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Abstract— The impulsive Goodwin’s oscillator (IGO) is a
hybrid model composed of a third-order continuous linear part
and a pulse-modulated feedback. This paper introduces a design
problem of the IGO to admit a desired periodic solution. The
dynamics of the continuous states represent the plant to be
controlled, whereas the parameters of the impulsive feedback
constitute design degrees of freedom. The design objective is to
select the free parameters so that the IGO exhibits a stable
1-cycle with desired characteristics. The impulse-to-impulse
map of the oscillator is demonstrated to always possess a
positive fixed point that corresponds to the desired periodic
solution; the closed-form expressions to evaluate this fixed
point are provided. Necessary and sufficient conditions for
orbital stability of the 1-cycle are presented in terms of the
oscillator parameters and exhibit similarity to the problem of
static output control. An IGO design procedure is proposed
and validated by simulation. The nonlinear dynamics of the
designed IGO are reviewed by means of bifurcation analysis.
Applications of the design procedure to dosing problems in
chemical industry and biomedicine are envisioned.

I. INTRODUCTION
In control of engineered systems, the objective is normally

to keep the controlled variable in a vicinity of a predefined
setpoint or to make it follow a certain trajectory. In contast,
the purpose of physiological control is, arguably, to maintain
the involved biological quantities within a certain domain,
and to achieve this with minimal energy. Impulsive feedback
control is one of the most widespread strategies applied
by nature in physiological, especially in neuroendocrine,
systems. In particular, the hypothalamic-pituitary adrenal and
gonadal axes employ pulse-modulated control and encode in-
formation to target cells by manipulating both the amplitude
and frequency of the hormone concentration pulses [2].

The problem of exerting a periodic control action that
maintains a certain predefined level of effect in a dynamical
plant often arises in process control and medicine. For
instance, adding doses of chemicals to a reactor is typically
done by means of logical (discrete) open-loop control [3].
Similarly, pharmaceuticals, in a tablet or an injection form,
are predominantly administered according to a regimen that
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is prescribed by a physician. When the plant is dissipative
and no feedback is involved, the resulting control system
is simple and safe. However, the open-loop control cannot
attenuate disturbances and handle plant uncertainty.

Provided the actuators can be continuously manipulated
and real-time measurements of the controlled variable are
available, feedback control is routinely employed to achieve
robust closed-loop stability or performance. When the control
signal is however restricted to impulsive action, the only
currently available feedback strategy is Model Predictive
Control (MPC) [4]. The utility and physiological coherence
of impulsive MPC in drug delivery applications is readily
recognized. A promising application of this control approach
to insulin dosing in simulated diabetes patients is reported
in e.g. [5]. In fact, impulsive insulin delivery mimics the
physiological profile of secreting around ten major hormone
pulses over 24 hours [6] with their temporal distribution
related to meals. Impulsive feedback control is inherently
nonlinear and adding an advanced control law to the closed-
loop dynamics further complicates stability and performance
analysis. Yet, simple pulse-modulated feedback solutions
manipulating the amplitude and frequency of the control
impulses are lacking at present.

The Impulsive Goodwin’s Oscillator (IGO) was pro-
posed [7], [8] as a hybrid (continuous-discrete) model of
testosterone regulation in males, generalizing the concept
of the original (continuous) Goodwin’s oscillator [9] to the
case of pulsatile (non-basal) secretion. The IGO possesses
a number of properties that are typically sought for in
biomedical applications, e.g. positivity and boundedness of
the solutions. By design, the IGO has no equilibria and can
only exhibit periodic or non-periodic (chaotic and quasiperi-
odic) oscillations [10]. It is proven that the IGO always
possesses a unique (stable or unstable) 1-cycle, i.e. a periodic
solution with only one firing of the pulse-modulated feedback
on the least period [8]. Extensive bifurcation analysis of
the IGO [10] suggests that the model, being equipped with
the modulation functions of Hill’s type, is monostable, even
under a small delay present in the closed loop [11]. Thus,
when in a stable periodic solution, the IGO is not likely
to change to another type of solution due to a temporary
exogenous disturbance.

This paper addresses a novel problem of designing an IGO
that exhibits a stable 1-cycle with desired characteristics. The
main contributions of the paper are threefold:
• the IGO design problem is formulated with respect to

a desired solution, i.e. a 1-cycle;
• necessary and sufficient orbital stability conditions of

the 1-cycle in the IGO are provided;
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• bifurcation analysis of the nonlinear IGO dynamics in
vicinity of the designed 1-cycle is performed.

The paper is organized as follows. In Section II, known
facts about the dynamics of the IGO are summarized to facil-
itate further reading. In Section III, the problem of designing
an IGO that exhibits a stable predefined 1-cycle is formulated
and solved. A numerical example is considered in Section IV
to illustrate the proposed design concept. Section V provides
bifurcation analysis of the designed IGO to discern nonlinear
dynamics phenomena arising under deviations of the nominal
parameter values. Finally, conclusions are drawn.

II. BACKGROUND

This section summarizes the facts pertaining to the IGO
model and its behaviors that are used in the rest of the paper.

A. The Impulsive Goodwin’s Oscillator

The IGO is given by the following equations [7], [8]

ẋ(t) = Ax(t), z(t) = Cx(t), (1)

x(t+n ) = x(t−n ) + λnB, tn+1 = tn + Tn,

Tn = Φ(z(tn)), λn = F (z(tn)),
(2)

where A,B,C are constant matrices, n = 0, 1, . . .,

A =

[
−a1 0 0
g1 −a2 0
0 g2 −a3

]
, B =

[
1
0
0

]
, C = [0, 0, 1],

z is the controlled output, and the state x = [x1, x2, x3]>

describes concentrations of some chemical substances. In
continuous model part (1), a1, a2, a3 > 0 are distinct
constants and g1, g2 > 0 are positive gains. It is readily
observed that the matrix A is Hurwitz stable, also,

CB = 0, CAB = 0, CA2B 6= 0. (3)

The latter property implies, in particular, that z(t) is a smooth
function despite the jumps in (2).

The minus and plus in a superscript in (2) denote the
left-sided and a right-sided limit, respectively. The amplitude
modulation function F (·) and frequency modulation function
Φ(·) are continuous and monotonic for positive arguments;
F (·) is non-increasing and Φ(·) is non-decreasing, also,

Φ1 ≤ Φ(·) ≤ Φ2, 0 < F1 ≤ F (·) ≤ F2, (4)

where Φ1, Φ2, F1, F2 are positive constants1. Then control
law (2) constitutes a frequency and amplitude pulse modula-
tion operator [12] implementing an output feedback over (1).
The time instants tn are called (impulse) firing times and λn
represent the corresponding impulse weights.

1Notably, with respect to dosing applications, the bounds F1 and F2

specify the least and largest dose that can be delivered by the control law,
while Φ1 and Φ2 prescribe the shortest and longest interval between the
administered doses. The explicit way of enforcing these safety limits is
favorable in, e.g., healthcare applications.

B. Solution Properties

The dynamics of the IGO are defined by differential equa-
tion (1) in between the feedback firing times and undergo
jumps of the magnitude λnB at the times tn in accordance
with (2). Due to the positivity of F1, the IGO lacks equilibria
and exhibits only oscillatory periodic or non-periodic (e.g.
chaotic or quasiperiodic) solutions. The solutions of the IGO
are positive under a positive initial condition x(t−0 ), because
A is Metzler2 and F (·) is uniformly positive due to (4). It
is proved in [8] that the solutions are bounded, because A is
Hurwitz and the nonlinear characteristics F,Φ are bounded.

Denoting Xn = x(t−n ), the evolution of the continuous
state vector of the IGO from one firing time to the next one
obeys the impulse-to-impulse map [8]

Xn+1 = Q(Xn), (5)

Q(ξ) = eAΦ(Cξ) (ξ + F (Cξ)B) .

This paper focuses on periodic solutions of model (1),(2)
that correspond to fixed points of the map Q. A periodic
solution with exactly m firings of the pulse-modulated feed-
back within the least period is called m-cycle. In particular,
for a 1-cycle with the initial condition X , it applies

X = Q(X). (6)

Since all the solutions of (1), (2) are positive, it holds that
X > 0, where the inequality is understood element-wise.

Proposition 1 ([8]): System (1), (2) has one and only one
(positive) 1-cycle, that is, (6) has a unique solution X >
0. The cycle parameters λ, T , and z0 can be evaluated by
solving the following system of algebraic equations

z0 = λg1g2

3∑
i=1

αi
eaiT − 1

, αi =

3∏
j=1
j 6=i

1

aj − ai
, (7)

λ = F (z0), T = Φ(z0). (8)

The key idea of proving Theorem 1 in [8] is to rewrite (6)
in terms of the output variable z = CX = x3 as

X = eAΦ(z) (X + F (z)B) , z = CX, (9)

which equation is subsequently reduced to the scalar equation

z = C(e−AΦ(z) − I)−1BF (z).

The right-hand side of this equation is a decreasing bounded
function of z > 0, being strictly positive as z → 0+ [8],
which entails the existence and uniqueness of the solution.

The 1-cycle above is orbitally asymptotically stable [8]
if and only if the fixed point X is asymptotically stable as
the equilibrium of discrete-time dynamics (5), that is, the
Jacobian matrix Q′(X) is Schur stable3, where

Q′(X) = eAΦ(z0) (I + F ′(z0)BC) + Φ′(z0)AXC. (10)

2A square matrix whose off-diagonal entries are all nonnegative is said
to be Metzler. The exponential etA, t ≥ 0 is nonnegative for a Metzler A.

3A square matrix is said to be Schur (Schur stable) if all its eigenvalues
λj belong to the unit disk |λj | < 1.



III. DESIGN
The IGO design problem treated here is formulated in the

following way. Suppose that the dynamics of (1) given by the
matrix A are known. In drug dosing, the elements of x(t) can
belong to, e.g., a known pharmacokinetic-pharmacodynamic
model [13]. Given the parameters of a 1-cycle, the IGO
design task is to find the modulation functions that render,
with orbital stability, the desired periodic solution.

In terms of the model parameters, the problem in ques-
tion can be summarized as follows. Given the parameters
a1, a2, a3, g1, find Φ(·), F (·) that provide the desired char-
acteristics of a stable 1-cycle λ, T . In the design procedure
proposed below, g2 > 0 always appears in product with λ
and can be selected as an arbitrary constant.

From (8) and (10), the conditions for 1-cycle existence and
stability in the IGO involve z0, i.e. the output value at the
fixed point X in (6). Therefore, the modulation functions, as
such, cannot be obtained in the design procedure, but only
interpolation conditions that they and their derivatives have
to satisfy to achieve the desired solution.

A. Divided differences and the Opitz formula
To evaluate of a function f(·) of the matrix A, the so-

called Opitz formula will be used in the analysis to follow.
The complex-valued function f(·) is assumed to be well-
defined and complex-analytic in a vicinity of the matrix
spectrum σ(A) = {−a1,−a2,−a3} where the eigenvalues
are pairwise different; See [14] for a more general case.

The first divided difference (1-DD) of a function f is
introduced [15], [16] as a function of two variables

f [z0, z1] ,
f(z1)− f(z0)

z1 − z0
,

which expression is well defined if and only if f(z1), f(z0)
exist and z0 6= z1. The second divided difference (2-DD) is
a function of three variables and is defined by

f [z0, z1, z2] ,
f [z1, z2]− f [z0, z1]

z2 − z0
,

where f(z0), f(z1), f(z2) exist and z0, z1, z2 are pairwise
different. Remarkably, both 1-DD and 2-DD are symmetric
functions. Furthermore, for a scalar ξ 6= 0 and fξ(z) ,
f(zξ), it holds

fξ[z0, z1] = ξf [z0ξ, z1ξ], fξ[z0, z1, z2] = ξ2f [z0ξ, z1ξ, z2ξ].

After some computations, it can be shown that

f [z0, z1, z2] =

2∑
i=0

βif(zi), βi =

3∏
j=1
j 6=i

1

zj − zi
.

The Lagrange mean value theorem implies that if f(·)
attains real values on some real interval I = (α, β), then,
for each z0, z1 ∈ I , z0 < z1 there exists ζ ∈ [z0, z1] such
that f [z0, z1] = f ′(ζ). A similar result can be proved for
the 2-DD [16, Corollary to Proposition 43]: for each triple
z0, z1, z2 ∈ I , one has

f [z0, z1, z2] =
1

2
f ′′(ζ), ζ ∈ [min

i
zi,max

i
zi].

For matrices of dimension three, a generalized4 Opitz
formula in [14] gives the closed-form representation of f(A)

f(A) =

 f(−a1) 0 0
g1f [−a1,−a2] f(−a2) 0

g1g2f [−a1,−a2,−a3] g2f [−a2,−a3] 0

 .
For instance, one may compute explicitly the evolutionary

matrix of the linear system (1) by applying the Opitz formula
to function f(z) = exp(zt), where t ∈ R is constant:

exp(At) = e−a1t 0 0
g1t e[−a1t,−a2t] e−a2t 0

g1g2t
2 e[−a1t,−a2t,−a3t] g2t e[−a2t,−a3t] e−a3t

 .
Here, following standard notation, we use e[z0, z1] to denote
the 1-DD of the exponential function ez = exp(z); the same
applies to the 2-DD e[z0, z1, z2].

By virtue of the mean value theorem, all divided differ-
ences of the exponential function are positive. Subsequently,
all the elements of expAt are non-negative. This is well
in line with the fact of A being Metzler. The obtained
expression for the transition matrix generalizes to higher di-
mensions of the continuous dynamics when the two-diagonal
structure of the matrix A is preserved [14].

B. Fixed point

Proposition 1, combined with the Opitz formula, enables
the calculation of the parameters of the unique 1-cycle for
a given model of the IGO. The 1-cycle corresponds to a
fixed point of the map Q(·), according to (6). The following
converse statement, yielding the fixed point for a set of 1-
cycle parameters, can then be proven.

Denote, for brevity,

µ(z) ,
1

e−z −1
=

ez

1− ez
, z 6= 0.

Proposition 2: Given the parameters of 1-cycle T > 0,
λ > 0, the fixed point X > 0 of map Q from (5) is calculated
as

x1 = λµ(−a1T ) =
λe−a1T

1− e−a1T
,

x2 = λg1Tµ[−a1T,−a2T ] =

=
λg1T e[−a1T,−a2T ]

(1− e−a1T )(1− e−a2T )
, (11)

x3 = λg1g2T
2µ[−a1T,−a2T,−a3T ] =

=
λg1g2T

2

(1− e−a1T )(1− e−a2T )(1− e−a3T )
× (12)

×
(

e[−a1T,−a2T,−a3T ]

+ e[−(a1 + a2)T,−(a1 + a3)T,−(a2 + a3)T ]
)
.

4Typically, the Opitz formula is considered for the situation where the
second main diagonal contains ones, that is, g1 = g2 = 1, the general case
can be derived by a simple similarity transformation.



Proof: For Φ(CX) = Φ(x03) = T and F (CX) =
F (x03) = λ, X is a given fixed point satisfying (9) if and
only if

X = λ(e−AT −I)−1B = λµ(AT )B,

that is, X is the first column of the matrix µ(AT ). The left-
most equalities in (11), relating x0i, i = 1, 2, 3 to the divided
differences of µ, follow immediately from the Opitz formula.
The rightmost equalities are validated by a straightforward
computation, which is omitted here.

Proposition 2 implies that z0 = x03 can be calculated for
any choice of the distinct constants a1, a2, a3, which fact
perfectly agrees with the result of Proposition 1. Then, for
a given continuous part of the IGO in (1) and desired λ, T ,
the value of z0 is obtained by specifying the values of the
modulation functions at that point according to (8). Further,
since a 1-cycle is uniquely defined by the fixed point, the
elements of the matrix A and λ, T stipulate the periodic
solution of the IGO.

C. Stability of 1-cycle

Proposition 2 specifies the fixed point corresponding to the
desired periodic solution but does not guarantee its stability.
Then, additionally, matrix (10) needs to be stable to ensure
that the 1-cycle is relevant in feedback control context.

In the design problem at hand, the slopes of the modulation
functions F (·), Φ(·) at the fixed point corresponding to the
desired 1-cycle constitute the degrees of freedom that can
be utilized for the stabilization of the periodic solution. As
the result below explicates, the design problem is similar to
what is known as static output feedback stabilization in linear
time-invariant (LTI) systems [17].

Proposition 3: Jacobian (10) at the fixed point X admits
the parameterization

Q′(X) = eAΦ(z0) + (F ′(z0)J + Φ′(z0)D)C,

where J,D ∈ R3 and J = eAΦ(z0)B > 0, D = AX < 0,
z0 = CX = x03.

Proof: The expression for Q′(X0) and formulas for
J,D are straightforward from (10). Furthermore, since
g1, g2 > 0 and all divided differences of the exponential
functions are positive, the formula for eAt derived in Sec-
tion III-A ensures that the vector J , being the first column
of the matrix eAΦ(z0), is strictly positive. In order to prove
that D = AX < 0, notice that

D = A(e−AΦ(z0)−I)−1B.

Introducing the function

ν(z) , zµ(z) =
z

e−z − 1
,

one notices that D = T−1ν(TA)B is nothing else but
the first column of the matrix T−1ν(TA). It can be
demonstrated that the function ν (see Fig. 1) is nega-
tive, decreasing, and strictly concave on the interval z ∈
[−∞, 0). Hence, in view of the mean value theorem,
the divided differences ν[−a1T,−a2T ], ν[−a2T,−a3T ],

ν[−a1T,−a2T,−a3T ] are all negative, as well the values
ν(−aiT ). In virtue of the Opitz formula, ν(TA)B < 0, en-
tailing that D < 0 and concluding the proof of Proposition 3.

Fig. 1: The plot of function ν(x) for x < 0.

From the result of Proposition 3, Q′(X) can be rendered
Schur stable by the feedback gain K ∈ R3

Q′(X) = eAΦ(z0) +KC, (13)

subject to

K =
[
J D

] [F ′(z0)
Φ′(z0)

]
. (14)

Since the pair (eAΦ(z0), C) is observable, an arbitrary eigen-
value spectrum of Q′(X) can be achieved with an unre-
stricted gain K. However, due to (14), K has to be a linear
combination of J and D with the coefficients F ′(z0) ≤ 0
and Φ′(z0) ≥ 0, correspondingly. This feedback structure
also appears in the classical problem of static output feed-
back design, see [17] for an overview. A crucial distinction
between the static output feedback in an LTI system and
the pulse-modulated feedback of the IGO is that the former
operates around a (constant) output setpoint whereas the
latter stabilizes an LTI along a periodic solution (a 1-cycle)
expressed as a fixed point.

Remark 1: The last statement of Proposition 3 entails
that JF ′(z0) + DΦ′(z0) ≤ 0, for all feasible values
of F ′(z0),Φ′(z0). Therefore, the feedback in the IGO is
negative, despite the fact that all the involved quantities
are positive. This property is natural given the underlying
principle of the pulse-modulated feedback in the IGO where
the impulses become of lower weight and sparser when the
output values are higher than z0.

It can also be noticed that the pair of slopes F ′(z0) =
0,Φ′(z0) = 0 yields in the Schur stable matrix Q′(X).
Even though constant modulation functions formally produce
a stable 1-cycle, the feedback in the IGO is essentially
eliminated, and the impulsive sequence is independent of
the measured output.



Lemma 1 (Theorem 3.1, [18]): Let A = [aij ]
3
i,j=1 be a

real matrix. Denote M(A) = m11(A) +m22(A) +m33(A),
where mii(A) stand for the principle minors

m11(A) = a22a33 − a23a32,

m22(A) = a11a33 − a31a13,

m33(A) = a11a22 − a21a12.

Then, matrix A is Schur stable if and only if the following
three conditions are satisfied:

1) |detA| < 1,
2) | trA+ detA| < 1 +M(A),
3) | trAdetA−M(A)| < 1− det2A.

To analyse the Schur stability of matrix (10), one can find
the characteristics employed by Lemma 1 as functions of
Φ′(z0), F ′(z0). For instance, applying (13) and the well-
known Schur complement formula det(I +XY ) = det(I +
Y X), where XY, Y X are square matrices, but X,Y need
not be square, one has

detQ′(X) = det(eAT ) det(I3 + e−AT KC) =

= e−(a1+a2+a3)T (1 + C e−AT K) =

= e−(a1+a2+a3)T
(

1 + C e−AT [J,D]
[
F ′(z0)

Φ′(z0)

])
=

e−(a1+a2+a3)T (1 + Ce−ATDΦ′(z0)).

To derive the latter equality, one has to notice that
C e−AT J = C e−AT eAT B = CB = 0. Similarly, after
some computations, one can obtain two remaining charac-
teristics. We formulate the following proposition.

Proposition 4: For Q′(X) defined by (10), it applies

trQ′(X) = tr eAT +C
[
eAT B AX

] [F ′(z0)
Φ′(z0)

]
,

detQ′(X) = e−(a1+a2+a3) T (1 + C e−AT AXΦ′(z0)),

M(Q′(X)) = e−(a1+a2)T + e−(a1+a3)T + e−(a2+a3)T

+
[
ψ1 ψ2

] [F ′(z0)
Φ′(z0)

]
,

ψ1 = (e−a1T + e−a2T )j3

− g2T
(

e[−a2T,−a3T ]j2

+ g1T e[−a1T,−a2T,−a3T ]j1

)
,

ψ2 = (e−a1T + e−a2T )d3

− g2T
(

e[−a2T,−a3T ]d2

+ g1T e[−a1T,−a2T,−a3T ]d1

)
.

Here ji, di are the elements of vectors J and D.

D. Design algorithm

The results of Section III can be summarized in the form
of the following procedure rendering the desired solution to
the IGO.

Step 1: Select the desired 1-cycle’s characteristics λ and T .
Step 2: From plant model (1), obtain the parameters a1, a2,

a3 and g1; g2 > 0 can be selected arbitrarily.

Step 3: Calculate the fixed point (and z0) from (11).
Step 4: Define the structure of the modulation functions F , Φ

and calculate their derivatives F ′, Φ′.
Step 5: Evaluate the three stability conditions specified in

Lemma 1 with respect to the Jacobian Q′(X) using the
expressions of the matrix functions in Proposition 4.

Step 6: By selecting the parameters of the modulation func-
tions, ensure that F ′(z0), Φ′(z0) satisfy the stability
conditions of Step 5.

Step 7: By scaling the modulation functions, ensure the equal-
ities F (z0) = λ, Φ(z0) = T .

IV. DESIGN EXAMPLE

This section illustrates the use of the design algorithm
outlined in Section III-D by a numerical example worked
out step-by-step.

Consider the design of a 1-cycle with λ = 4.66, T =
66.75 (Step 1) in the IGO given by (1), (2), where g1 = 2.0,
g2 = 0.5s, a1 = 0.08, a2 = 0.15, p = 2, and a3 = 0.12,
(Step 2). The corresponding fixed point (Step 3)

X =
[
0.0225 0.6360 6.8330

]>
,

thus z0 = 6.8330. Following [8], define the structure of the
modulation functions (Step 4) as the Hill functions

Φ(z) = k1 + k2
(z/hΦ)pΦ

1 + (z/hΦ)pΦ
, (15)

F (z) = k3 +
k4

1 + (z/hF )pF
.

The coefficients ki, i = 1, . . . , 4 explicitly specify the values
on the minimal and maximal dose as well as the minimal
and maximal time interval between the doses

k3 < F (z) < k3 + k4, k1 < Φ(z) < k1 + k2.

The parameters k2 and k4 also influence the derivatives of
the modulation functions

Φ′(z) =
k2pΦz

pΦ−1h−pΦ

Φ

(1 + (z/hΦ)pΦ)
2 , F

′(z) = − k4pF z
pF−1h−pF

(1 + (z/hF )pF )2
.

Therefore, besides k2, k4, the derivatives are also defined by
hΦ, pΦ, hF , pF .

From the parameters of continuous part (1) and T , the
stability conditions of the fixed point X are evaluated. Then
the involved functions of the Jacobian amount to

trQ′(X) = 0.0052 + 1.4574F ′(z0)− 0.5020Φ′(z0),

detQ′(X) = 7.1410 · 10−11 − 0.172 · 10−14Φ′(z0),

M(Q′(X)) = 2.1528 · 10−7 − 0.1251 · 10−4F ′(z0)

+ 0.1460 · 10−4Φ′(z0).

Notice that M(Q′(X)) > 0 for all admissible values of
F ′(z0), Φ′(z0). Given the orders of the coefficients in the
matrix functions of Q′(X), stability of X is guaranteed if

| trQ′(X)| < 1 +M(Q′(X)),

M(Q′(X)) < 1,



or, due to the positivity of M(Q′(X)),

| trQ′(X)| < 1. (16)

The inequality above is satisfied for F ′(z0) = −0.1143,
Φ′(z0) = 2.2852. As expected, stability condition (16)
limits the derivatives of the modulation functions that act
as feedback gains, cf. (14). Also h, p have to obey certain
inequalities imposed by the parametrization in (15).

Introduce the notation

ηΦ =

(
z0

hΦ

)pΦ

, θΦ =
k2pΦ

2z0Φ′(z0)
.

Then, for Φ′(z) to take the desired value in z0, it applies

η2
Φ + 2(1− θΦ)ηΦ + 1 = 0,

and, therefore,

ηΦ,1,2 = θΦ − 1±
√
θΦ(θΦ − 2).

When it is guaranteed that

pΦ >
4z0Φ′(z0)

k2
> 0, (17)

both ηΦ,1 and ηΦ,2 are positive, then

hΦ,1,2 =
z0

pΦ
√
ηΦ,1,2

.

Similarly, with

ηF =

(
z0

hF

)pF
, θF =

k4pF
2z0F ′(z0)

,

one has
η2
F + 2(1 + θF )ηF + 1 = 0,

and then

ηF,1,2 = −(θF + 1)±
√
θF (θF + 2).

When it is guaranteed that

0 < pF < −
4z0F

′(z0)

k4
, (18)

both roots are positive. Notice that the condition

θF + 1 < 0

results in a weaker inequality

0 < pF < −
2z0F

′(z0)

k4
.

Conditions (17) and (18) are satisfied (Step 5) for pΦ =
pF = 2, thus yielding hΦ = hF = h = 4.112, k2 = 40,
k4 = 2.0. Now, k1 = 60 and k3 = 3.0 ensures (Step 6) that

F (z0) = λ, Φ(z0) = T.

The closed orbit of the designed 1-cycle is depicted in Fig. 2,
along with trajectories resulting from deviations in initial
conditions for continuous part of the IGO (1). The evolution
of the impulse weight (dose) sequence λk (see (2)) to the
pre-defined 1-cycle amplitude λ is depicted in Fig. 3. A
series of interchanging overdosing and underdosing events
asymptotically converges to the desired value. This behavior
could not be predicted from the design procedure since only
a stable 1-cycle is sought.

Fig. 2: The designed 1-cycle (Γ, in red) corresponding to the fixed
point (O = X). Trajectories converging to Γ are in blue.

Fig. 3: The convergence of the sequence F (zk) to the desired λ.
Since all the multipliers are negative −1 < ρi < 0, 1 6 i 6 3,
the convergence is non-monotonous. To highlight the evolution, the
point F (zk−1) is connected to the next one F (zk) (blue lines).

V. BIFURCATION ANALYSIS

To investigate the behaviors of the designed IGO under
parameter variation, bifurcation analysis is performed. For an
interval of the parameter values a3 and following the steps of
the design procedure in Section III, the value of h = hΦ =
hF is found and the stability of a fixed point O(a3, h) = X
is evaluated. The condition hΦ = hF is imposed to reduce
the number of independent bifurcation parameters.

From Section III-D, k1 = 60; k2 = 40; k3 = 3.0; k4 =
2.0; g1 = 2.0; g2 = 0.5. For each a3, the value of h is found
by solving equations (15) with F (z0) = λ, Φ(z0) = T and
the stability of a fixed point O(a3, h) = X of mapping (5)
given by Proposition 2 is analyzed.

An example of such an analysis is shown in Fig. 4 (a),(b)
for T = 66.75, λ = 4.66, and 0.1505 < a3 < 0.54. When
the parameter a3 increases, the fixed point O = X undergoes
a period-doubling bifurcation: the maximal in absolute value
multiplier ρ2 of the fixed point O emerges from the unit
circle though −1 (see Fig. 4(b)). In these figures, the stability
region of the fixed point O is in yellow. Fig. 4(b) depicts the
dependence of h on a3 in the transition shown in Fig. 4(a).

Fig. 4(c),(d) presents the results of the bifurcation analysis
for other values of the cycle parameters: T = 65.45, λ =
4.73 and 0.1505 < a3 < 0.612. As pointed out earlier,
the stability of the fixed point O (1-cycle) is determined
by F ′(z0) and Φ′(z0).

Introduce τ as

τ = 1/|Λ|, Λ = ln r0,

r0 = max
16i63

|ρi|.



(a) Variation of the maximal in
absolute value multiplier ρ2 of a
fixed point; 0.1505 < a3 < 0.54.

(b) Dependence of h on a3 (c) Variation of the maximal
in absolute value multiplier ρ2;
0.1505 < a3 < 0.612.

(d) Dependence of h on a3

Fig. 4: Bifurcation analysis: (a),(b) - for T = 66.7502, λ = 4.66, (c),(d) - for T = 65.4542, λ = 4.7273.

The value of τ characterizes the convergence time of the
trajectory initiated a point in the basin of attraction of the
stable fixed point O to the corresponding orbit.

Fig. 5(a),(b) show variation of the τ and ρ2 in the intervals

−0.6 < F ′ < 0.0 and Φ′ = −k2

k4
F ′ for a3 = 0.3005 and

a3 = 0.2505 (T = 66.75, λ = 4.66), respectively.

Fig. 5: (a) Variation of τ and ρ2 on −0.6 < F ′ < 0.0 and Φ′ =

−k2
k4
F ′ for a3 = 0.30050. (b) Variation of τ and ρ2 on −0.6 <

F ′ < 0.0, Φ′ = −k2
k4
F ′ for a3 = 0.25050. Here 1 denotes the

convergence time τ and 2 marks ρ2. T = 66.7502, λ = 4.6625.

VI. CONCLUSIONS
A novel problem of designing the IGO to admit a pre-

defined periodic solution is introduced. It is exemplified by a
case of stable 1-cycle with pre-defined solution parameters. It
is demonstrated that the 1-cycle specifications are translated
into a unique positive fixed point of the impulse-to-impulse
discrete map. This fixed point can be rendered stable by se-
lecting the modulation functions of the IGO. Further analysis
is needed to control the type (monotonous, non-monotonous)
and the speed of convergence of the IGO solutions to the
orbit corresponding to the obtained fixed point.
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