. 5 shows
the evolution of disjunctive parameters over the training
process. Fig. 1 and 2 present the trade-off between the
performance cost J perf and trajectory robustness J STL

over the training process for both examples. Fig. 3 and
Fig. 4 present the simulation of trajectories for unicycle and
quadrotor examples, respectively.

Table III presents the results on probabilistic verifica-
tion or risk-analysis for the controllers. For the unicycle
dynamics, we can see that increasing the robustness margin
parameter ρ∗ leads to an increase in the (probabilistic) lower
bound on the robustness. Increasing the confidence level
reduces the probabilistic lower bound. In fact, at 99.9%
confidence, there is a risk of seeing system behaviors that
violate the specifications by a margin of 0.133. Similar risks
can be seen at the 99% and 99.9% confidence in the CVaR
values. Intuitively, table III matches our expectation that
controllers designed with higher robustness margin should
have lower risk of violating specifications (at the cost of
performance).

VI. CONCLUSION AND FUTURE WORK

In this work we propose the weighted average, a useful
tool to include disjunctive STL formula in the existent
soft constrained policy optimization techniques [17]. We
also utilize time dependent feedback policies that facilitates
control in presence of STL specifications. This enables us to

control the model with smaller neural networks. Non-convex
optimizations may be intractable for Lagrange multiplier
techniques. We address this problem with proposition of
a training algorithm that simulates the trade off between
objective and its constraints. We finally utilize this training
algorithm for non-convex policy optimization with respect to
STL specifications.
In the future, we will focus on improving the scalability
of the training process. The proposed recurrent structure
for feedback models suffers from vanishing or exploding
gradient issue. This results in inefficient training for long
trajectories and is due to its resemblance to RNN structures.
Thus we plan to include LSTM structure with introduction
of hidden states between feedback blocks in the recurrent
dynamic structure.

REFERENCES

[1] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in Proc. of FORMATS, 2004, pp. 152–166.

[2] Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam, “Fly-by-logic:
control of multi-drone fleets with temporal logic objectives,” in Proc.
of ICCPS, 2018, pp. 186–197.

[3] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in Proc. of CDC. IEEE, 2014, pp.
81–87.

[4] E. Bartocci, J. V. Deshmukh, A. Donzé, G. E. Fainekos, O. Maler,
D. Nickovic, and S. Sankaranarayanan, “Specification-based mon-
itoring of cyber-physical systems: A survey on theory, tools and
applications.” Springer, 2017.

[5] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-
learning for robust satisfaction of signal temporal logic specifications,”
in Proc. of CDC. IEEE, 2016, pp. 6565–6570.

[6] G. Fainekos and G. J. Pappas, “Robustness of temporal logic speci-
fications,” in Formal Approaches to Testing and Runtime Verification,
ser. LNCS, vol. 4262. Springer, 2006, pp. 178–192.

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[8] Y. Shoukry, P. Nuzzo, I. Saha, A. L. Sangiovanni-Vincentelli, S. A.
Seshia, G. J. Pappas, and P. Tabuada, “Scalable lazy smt-based motion
planning,” in Proc. of CDC. IEEE, 2016, pp. 6683–6688.

[9] S. S. Farahani, V. Raman, and R. M. Murray, “Robust model predictive
control for signal temporal logic synthesis,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 323–328, 2015.

[10] E. A. Gol, M. Lazar, and C. Belta, “Temporal logic model predictive
control,” Automatica, vol. 56, pp. 78–85, 2015.

[11] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia,
“Reactive synthesis from signal temporal logic specifications,” in Proc.
of HSCC, 2015, pp. 239–248.

[12] L. Lindemann, G. J. Pappas, and D. V. Dimarogonas, “Reactive and
risk-aware control for signal temporal logic,” IEEE Transactions on
Automatic Control, 2021.

[13] L. Berducci, E. A. Aguilar, D. Ničković, and R. Grosu, “Hierarchical
potential-based reward shaping from task specifications,” arXiv e-
prints, pp. arXiv–2110, 2021.

[14] X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with
temporal logic rewards,” in Proc. of IROS. IEEE, 2017, pp. 3834–
3839.

[15] W. Liu, N. Mehdipour, and C. Belta, “Recurrent neural network
controllers for signal temporal logic specifications subject to safety
constraints,” IEEE Control Systems Letters, vol. 6, pp. 91–96, 2021.

[16] S. Yaghoubi and G. Fainekos, “Worst-case satisfaction of stl spec-
ifications using feedforward neural network controllers: A lagrange
multipliers approach,” ACM Transactions on Embedded Computing
Systems, vol. 18, no. 5S, 2019.

[17] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1,
pp. 96–101, 2018.

[18] ——, “Robust control for signal temporal logic specifications using
discrete average space robustness,” Automatica, vol. 101, pp. 377–387,
2019.

Fig. 4: (a) Represents 500 trajectories generated with trained controller parameters θ for ρ = 0.1. For this simulation, we sample 500
different (s0, f) uniformly at random from (I × F) and simulate the trajectories. The darkness of trajectories is corresponding to their
level of performance. There is no trajectory violating the STL specification. (b,c,d) shows the projection of trajectories on X-Y, Y-Z and
X-Z planes respectively. (e) Represents simulated sampled trajectories for the initial value of θ that we utilized in training process.

(a) (b)

Fig. 5: (a,b) shows the evolution of disjunctive parameters over the training process in unicycle (ρ = 0.3) and quadrotor (ρ = 0.1)
examples, respectively. The log-scale horizontal axis indicates number of training iterations. There are three disjunctive formulas in (16):
F[1,10](s ∈ E1), (that needs parameters β1, . . . , β10) in its CBF, F[1,10](s ∈ E2) (using parameters β11, . . . , β20 and the disjunction
between these formulas that uses parameters β21 and β22. (a) Parameter β22 converging to zero indicates that the system chooses to
satisfy the first subformula thus the variables β11, . . . , β20 are not relevant and not plotted. The β7 parameter has the largest value,
indicating the majority of the trajectories are in region E1 at time k = 7.(b) Here, exp(β21) converging to zero implies that β1, . . . , β10
are not relevant. As the parameters β19, β20 are nonzero, the majority of trajectories are in E2 at k = 9 and the others at k = 10.

[19] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of con-
trol barrier functions for safety critical control,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 54–61, 2015.

[20] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
arXiv preprint arXiv:1903.11199, 2019.

[21] P. Nilsson and A. D. Ames, “Barrier functions: Bridging the gap
between planning from specifications and safety-critical control,” in
Proc. of CDC, 2018, pp. 765–772.

[22] K. Garg, E. Arabi, and D. Panagou, “Prescribed-time convergence
with input constraints: A control lyapunov function based approach,”
in Proc. of ACC, pp. 962–967.

[23] K. Garg and D. Panagou, “Control-lyapunov and control-barrier func-
tions based quadratic program for spatio-temporal specifications,” in
Proc. of CDC, 2019, pp. 1422–1429.

[24] L. Lindemann and D. V. Dimarogonas, “Control barrier functions
for signal temporal logic tasks,” IEEE Control. Syst. Lett.,
vol. 3, no. 1, pp. 96–101, 2019. [Online]. Available: https:
//doi.org/10.1109/LCSYS.2018.2853182

[25] P. Akella, M. Ahmadi, and A. D. Ames, “A scenario approach
to risk-aware safety-critical system verification,” arXiv preprint
arXiv:2203.02595, 2022.

[26] B. D. Anderson and J. B. Moore, Optimal control: linear quadratic
methods. Courier Corporation, 2007.

[27] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[28] L. Lindemann, L. Jiang, N. Matni, and G. J. Pappas, “Risk of
stochastic systems for temporal logic specifications,” 2022. [Online].
Available: https://arxiv.org/abs/2205.14523

[29] Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control
using the smooth robustness of temporal logic,” in Proc. of CCTA.
IEEE, 2017, pp. 1235–1240.

[30] K. Leung, N. Aréchiga, and M. Pavone, “Backpropagation for para-
metric stl,” in 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2019, pp. 185–192.

[31] S. Boyd and L. Vandenberghe, “Convex optimization,” 2004.
[32] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,

Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” 2017.

[33] M. C. Campi and S. Garatti, “The exact feasibility of randomized so-
lutions of uncertain convex programs,” SIAM Journal on Optimization,
vol. 19, no. 3, pp. 1211–1230, 2008.

[34] R. T. Rockafellar and S. Uryasev, “Optimization of conditional value-
at-risk,” Journal of Risk, vol. 2, pp. 21–41, 2000.

https://doi.org/10.1109/LCSYS.2018.2853182
https://doi.org/10.1109/LCSYS.2018.2853182
https://arxiv.org/abs/2205.14523

	I Introduction
	II Background
	III Control Barrier Functions for STL
	IV Learning-based Control Synthesis
	IV-A Training Neural Networks to satisfy specifications
	IV-B Risk estimation

	V Experimental Evaluation
	V-A Unicycle Dynamics
	V-B Quadrotor Dynamics
	V-C Results

	VI Conclusion and Future work
	References

