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Distributed Design of Controllable and Robust Networks using

Zero Forcing and Graph Grammars

Priyanshkumar I. Patel∗, Johir Suresh∗, and Waseem Abbas

Abstract— This paper studies the problem of designing net-
works that are strong structurally controllable, and robust
simultaneously. For given network specifications, including the
number of nodes N , the number of leaders NL, and diameter
D, where 2 ≤ D ≤ N/NL, we propose graph constructions
generating strong structurally controllable networks. We also
compute the number of edges in graphs, which are maximal
for improved robustness measured by the algebraic connectivity
and Kirchhoff index. For the controllability analysis, we utilize
the notion of zero forcing sets in graphs. Additionally, we
present graph grammars, which are sets of rules that agents
apply in a distributed manner to construct the graphs men-
tioned above. We also numerically evaluate our methods. This
work exploits the trade-off between network controllability and
robustness and generates networks satisfying multiple design
criteria.

Index Terms— Strong structural controllability, zero forcing
sets, network design, network robustness.

I. INTRODUCTION

The distributed design of networks satisfying multiple

design criteria is generally a challenging problem. From a

network control perspective, controllability and robustness

to failures are two of the vital design attributes. Network

controllability is the ability to manipulate and drive the net-

work to desired configurations (states) due to external control

signals (inputs), which are injected into the network through

a subset of nodes called leaders (e.g., [1]). Network robust-

ness has many interpretations, which can be categorized as

functional and structural robustness [2]. The former is related

to the network’s functioning in the presence of noise and

perturbations and later describes the ability to preserve the

network’s structural attributes despite node/edge failures [3],

[4]. Interestingly, these two interpretations are related to each

other in the context of network control systems and can be

measured through common graph metrics, such as algebraic

connectivity and Kirchhoff index Kf [5]–[7].

It is well studied that network controllability and robust-

ness can be conflicting, i.e., for a given set of network

parameters, networks requiring few leaders for complete

controllability might exhibit poor robustness properties [8],

[9]. For instance, for a given number of nodes N , path graphs

require a single leader node for complete controllability;

however, they have minimum robustness. Similarly, fixing

N and diameter D, networks with maximum robustness (as

measured by the algebraic connectivity and Kf ) are clique

chains [5], [6]; however, they require many leaders (N −D)
for complete controllability [8]. So, an important issue is,
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how can we design networks in a distributed manner such

that networks can be controlled with few leaders (inputs)

and exhibit high robustness simultaneously? This question

becomes more intriguing when the network controllability is

considered in the strong structural sense due to computational

complexity issues (e.g., [10]–[13]). Network controllabil-

ity generally depends on the edge weights; however, edge

weights are inconsequential in the case of strong structural

controllability (SSC), which essentially depends on the net-

work structure and the leader set.

In this paper, we propose distributed designs of networks

that are strong structurally controllable for a given number of

nodes N and leaders NL. At the same time, these networks

are robust due to maximal edge sets. For distributed construc-

tion of such networks, we utilize graph grammars [14]–[16].

To ensure SSC, we use the relationship between the notion

of zero forcing in graphs and SSC [17], [18]. Our proposed

designs are flexible in the sense that for fixed N and NL, they

can produce graphs with varying graph parameters such as

the diameter D and robustness, as measured by the Kirchhoff

index and algebraic connectivity of graphs while ensuring

that graphs remain strong structurally controllable. Thus, the

network constructions exploit the trade-off between network

controllability and robustness. Our main contributions are

summarized below:

• For given N (total number of nodes) and NL (number

of leaders), we construct strong structurally controllable

graphs with NL leaders and maximal edge sets. For

SSC, we utilize the idea of zero forcing sets.

• Our designs enable generating graphs with diameter D,

where 2 ≤ D ≤ N/NL, while ensuring that each such

graph has a maximal edge set and is strong structurally

controllable with NL leaders. Since network diameter

influences its robustness, we can attain networks with

various robustness. We also numerically evaluate the

robustness of such graphs using algebraic connectivity

and Kirchhoff index metrics.

• Furthermore, we provide distributed ways to construct

the above graphs using graph grammars, a set of rules

that nodes implement locally to achieve the desired

network structure. Finally, we numerically evaluate the

proposed schemes.

Our problem setting is similar to the one in [8], albeit

with some significant differences. We use a simpler zero

forcing method to analyze strong structural controllability

in networks, whereas [8] utilizes graph distances for this

purpose. Additionally, for given N and NL, the graphs

generated in [8] are of fixed diameter. We provide multiple
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constructions enabling graphs with different diameters and

robustness. Finally, we provide distributed constructions of

networks using graph grammars, which are not in [8].

The rest of the paper is organized as follows: Section II

presents preliminary ideas and sets up the problem. Sec-

tion III is the main section providing graph constructions

for given specifications along with the controllability and

robustness analysis of the constructions. Section IV provides

graph grammars to construct the proposed graphs in a

distributed manner. Finally, Section V concludes the paper.

II. PRELIMINARIES

A. Notations

We consider a multi-agent network system as an undirected

graph G = (V , E). The vertex set V = {v1, v2, . . . , vN}
represents the agents (nodes), and the edge set E ⊆ V × V
represents the edges between nodes. We denote the edge

between nodes u and v by an unordered pair (u, v). Node u
is a neighbor of node v if (u, v) ∈ E . The number of nodes

in the neighborhood of u is the degree of u. The distance

between nodes u and v, denoted by d(u, v), is the number of

edges in the shortest path between u and v. The diameter of

G, denoted by D, is the maximum distance between any two

nodes in G. A path of length k is a sequence of nodes that

form a subgraph of G, Pk :=< u0, u1, u2, · · · , uk >, where

(ui, ui+1) ∈ E , ∀i ∈ {0, · · · , k − 1}. The leader - follower

system associated with graph G is defined by the following

state-space representation:

ẋ(t) = Mx(t) +Bu(t). (1)

Here, x(t) ∈ ℜn is the state of the system and M ∈ M(G)
is a system matrix, where M(G) is a family of symmetric

matrices associated with an undirected graph G defined

below.

M(G) = {M ∈ ℜn×n|M = MT , and for i 6= j,

Mij 6= 0 ⇔ (i, j) ∈ E(G)}.
(2)

Note that M(G) includes the adjacency and Laplacian ma-

trices of G. In (1), u(t) ∈ ℜm is the input signal, and

B ∈ ℜn×m is the input matrix containing information about

the leader nodes through which inputs are injected into the

network. For a set of leaders labelled {ℓ1, ℓ2, . . . , ℓm} ⊆ V ,

we define the input matrix as follows.

Bij =

{

1 if vi = ℓj,

0 otherwise.
(3)

We are interested in designing networks with the above

dynamics that are strong structurally controllable and max-

imally robust. Next, we discuss the controllability and ro-

bustness measures we utilize to evaluate our graphs.

B. Network Controllability Measure

For the strong structural controllability analysis, we utilize

the notion of zero forcing sets in graphs. Considering a

system defined on graph G, the pair (M,B) is a controllable

pair if there exists an input u(t) that could drive the system

from any initial state x(t0) to any final state x(tf ) in a given

time period t = tf − t0.

Definition (Strong Structural Controllability (SSC)) A given

graph G with a set of leader nodes {ℓ1, ℓ2, . . . , ℓm} ⊆ V , and

the corresponding B matrix is said to be strong structurally

controllable if and only if (M,B) is a controllable pair

∀M ∈ M.

In [17], Monshizadeh et al. provides a graph-theoretic

characterization of SSC in networks in terms of zero forcing

in graphs explained below.

Definition (Zero Forcing Process) Consider a graph G =
(V , E) whose nodes are initially colored either black, or

white. If a node v ∈ V is black and has exactly one white

neighbor u, then v forces u to change its color to black. Zero

forcing is a process of applying this color change rule until

no black node exists with only one white neighbor.

For a given set of initial black nodes, there can be multiple

ways to execute the zero forcing process; however, the set

of black nodes at the end of the process will always be the

same [19]. If there is a unique way of proceeding the zero

forcing process in a graph G, we call it a unique zero forcing

process. Moreover, the set of black nodes obtained at the end

of the zero forcing process is called the derived set.

Definition (Zero Forcing Set (ZFS)) Consider a graph

G = (V , E) with an initial set of black nodes (leaders)

{ℓ1, ℓ2, . . . , ℓm} ⊆ V . Let V ′ be the derived set at the of

the zero forcing process, then {ℓ1, ℓ2, . . . , ℓm} is a ZFS if

and only if V ′ = V .

Figure 1 illustrates the idea of a ZFS.

ZF Process

u1

u2 u3

u4

u5 u6

u1

u2 u3

u4

u5
u6

Fig. 1: Set of nodes {u1, u2, u3} is a ZFS as the correspond-

ing derived set V ′ contains all the nodes in the graph.

Monshizadeh et al. [17] characterizes the minimum leader

set for SSC in terms of ZFS of the network graph, showing

that the network is strong structurally controllable if and

only if the leader set is a ZFS. In this work, since we aim

to design strong structurally controllable networks with NL

leaders, the leader sets will always be zero forcing sets of

the corresponding graphs.

C. Network Robustness Measures

To analyze the robustness of the proposed graphs, we use

widely used metrics, algebraic connectivity and Kirchhoff

index. Algebraic connectivity of a graph G (also known as

the Fiedler value) is the second smallest eigenvalue of its

Laplacian matrix. A higher value of algebraic connectivity

indicates higher robustness.



Kirchhoff index of a graph G, denoted as Kf(G), is

Kf (G) = N
N∑

i=2

1

λi

, (4)

where N is the total number of nodes in the graph (G) and

λ2 ≤ λ3 ≤ · · ·λN are the eigenvalues of the Laplacian of

the graph (G). Robustness and the value of Kirchhoff index

of a graph are inversely related, i.e., lower Kirchhoff index

implies higher robustness, and vice versa [4], [5], [7]. We

note that network robustness, as measured by both of these

measures, is a monotonically increasing function of edge

additions [5], [6]. Thus, adding edges to a graph improves

its robustness to failures and noise.

III. DESIGNING CONTROLLABLE AND ROBUST

NETWORKS

In this section, we will design strong structurally control-

lable and maximally robust networks for a given number of

nodes N and number of leaders NL. We will present three

designs, each with different characteristics and performances.

In the next section, we provide a distributed way of construct-

ing the proposed graphs; wherein all the nodes follow a set

of local rules (graph grammars) to make connections with

their neighbors to achieve the desired graphs.

A. Network Design 1

We know that a graph with a single leader can only be

completely controllable if the graph is a path graph with the

leader node being one of the end nodes. Therefore, given

NL number of leaders, and N = (NL ×D) number of total

nodes, where D is the diameter, we construct a graph G1

with these specifications. For G1, we create NL path graphs,

each with a diameter D−1. Also, the end node of each path

is a leader. We then make all leaders pair-wise adjacent, thus,

inducing a complete graph among leaders. We describe this

construction formally below. Consider the following vertex

set for graph G1:

V = {ℓi} ∪ {ui,j},

where i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , D − 1}.

Vertices with label {ℓ1, ℓ2, . . . , ℓk} are leaders and the rest

{u1,1, . . . , ui,j, . . . , uk,D−1} are followers. Connect the ver-

tices in the following manner:

• All the leaders ℓi have a link between them and generate

a complete graph among them.

• For all i ∈ {1, 2, . . . , k}, there exists a link between ℓi
and ui,1.

• For all i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , D − 2},

there is a link between ui,j and ui,j+1.

Figure 2 illustrates the construction of Graph G1.

The graph constructed above is strong structurally control-

lable with diameter D − 1. Note that we can add edges to

the graph G1 without affecting both, SSC of the graph and

the distances between leaders and remaining nodes. Adding

edges is useful to increase the graph robustness.

Adding Maximum Edges to Graph G1: Adding edges

reduces Kirchhoff index and increases the algebraic connec-

tivity, thus, improving robustness [5]. We refer the maximally

ℓ1

ℓ2

ℓk−1

ℓk

u1,1

u2,1

uk,1

uk−1,1

u1,2

u2,2

uk−1,2

uk,2

u1,D−2

u2,D−2

uk−1,D−2

uk,D−2

u1,D−1

u2,D−1

uk−1,D−1

uk,D−1

Fig. 2: Graph G1 with NL number of leaders, D diameter

and N = (NL ×D) nodes.

robust graph constructed from G1 as Ḡ1. Note that the

addition of edges must not deteriorate SSC. We propose the

following addition of edges for the construction of Ḡ1:

• All the leaders ℓi has an edge with uq,1 ∀q < i, where

i, q ∈ {1, 2, . . . , k}.

• Similarly, all the nodes in ui,j has an edge with nodes

in uq,j+1 ∀q < i, where i, q ∈ {1, 2, . . . , k} and j ∈
{1, 2, . . . , D − 2}.

• Also, for a fixed j, all nodes in ui,j generate a complete

graph, where i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , D −
1}

Figure 3 illustrates the construction of Ḡ1 from G. The newly

added edges are shown in blue and orange.

ℓ1

ℓ2

ℓk−1

ℓk

u1,1

uk,1

u1,2

uk,2

u1,D−2

uk,D−2

u1,D−1

u2,D−1

uk−1,D−1

uk,D−1

Fig. 3: Graph Ḡ1 with maximal edges.

Lemma 3.1: The leader set {ℓ1, ℓ2, · · · , ℓNL
} is a ZFS

of Ḡ1 (described above) with N nodes and D diameter.

Proof: We observe that in Ḡ1, all leaders, except ℓ1,

have more than one white neighbor in their neighborhoods.

So, only ℓ1 can initiate the zero forcing process. Leader (ℓ2)

adjacent to ℓ1 has exactly two white neighbors one of which,

u1,1, it shares with ℓ1. Consequently, the third leader has

exactly three white neighbors and shares one white neighbor

each with ℓ1 and ℓ2. This continues for all NL number of

leaders.

As discussed, ℓ1 starts the zero forcing process by coloring

its only white neighbor, u1,1. As a result, ℓ2 is now left

with only one white neighbor, u2,1, and thus ℓ2 colors it.

Similarly, ℓ3 is now left with only one white neighbor that

is u3,1 because the other two white neighbors u2,1 and u1,1,

which it had in common with ℓ2 and ℓ1, respectively, are

now colored. This continues until all the nodes in ui,1 are

colored. Note that there exists a complete graph between

all the followers in ui,1, therefore, u1,1 will only be able

to color u1,2 once all the other nodes in ui,1 are colored.

We also know that the nodes in ui,1 and in ui,2 have similar

connections between them as ℓi and ui,1. So, it follows from



above discussion that the process continues until all the nodes

are colored, implying that the given leader set is a ZFS of

Ḡ1, which is the desired claim.

Lemma 3.2: For fixed number of nodes N and diameter

D, a graph of construction Ḡ1 has maximal edges, i.e., by

adding any additional edge the leader set {ℓ1, ℓ2, · · · , ℓNL
}

will no longer be a ZFS of Ḡ1.

Proof: Let us show that the above statement holds for a

subgraph Ḡ′
1 containing only the leader set and the first set of

followers ui,1 and all the edges between them. As mentioned

in Lemma 3.1 the zero forcing process in Ḡ1 is unique and

it propagates from first follower u1,1 to all the nodes in ui,1

till uk,1, in this particular order. Now, considering Ḡ′
1, we

observe that adding any edge would disturb this zero forcing

process because an additional edge would result in some

leader having more than one white neighbor at a particular

time step. This results in the leader set not being a ZFS of

the subgraph Ḡ′
1.

Next, we assume that the above argument is true for all

nodes in Ḡ1 until the set of nodes in ui,D−2. This means that

all the nodes in ui,D−2 are colored. Since the nodes in ui,D−1

are further ahead in the zero forcing process than nodes in

ui,D−2, we can say that nodes in ui,D−2 are not dependent

on nodes in ui,D−1 for getting colored. Furthermore, we

notice that edge set between ui,D−2 and ui,D−1 is same

as that between the leader set and ui,1. We use the same

reasoning as above to show that we cannot add any other

edge between these two node sets without disrupting the

zero forcing process, implying that not all the nodes will

get colored. Therefore, by induction, adding any extra edge

in Ḡ1 would result in the leader set not being a ZFS, which

is the desired claim.

Remark 3.3: Graph Ḡ1 is same (isomorphic) as the graph

produced in [8]. We call the graph constructed in [8] as

GPMI . It is interesting to note that even though we con-

structed Ḡ1 using the zero forcing method, we arrive at the

same result, whereas [8] uses the distance-based approach in

their design.

In Ḡ1, the diameter is N/NL, i.e., by changing the total

number of nodes N and the number of leaders NL, the

diameter varies. So, the interesting question is, can we design

graphs with improved robustness while constraining/fixing

the diameter without deteriorating controllability? In the

following subsection, we answer this by designing strong

structurally controllable graphs Ḡ2 with diameter D = 2, N
total nodes, NL ≥ 2 leaders, and improved robustness.

B. Network Design 2

We construct a maximally robust graph Ḡ2 by fixing

NL ≥ 2 and adding NF = (N − NL) number of other

nodes (followers) one-by-one to the graph. This design is

different from Ḡ1 in that the maximum distance between any

two nodes is two. Next, we explain the construction of Ḡ2.

Consider the following vertex set.

V = {ℓi} ∪ {uj},

where i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . ,m}, where

k = NL and m = NF . Vertices labeled {ℓ1, ℓ2, . . . , ℓk}
are leaders and {u1, u2, . . . , um} are followers.

We connect the vertices as follows,

• Leader ℓ1 and followers {u1, u2, . . . , um} are connected

through a path graph starting from ℓ1.

• All the leaders ℓi are connected with all the nodes in

uj , where i ∈ {2, . . . , k} and j ∈ {1, . . . ,m}

Figure 4 illustrates the construction of Ḡ2.

ℓ1ℓ2ℓk−1ℓk

u1u2u3um−1um

Fig. 4: Graph Ḡ2 with maximal edges.

Lemma 3.4: For a graph Ḡ2 (as described above) with N
number of nodes, the proposed leader set {ℓ1, ℓ2, · · · , ℓNL

}
is a ZFS.

Proof: From the construction of Ḡ2, we observe that all

leaders, except ℓ1, are pair-wise adjacent to all the followers,

uj ∀j. This means that except ℓ1, all leaders will generally

have more than one white neighbor. Since ℓ1 has only one

white neighbor u1, it will start the zero forcing process by

coloring u1.

Next, the rest of the leaders will still have multiple white

neighbors in their neighborhoods. However, u1 has only

one white neighbor u2. That will allow u1 to color u2.

Subsequently, u2 will also have only one white neighbor u3.

This stands true for rest of the follower nodes in uj , where

1 ≤ j ≤ (N −NL). We note that as a result of this unique

zero forcing process, the entire graph gets colored, implying

that the leader set is a ZFS of Ḡ2.

Lemma 3.5: For fixed number of nodes N and given

leader set {ℓ1, ℓ2, · · · , ℓNL
} the graph generated using the

construction Ḡ2 has maximal edge set, i.e., by adding any

additional edge the leader set {ℓ1, ℓ2, · · · , ℓNL
} will no

longer be a ZFS of Ḡ2.

Proof: As shown in Lemma 3.4, the Graph Ḡ2 has a

unique zero forcing process. There are two types of edges

that we can add to Ḡ2. They include,

• leader to follower (non-leader) edges, i.e., (ℓ1, uj),

where j 6= 1, and

• follower to follower edges, i.e., (uj, uj′ ), where j 6= j′.

Both categories of edges belong to a unique zero forcing

process. Adding an edge between any two non-adjacent

nodes in this unique zero forcing process will not allow the

preceding node to continue the zero forcing process since it

will now have more than one white neighbor. This means that

the addition of any edge other than the ones already existing

in Ḡ2 will result in a graph for which the given leader set is

not a ZFS.

It is interesting to note that, the above two constructions,

Ḡ1 and Ḡ2 generate equal number of edges for the same

parameters (N and NL). The number of edges in Ḡ1 is,



EḠ1
= D ×

NL × (NL − 1)

2
︸ ︷︷ ︸

E1

+(D − 1)×
NL × (NL + 1)

2
︸ ︷︷ ︸

E2

.

(5)

There are D cliques Ḡ1, each of size NL. E1 is the total

number of edges in these cliques, and E2 is the number of

remaining edges in Ḡ1. Similarly, the number of edges in Ḡ2

is given by,

EḠ2
= (N −NL)× (NL − 1)

︸ ︷︷ ︸

E3

+N −NL
︸ ︷︷ ︸

E4

+
NL × (NL − 1)

2
︸ ︷︷ ︸

E5

.
(6)

Here, E3 is the number of edges between NL − 1 leaders

and (N − NL) followers, E4 is the number of edges in

the path induced by leader ℓ1 and followers, and E5 is the

number of edges in the complete graph induced by the leader

nodes. Now, simplifying (5) and (6) gives

EḠ1
= EḠ2

= NL ×

(

N −
(NL + 1)

2

)

. (7)

As discussed previously, the diameter of Ḡ1 depends on

NL and N , whereas the diameter of Ḡ2 is constant regardless

of NL and N . So, next, we explore a graph construction that

combines Ḡ1 and Ḡ2 and affords the option of choosing the

diameter D of the graph. Some applications might require

particular diameter values, and by combining Ḡ1 and Ḡ2,

we can have a graph where the diameter D is also a design

parameter. We will see in Subsection III-D that in many cases

Ḡ2 provide higher robustness than Ḡ1, but require the same

amount of leaders to achieve SSC. So, it is advantageous to

have Ḡ1 combined with Ḡ2 for achieving higher robustness

while meeting a design requirement in terms of the diameter.

C. Network Design 3 (Combining Designs 1 and 2)

In this section, we construct a graph that is a combination

of Ḡ1 and Ḡ2, meaning partial nodes follow the rules of

construction of Ḡ1 and rest of them follow the construction

rules of Ḡ2 (as discussed in the previous subsections). We

define the construction with three different parameters, N
(total number of nodes), NL(number of leaders), and D
(diameter of the graph). For these given parameters, we

construct a graph Ḡ3 that is strong structurally controllable,

maximally robust and has equal number of edges as Ḡ1 or

Ḡ2 for the same N and NL. Let V̄ = V̄1 ∪ V̄2, be the set of

all the nodes in Ḡ3, where V̄1 and V̄2 are the subset of nodes

that follow construction of Ḡ1 and Ḡ2, respectively. Then, the

graph Ḡ3 is constructed as follows:

• The leader set {ℓ1, ℓ2, · · · , ℓNL
} ⊂ V̄1.

• Let the end nodes of the construction of Ḡ1, i.e., ui,D−2,

where 1 ≤ i ≤ NL, be the pseudo-leaders of Ḡ2.

• Let ui,D−2 = V̄1∩V̄2, where 1 ≤ i ≤ NL, then the total

number of nodes become |V̄| = |V̄1|+ |V̄2|− (V̄1∩V̄2).

• The first pseudo-leader of Ḡ2, i.e.,u1,D−2, belongs to

the same zero forcing path as of the first leader (ℓ1) in

Ḡ1.

• The edges between nodes x and y, where x ∈
{ui,D−2, ∀i} and y ∈ {ui,D−2, ∀i}, are according

to the construction of Ḡ1. Similarly, the edges between

nodes in {ui,D−2, ∀i} and {vj}, where 1 ≤ j ≤
(|V̄2| −NL), are according to the construction of Ḡ2.

Figure 5 illustrates two examples of the construction of

Ḡ3 for N = 12 and NL = 3. The diameters of graphs in (a)

and (b) are 3 and 4, respectively.

ℓ1

ℓ2

ℓ3

u1,1

u2,1

u3,1

v1

v2

v3

v4

v5

v6

(a) D = 3

ℓ1

ℓ2

ℓ3

u1,1

u2,1

u3,1

v1

v2

v3

u1,2

u2,2

u3,2

(b) D = 4

Fig. 5: Examples of network design 3 (Ḡ3).

We make the following observations from the examples:

• Both graphs have the same number of edges, which is

also equal to the number of edges in graphs generated

according to Ḡ1 and Ḡ2 for the same N and NL.

• Both graphs are strong structurally controllable with the

given leader sets.

• In general, changing |V̄1| and |V̄2| will result in graphs

ranging from diameter D = 2 to diameter of Ḡ1 for the

same N and NL, i.e.,

2 = D(Ḡ2) ≤ D(Ḡ3) ≤ D(Ḡ1) = N/NL. (8)

Thus, if |V̄1| = NL, Ḡ3 = Ḡ2, and similarly, if |V̄2| =
NL, Ḡ3 = Ḡ1.

D. Numerical Evaluation and Robustness Analysis

Here, we numerically evaluate the performance of graphs

Ḡ1, Ḡ2, Ḡ3, in terms of robustness and controllability for

N = 60. First, we analyze the algebraic connectivity of the

proposed graphs while varying the number of leaders NL.

From Figure 6a, we observe that the algebraic connectivity

of Ḡ2 is higher than Ḡ1 for any given NL. This implies that

robustness of Ḡ2, as measured by the algebraic connectivity,

is always better than Ḡ1. Also, the algebraic connectivity of

Ḡ3 always lies between Ḡ2 and Ḡ1.

Figure 6b plots the robustness performance of the pro-

posed graphs in terms of the Kirchhoff index. Interestingly,

for a lower number of leaders, the Kirchhoff index of Ḡ2

is significantly lower (indicating improved robustness) than

that of Ḡ1. However, for a higher number of leaders, this

trend changes, and Ḡ1 has a lower Kirchhoff index than Ḡ2,

though the difference between the values remains relatively

small.

Finally, as discussed in the previous subsection, with Ḡ3

we can generate graphs whose diameters are lower bounded
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Fig. 6: Algebraic connectivity and Kirchhoff index as a

function of number of leaders in Ḡ1, Ḡ2 and Ḡ3.

by Ḡ2 and upper bounded by Ḡ1. Similarly, the algebraic

connectivity and Kirchhoff index for Ḡ3 are also bounded

by those of Ḡ1 and Ḡ2. This is shown in Figure 6a and

Figure 6b as a gradient between robustness values of Ḡ1

and Ḡ2. This reveals an important design trade-off, i.e., for a

specific diameter requirement, we can utilize the design Ḡ3

while affording more robustness than Ḡ1 for the same N and

NL.

IV. DISTRIBUTED CONSTRUCTION USING GRAPH

GRAMMARS

This section provides a distributed way of constructing the

proposed graphs using graph grammars. Graph grammars

are a set of local rules determining interactions between

nodes to eventually achieve the desired graph [14]–[16]. In

this method of construction, we provide each node with a

label and define a set of rules that dictate how the nodes

interact with each other. Moreover, the rules describe how

a subset of nodes can create or remove edges amongst

them and update their labels accordingly. We define a set

of rules R = {r0, r1, . . . , rn} through which nodes modify

connections with other nodes and update their labels. A rule

ri of the form Gk ⇀ Gk+1 is applicable to a subgraph

Gk representing the state of the subsystem at time step k.

After applying appropriate rules, the new subgraph Gk+1

is obtained from Gk. The graph grammars for Ḡ1 and Ḡ2

are denoted as R1 and R2, respectively. We note that all

the nodes are initially labeled α except a seed node, which

is labeled S1. Here, we classify graph grammars into two

parts,

• Π1 −→ Rules that create edges required for zero forcing

and also creates complete graph between leaders.

• Π2 −→ Rules that maximize the edge set without com-

promising SSC.

It is important to note that even though the grammars are

split into two parts, they can function concurrently with each

other. Application of a specific rule only depends on the

availability of nodes suitably labelled to apply the rule. Next,

we present the graph grammars and also demonstrate their

application through examples.

A. Graph Grammars 1 (R1)

In this subsection we provide the distributed rules R1 that

create graph Ḡ1 (as discussed in Section III-A) for given

number of nodes N and leaders NL.

Π1 :

(r0) Si α ⇀ Li Si+1 1 ≤ i < NL

(r1) Si ⇀ Li i = NL

(r2) Li α ⇀ Li γi,1 ∀ i
(r3) γi,j α ⇀ βi,j γi,j+1 ∀ i, 1 ≤ j < D − 1
(r4) γi,j ⇀ βi,j j = D − 1
(r5) Li Lj ⇀ Li Lj ∀ i, j
Π2 :

(r6) Li βj,1 ⇀ Li βj,1 ∀ j ≤ i
(r7) βi,j βk,j+1 ⇀ βi,j βk,j+1 ∀j, ∀ k < i
(r8) βi,j βk,j ⇀ βi,j βk,j ∀ i, k and for each j

Π1 creates NL number of path graphs, each of size D with

the first node being a leader. It also creates a complete graph

between all the leader nodes, as in G1. Π2 maximally adds

edges to the graph while ensuring that the graph remains

strong structurally controllable through the leader nodes.

Figure 7(a) illustrates an example of the execution of R1

to generate Ḡ1 for NL = 3 and N = 12.

B. Graph Grammars 2 (R2)

Here, we provide the set of distributed rules R2 that create

graph Ḡ2 (as discussed in Section III-B) for given number

of nodes N and leaders NL.

Π1 :

(r0) Si α ⇀ Li Si+1 1 ≤ i < NL

(r1) Si ⇀ Li i = NL

(r2) L1 α ⇀ L1 β1

(r3) βi α ⇀ γi βi+1 1 ≤ i < (N −NL)
(r4) βi ⇀ γi i = (N −NL)
(r5) Li Lj ⇀ Li Lj ∀ i, j
Π2 :

(r6) Li γi ⇀ Li γi ∀ i 6= 1
Π1 creates a path graph of size N − NL + 1, where the

first node is the first leader. It also creates a complete graph

between all the leader nodes. On the other hand, Π2 adds

maximal edges to the graph without affecting the SSC. An

example of Ḡ2 with NL = 3 and N = 12 constructed using

R2 is shown in Figure 7(b).

V. CONCLUSION

In this work, we presented multiple ways of construct-

ing graphs that are strong structurally controllable, and

maximally robust. Using the notion of zero forcing, we

exploited the relation between controllability and robustness.

We provided three different network designs for the given

number of nodes N , the number of leaders NL, and the

diameter D. These designs exhibited different properties

in terms of robustness and diameter; however, they all

were strong structurally controllable with given parameters.

For arbitrary N and NL, our proposed graphs Ḡ1 and Ḡ2

were of diameters N/NL and 2, respectively. On the other

hand, the network design Ḡ3 enabled selecting any diameter

value between 2 and N/NL, thus, generating graphs with

different robustness. Moreover, we provided distributed ways

of constructing these graphs using graph grammars. These

local rules determined the interactions between nodes, and

created desired graphs Ḡ1 and Ḡ2 in a decentralized manner.
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