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ABSTRACT

In this work, we extend the convex bodies chasing problem (CBC) to an adversarial setting, where
an agent (the Player) is tasked with chasing a sequence of convex bodies generated adversarially by
another agent (the Opponent). The Player aims to minimize the total cost associated with its own
movements, while the Opponent tries to maximize the same cost. The set of feasible convex bodies
is finite and known to both agents, which allows us to provide performance guarantees with max-
min optimality. Under certain assumptions, we show the continuity of the optimal value function,
and propose an algorithm to numerically approximate the optimal policies for both the Player and
the Opponent within a guaranteed tolerance. Finally, the theoretical results are verified through
numerical examples.

1 Introduction

The Convex Bodies Chasing (CBC) problem was proposed in [1] to study the interaction between convexity and
metrical task systems. It was soon realized that many problems of practical interest could be viewed as variants of
the CBC problem, including scheduling [2], efficient covering [3], safe machine-learned advice [4, 5], self-organizing
lists [6], the k-server problem [7, 8], and other online convex optimization problems [9]. In the CBC problem, an
online agent (the Player) receives a request sequence of T convex sets Q1, . . . ,QT contained in a normed space X of
dimension d. The Player starts at x0 and, at time step t, observes the set Qt and then moves to a new point xt ∈ Qt,
which induces a cost ‖xt − xt−1‖. The objective of the Player is to maintain a constant ratio, known as the competitive
ratio, against the minimum cost possible in hindsight, i.e., knowing the sequence of sets in advance. The existence of a
finite competitive ratio was first conjectured in [1]. Partial results on restricted cases were established later, including:
chasing subspaces [10] and chasing nested bodies [11, 12]. The conjecture was first resolved in [13], which provided
an 2O(d) upper bound. A nearly optimal competitive ratio was later derived in [14] for nested convex bodies using
the classical Steiner point [15]. The more recent work [16] has achieved a competitive ratio O(

√
d log T ) without

restrictions on the convex bodies, despite the fact that the proposed algorithm chooses xt without knowledge of the
future convex sets Qt+1, . . . ,QT .

In the classic CBC problem, with no restriction on the mechanism that generates the convex sets, the Player needs to se-
lect a point that balances the future cost for all possible subsequent convex sets. Consequently, the competitive ratio is
considered as the performance metric for most of the previous algorithms in the literature. However, this performance
metric can be ineffective in case of a high dimensional space X . Moreover, in many real-world scenarios the convex
bodies are selected (potentially adversarially) from a known set of convex sets (e.g., dynamic Blotto game [17]). With
this additional information, one expects to obtain better performance guarantees than with the competitive ratio.

In this work, we consider the adversarial convex bodies chasing (aCBC) problem, where a (finite) set of compact
convex bodies is known prior to starting the game, but the sequence of selected bodies is unknown to the Player, and
is generated from the given set by an adversary (the Opponent). The adversarial selection of the convex bodies is
further constrained over a graph, which implies that the currently selected convex body has an impact on the convex
bodies available at the next time step1. The Player’s movement is also constrained within the (compact) reachable set
constructed from its current state. We formulate this competitive game as a zero-sum sequential game [18] where the
Player aims to minimize its total cost, while the Opponent tries to maximize it.

The contribution of this work is threefold: (i) we provide a novel formulation of the adversarial CBC game; (ii)
we provide theoretical guarantees for the existence of a Lipschitz continuous max-min value function under mild

*Equal contribution.
1One can remove the graph constraint by using a fully-connected graph.
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assumptions; and (iii) we propose a numerical algorithm that provides bounded ε-suboptimal performance with respect
to the max-min solution.

The rest of the paper is organized as follows: Section 2 formally presents the formulation of the adversarial convex
bodies chasing problem; Section 3 introduces the optimal value function and provides theoretical results regarding
its continuity2; Section 4 proposes a numerical algorithm that discretizes the domain and approximates the optimal
policies for the Player and the Opponent. In the same section we further prove that the total cost from the obtained
policy is within ε-suboptimality of the optimal min-max solution; Section 5 demonstrates the effectiveness of the
proposed algorithm through numerical examples. Finally, Section 6 concludes this work.

2 Problem Formulation

The adversarial convex bodies chasing (aCBC) game is played sequentially between two agents: the Player and the
Opponent. The game evolves over a compact subset X of a normed Euclidean space Rd. At each time step t, a
convex region Qt ⊆ X is selected by the Opponent, and then the Player chooses a point xt ∈ Qt, inducing a
corresponding cost. Once xt is chosen, the Opponent selects the next convex set Qt+1 and the process continues
until finite time horizon T . The timeline of the game is presented in Figure 1. The Player tries to minimize its total
cost

∑T−1
t=0 c(xt,xt+1) over a finite horizon T for some non-negative cost function c, while the Opponent aims to

maximize this cost.

Figure 1: Timeline of the aCBC game. At each time step t, the Opponent first selects a state it to assign a corresponding convex
set Q(it)

t for the Player. The Player then selects a point xt within the assigned convex set.

We use xt to denote the state of the Player at time step t and treat X as the state space of the Player. Different from
the classical CBC problem, we restrict the Player’s selection of its next state to a neighborhood of its current state
characterized by a reachability correspondence (a set-valued map). Specifically, we require that xt+1 ∈ R(xt) for all
t = 0, . . . , T − 1, where R(xt) represents the reachable set of the Player at the next time step from the current state
xt. We useR : X  X to denote the reachability correspondenceR as a set-valued map3.
Assumption 1. For all x ∈ X ,R(x) is solid, compact, and convex.

At time t, the Opponent’s state is defined as the node it ∈ V in a directed graph G = (V, E) that constrains the
Opponent movements. Given the Opponent’s current state it, the Opponent can move to any one of the neighboring
nodes it+1, such that (it, it+1) ∈ E . We denote the set of all neighbors of node it as Nit . Before the game, we assign
a finite collection of convex regions Q =

{
Q(i)
t

}T,|V|
t=0,i=1

⊂ X to the Opponent. At each time step t, the Opponent

selects a convex region Q(it)
t from Q by selecting the feasible Opponent state it ∈ Nit−1 from its previous state

it−1 ∈ V . In other words, instead of having the freedom to choose an arbitrary convex subset of X as in the classical
CBC problem, the Opponent in an aCBC game can only choose from a given finite set of convex bodies by selecting
the next state (node of G) to visit. We make the following two assumptions on Q and the information structure of the
game.

Assumption 2. For all i ∈ V and t = 0, . . . , T , the set Q(i)
t is solid, compact, and convex.

Assumption 3. The collection Q and the graph G are common knowledge to both agents prior to the game.

Once a convex region Q(it)
t is selected at time t by the Opponent, the Player needs to move to a feasible point

xt ∈ R(xt−1) ∩Q(it)
t . For ease of notation, we introduce the following intersection correspondence

Θ
(it)
t (xt−1) = R(xt−1) ∩Q(it)

t . (1)

To avoid degeneracy, we assume that any admissible sequence of convex bodies chosen by the Opponent is always
feasible for the Player. Consequently, the aCBC game is an optimization problem rather than a feasibility problem,
similar to the classical CBC problem.

2The terms “optimal value function” and “value function” are used interchangeably in this paper.
3One can also use R : X → 2X to denote the reachability correspondence R as a single-valued map.
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Assumption 4. For all t = 1, . . . , T and it ∈ V , the following holds:

int
(
R(x) ∩Q(it)

t

)
6= ∅, ∀ x ∈ Q(it−1)

t−1 , where it ∈ Nit−1 . (2)

Assumption 4 ensures that the optimization problem faced by the Player is strictly feasible for all time steps. With
Assumptions 1-4, the major difference of the aCBC from the classic CBC formulation is that (i) the selection of a new
convex body considers the feasibility from the previous convex body, (ii) the feasible convex bodies Q(i)

t are compact
and solid, and (iii) the set of all convex bodies in the aCBC game is finite and is common knowledge to both agents.
An illustrative example of the proposed aCBC game is shown in Figure 2.

Figure 2: Example of an aCBC game with a 4-node graph and a two-dimensional Player state X . At time step 0, the Opponent
starts at node 2 and the Player selects a point x0 in Q(2)

0 . The Opponent then moves to node 4 and the Player selects the point
x1 ∈ R(x0)∩Q(4)

1 , inducing a cost of c(x0,x1). The Opponent then moves to node 3 and the Player moves to x2 ∈ R(x1)∩Q(3)
2

incurring a cost of c(x1,x2), and so on. The game continues until reaching the finite time horizon T .

The assumptions on the compactness of the convex bodies and the finiteness of its collectionQ significantly reduce the
Opponent’s freedom of selecting convex regions. This allows the construction of a min-max solution that is discussed
in the next section. To ensure the existence of a min-max solution, however, we need to further make the following
assumptions on the continuity of the cost function c and the reachability correspondenceR.

Assumption 5. The cost function c : X × X → R is continuous.

Notice that the cost function here can be an arbitrary continuous function and thus is more general than the norm-
cost used in the classic CBC formulation. To distinguish the continuity of correspondences from the continuity of
single-valued maps, we need to introduce the concepts of lower and upper semi-continuity.

Definition 1 (upper semi-continuity [19]). A set-valued map F : X  Y is upper semi-continuous (usc) at x ∈ X if
for every open set U ⊆ Y such that F (x) ⊆ U , there exists a neighborhood V of x such that F (V ) ⊆ U . F is usc on
X if it is usc at every point in X .

Definition 2 (lower semi-continuity [19]). A set-valued map F : X  Y is lower semi-continuous (lsc) at x ∈ X if
for every open set U ⊆ Y such that F (x) ∩ U 6= ∅ there exists a neighborhood V of x such that F (x′) ∩ U 6= ∅ for
all x′ ∈ V . F is lsc on X if it is lsc at every point in X .

Definition 3 (set-valued map continuity [19]). A set-valued map F : X  Y is continuous on X if it is lsc and usc on
X .

Assumption 6. The reachability correspondenceR : X  X is continuous.

We consider Markov policies for both agents. To initialize the game, at time t = 0, the Opponent first selects a node
i0 ∈ V according to its policy σ0(Q,G). Here, we make the policy dependence on Q and the graph G explicit. After
observing the Opponent’s selection i0, the Player selects a point x0 ∈ Q(i0)

0 according to the policy π0(i0). The
Player’s (deterministic) policies at time t ≥ 1 is given by πt(xt−1, it) ∈ R(xt−1) ∩ Q(it)

t , which explicitly considers
the Opponent-selected convex body Q(it)

t at time t and the Player’s reachability constraint. The Opponent’s policy at
time t ≥ 1 is given by σt(xt−1, it−1) ∈ Nit−1 , which reflects the graph constraint on the Opponent’s state. We collect
the sequences of the policies used by the Player and the Opponent to the strategies π = {πt}Tt=0 and σ = {σt}Tt=0,
respectively.
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A strategy pair (π, σ) provides a trajectory for the Player and, consequently, induces a total movement cost C(π, σ)

characterized as
∑T−1
t=0 c (xt,xt+1). We are interested in subgame perfect equilibria, namely, equilibria where, at

each stage of the game, the Player always minimizes its future cumulative cost-to-go while the Opponent maximizes
it. We denote the total cost under a subgame perfect equilibrium as the optimal total cost C∗.

Problem 1. Given a graph G, a collection of solid and compact convex bodies Q =
{
Q(i)
t

}T,|V|
t=0,i=1

, a cost function c,
and a reachablility correspondenceR, find the optimal total cost C∗ of the aCBC game along with the corresponding
optimal strategies for the Player and the Opponent under the information structure in Assumption 3.

To solve Problem 1, we follow a value-based approach, where at each decision point, the agents compute a policy
that optimizes its “cost-to-go.” The rest of the paper will address the technical details regarding the solution to this
optimization problem.

2.1 Connection to the Dynamic Defender-Attacker Blotto Game

At first glance, one may find Assumption 4 restrictive. However, for safety-critical problems, it is common to first con-
struct a set of policies that are safe/feasible and then consider optimality in the safe domain. One potential application
of the aCBC game is the dynamic defender-attacker Blotto game (dDAB) [17], which is a dynamic and adversarial
resource allocation problem in a graph environment. In the dDAB a team of defender robots is tasked to ensure a nu-
merical advantage over a team of attackers at every node. The two teams reallocate their robots in sequence and each
robot (resource) can move at most one hop at each time step. The dDAB game is formulated as a game of kind, and
the game terminates with the attacker’s victory if any node has more attacker robots than defender robots. In [17] is is
shown that the defender’s feedback strategy is specified by the safe sets given as a function of the attacker’s allocation.
In effect, the attacker (the Opponent) is selecting a sequence of safe sets, which the defender’s allocation (the Player’s
state) must stay in, for the sake of successful defense. The collection of safe-sets in dDAB satisfies Assumption 4
and is one of the major motivations of this work. Consequently, the aCBC framework can naturally extend the dDAB
game to a game-of-degree formulation by introducing costs to the defender movements.

3 Optimal Value Functions

To reflect the different information available to the two agents at their decision points, we introduce two value func-
tions: Vt (xt−1, it) for the optimal value function of the Player and Ut (xt−1, it−1) for the Opponent at time t. These
two optimal value functions will be computed through a backward induction scheme, similar to other finite horizon
decision-making problems [20, 21].

3.1 Backward Induction

At the terminal time step T , the Player has knowledge on its previous state xT−1 and the Opponent state iT , and the
Player is about to make its final move. Since there are no moves after time T , the Player only needs to consider the
optimality with respect to the immediate cost c (xT−1,xT ). Consequently, the optimal terminal value for the Player
can be formulated as

VT (xT−1, iT ) , inf
xT ∈ Θ

(iT )

T (xT−1)

c (xT−1,xT ). (3)

In other words, the above value depicts the best feasible outcome for the Player, given its previous state xT−1 and the
Opponent state iT at the terminal time step T .

For time steps t ∈ {1, . . . , T − 1}, the Player needs to optimize its selection of a new state xt in order to minimize
both the immediate cost and the worst-case future cost. Specifically, the Player has to also consider the fact that the
Opponent will observe the new Player state xt and then best-respond with it+1 to maximize the future cumulative
costs. Consequently, the optimal value for the Player is formulated as

Vt (xt−1, it) , inf
xt ∈ Θ

(it)
t (xt−1)

{
c (xt−1,xt) + max

it+1 ∈ Nit

Vt+1 (xt, it+1)

}
. (4)

Finally, for the initial Player state selection at t = 0 there is no reachability constraint or immediate cost. As a
result, the optimal value function only depends on the initial Opponent state i0, while the optimization only covers the
worst-case future cost similar to the value function in (4), and we have

V0 (i0) , inf
x0 ∈ Q

(i0)
0

max
i1 ∈ Ni0

V1 (x0, i1). (5)
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The Opponent’s optimal value function is constructed similarly to that of the Player. The only difference comes from
the information structure. Namely, at time step t, the Opponent makes a decision based on the previous Player state
xt−1 and its own previous state it−1. Formally, the Opponent’s optimal values are formulated as

UT (xT−1, iT−1) , max
iT ∈ NiT−1

{
inf

xT ∈ Θ
(iT )

T (xT−1)

c (xT−1,xT )

}
, (6)

Ut (xt−1, it−1) , max
it ∈ Nit−1

{
inf

xt ∈ Θ
(it)
t (xt−1)

{c (xt−1,xt) + Ut+1 (xt, it)}

}
, (7)

U0 (G,Q) , max
i0 ∈ V

inf
x0 ∈ Q

(i0)
0

U1 (x0, i0). (8)

Remark 1. The Opponent’s value U0 is equivalent to the optimal total cost C∗ of the aCBC game.

Remark 2. From time step 1 to T , we implicitly assume xt−1 ∈ Q(it−1)
t−1 and it−1 ∈ V for all value functions

Ut (xt−1, it−1). Likewise, for the value functions Vt (xt−1, it) we assume that xt−1 ∈ Q(it−1)
t−1 and it ∈ Nit−1

.

3.2 Continuity of the Optimal Value Functions

The first question one may ask regarding the value functions is whether the infimum in (3)-(8) can be attained. To an-
swer this question, we first show that the intersection correspondence Θ

(i)
t is continuous, then we prove the continuity

of the value functions with respect to the x-arguments. Assumption 6 only regards the continuity of the reachability
correspondence R rather than of the intersection correspondence Θi

t. To bridge this gap, we present the following
lemma to guarantee the continuity of Θi

t.
Lemma 1. Let Γ : X  Y be continuous, and let Γ(x) be compact and convex for all x ∈ X . Consider a closed
convex set F ⊆ Y such that int(Γ(x) ∩ F ) 6= ∅ for all x ∈ C, where C ⊆ X is closed. Then, the correspondence
Ξ : C  Y defined by Ξ(x) = Γ(x) ∩ F is continuous on C.

Proof. Please see Appendix A for details.

The following lemma provides insight into the continuity of marginal functions of the form

φ(x) = inf
y∈Γ(x)

f(x,y) (9)

Lemma 2 (Proposition 2.9 in [19]). Consider a continuous function f : X×Y → R and a continuous correspondence
Γ : X  Y . If Γ has compact values, then the marginal function φ : X → R in (9) is continuous.

Note that the value functions in (4) and (7) take the form of a marginal function. Consequently, we can utilize Lemma 2
to prove the continuity of the value functions. This result is stated in the following theorem.

Theorem 1. For all t ∈ {1, . . . , T} and i ∈ V , j ∈ Ni, the optimal value functions Vt (·, j) : Q(i)
t−1 → R and

Ut (·, i) : Q(i)
t−1 → R are both continuous.

Proof. See Appendix B for details.

Remark 3. For all t = 1, . . . , T , and for all it−1, it ∈ V such that it ∈ Nit−1 , the infima in the expressions of Vt in
(3)-(5) are attainable and finite.

Owing to Remark 3, we can replace the infimum in the definitions of the value functions with the minimum. The
resulting optimal value functions of the Player can therefore be re-written as

VT (xT−1, iT ) = min
xT ∈ Θ

(iT )

T (xT−1)

c (xT−1,xT ), (10a)

Vt (xt−1, it) = min
xt ∈ Θ

(it)
t (xt−1)

{
c (xt−1,xt) + max

it+1 ∈ Nit

Vt+1 (xt, it+1)

}
, ∀ t ∈ {1, . . . , T − 1}, (10b)

V0 (i0) = min
x0 ∈ Q

(i0)
0

max
i1 ∈ Ni0

V1 (x0, i1), (10c)
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Similarly, the optimal value functions of the Opponent are given as follows.

UT (xT−1, iT−1) = max
iT ∈ NiT−1

{
min

xT ∈ Θ
(iT )

T (xT−1)

c (xT−1,xT )

}
, (11a)

Ut (xt−1, it−1) = max
it ∈ Nit−1

{
min

xt ∈ Θ
(it)
t (xt−1)

{c (xt−1,xt) + Ut+1 (xt, it)}

}
, ∀ t ∈ {1, . . . , T − 1}, (11b)

U0 (G,Q) = max
i0 ∈ V

min
x0 ∈ Q

(i0)
0

U1 (x0, i0). (11c)

3.3 Relationship between the two Optimal Value Functions

It should be clear from (10) and (11) that the two value functions Ut and Vt are related. Their relation is formalized in
the following lemma.
Lemma 3. For all t ∈ {1, . . . , T}, the Opponent value Ut (xt−1, it−1) is related to the Player value Vt (xt−1, it) via

Ut (xt−1, it−1) = max
it ∈ Nit−1

Vt (xt−1, it). (12)

Similarly, for all t ∈ {1, . . . , T − 1}, the Player value Vt (xt−1, it) is related to the Opponent value Ut+1 (xt, it) via
Vt (xt−1, it) = min

xt ∈ Θ
(it)
t (xt−1)

{c (xt−1,xt) + Ut+1 (xt, it)}. (13)

Furthermore, for t = 0,
U0 (G,Q) = max

i0 ∈ V
V0 (i0), (14)

V0 (i0) = min
x0 ∈Q

(i0)
0

U1 (x0, i0). (15)

Proof. See Appendix C.

3.4 Optimal Policies

With the optimal value functions computed, Remark 3 can be used to obtain the optimal policies of the Player and the
Opponent. Specifically, for the Player the optimal policy can be obtained as follows

π∗T (xT−1, iT ) ∈ argmin
xT ∈ Θ

(iT )

T (xT−1)

c (xT−1,xT ), (16a)

π∗t (xt−1, it) ∈ argmin
xt ∈ Θ

(it)
t (xt−1)

{c (xt−1,xt) + Ut+1 (xt, it)}, ∀ t = 1, . . . , T − 1, (16b)

π∗0 (i0) ∈ argmin
x0 ∈ Q

(i0)
0

U1 (x0, i0). (16c)

Similarly, for the Opponent the optimal policy can be obtained as follows
σ∗t (xt−1, it−1) ∈ argmax

it ∈ Nit−1

Vt (xt−1, it), ∀ t = 1, . . . , T, (17a)

σ∗0 (G,Q) ∈ argmax
i0 ∈ V

V0 (i0). (17b)

Consequently, given the Player state x and Opponent state i, the optimal policies can be obtained using backward
propagation. However, since the x-argument of the value function is taken in an uncountable set, storing and optimiz-
ing the value functions is challenging. One natural approach is to properly discretize the domain of the x-argument
and approximate Vt and Ut with their values at the vertices of a mesh in the x-domain. Section 4 will develop an
algorithm that implements this discretization idea.

4 Algorithmic Solution

To numerically compute the optimal values, we propose an algorithm that meshes the domain X and the approximate
Ut and Vt at the vertices of the mesh, similar to the approaches discussed in [22]. In order to derive approximation
error bounds induced by the discretization, we first strengthen the continuity properties on Ut and Vt.
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4.1 Lipschitz Continuity of the Value Functions

We impose the following two assumptions to ensure the Lipschitz continuity of Vt and Ut.
Assumption 7. The cost function c : X × X → R is Lipschitz continuous under the Manhattan distance. That is, for
all (x,y), (x′,y′) ∈ X × X ,

|c (x,y)− c (x′,y′)| ≤ Lc (‖x− x′‖+ ‖y − y′‖),

where Lc denotes the Lipschitz constant.

Before introducing the next assumption, we first need to define the Hausdorff distance between two sets.
Definition 4 (Hausdorff distance [19]). Given two subsets E and F of the normed space X , the Hausdorff distance
distH (E,F ) between E and F is defined as

distH (E,F ) = max
{

sup
x∈E

inf
y∈F
‖x− y‖, sup

y∈F
inf
x∈E
‖x− y‖

}
.

In case the sets E and F are compact, the sup and inf can be replaced by max and min, respectively,

Assumption 8. The correspondence Θ
(i)
t is uniformly LΘ-Lipschitz continuous with respect to i ∈ V and t ∈

{1, . . . , T} under the Hausdorff distance. That is, there exists a constant LΘ such that, for all i ∈ V and
t ∈ {1, . . . , T}, the following holds:

distH

(
Θ

(i)
t (x),Θ

(i)
t (x′)

)
≤ LΘ ‖x− x′‖ , ∀ x,x′ ∈ Q(j)

t−1, where i ∈ Nj .

Theorem 2. Under Assumptions 7 and 8, for all t ∈ {1, . . . , T}, it−1 ∈ V and it ∈ Nit−1
, the optimal value functions

Vt (·, it) and Ut (·, it−1) are both Lv,t-Lipschitz continuous on Q(it−1)
t−1 with Lipschitz constant is given by

Lv,t = Lc

T−t+1∑
k=1

(1 + LΘ)k. (18)

That is, for all xt−1, x′t−1 ∈ Q
(it−1)
t−1 ,∣∣Vt (xt−1, it)− Vt (x′t−1, it)

∣∣ ≤ Lv,t ∥∥xt−1 − x′t−1

∥∥ ,
and ∣∣Ut (xt−1, it−1)− Ut (x′t−1, it−1)

∣∣ ≤ Lv,t ∥∥xt−1 − x′t−1

∥∥ .
Proof. See Appendix D for details.

4.2 Discretization Scheme and Discretized Value Functions

Theorem 2 implies that the Lipschitz constant Lv,t decreases monotonically as the time step t approaches the hori-
zon T . Naturally, finer discretization resolution is preferred at the beginning of the game to ensure low approximation
error. Consequently, we allow different resolutions at different time steps. We use δX ,t to denote the discretization
size of the state space X at time step t, and we denote the set of vertices on the mesh at time t by X̂t = {x̂kt }

Mt

k=1. To
ensure that the x-optimization domain Θ

(it)
t (xt−1) in (10) is properly discretized with a discretization size δX ,t, we

require

min
x̂t ∈ X̂t

‖x̂t − xt‖ ≤ δX ,t, ∀ xt ∈ X , t ∈ {, . . . , T}, (19a)

min
x̂0 ∈ X̂0 ∩Q

(i0)
0

‖x̂0 − x0‖ ≤ δX ,0, ∀ x0 ∈ Q(i0)
0 , i0 ∈ V, (19b)

min
x̂t ∈ X̂t ∩Θ

(it)
t (x̂t−1)

‖x̂t − xt‖ ≤ δX ,t, ∀ xt ∈ Θ
(it)
t (x̂t−1), t ∈ {1, . . . , T}, (19c)

x̂t−1 ∈ X̂t−1 ∩Q(j)
t−1 where it ∈ Nj .

7



In the above criteria, we first require that the mesh has the required resolution over the whole domain X at all time
steps as in (19a).

An example of the discretization scheme is presented in Figure 3. The black vertices are constructed to discretize the
domain X based on (19a). Note that there is no black vertex in Q(1)

0 . Consequently, two extra blue vertices are added
to X̂0 to satisfy (19b). Furthermore, although the intersectionR(x̂0)∩Q(2)

1 contains a black vertex from X̂1, the mesh
is not fine enough within the intersection to satisfy condition (19c). As a result, two red vertices are added to X̂1.

Figure 3: A demonstration of mesh construction at time steps t = 0 and t = 1.

Since the discretized optimization domain at time t is X̂t ∩Θ
(it)
t (x̂t−1), one also needs to ensure that the mesh is fine

enough in Θ
(it)
t (x̂t−1), and hence the additional requirements in (19b) and (19c) are added.

With the discretization of X at every time step, the Player restricts its action selection xt at time step t to the vertices
in X̂t, which leads to a decrease in performance. We consider the worst-case scenario, where the Opponent knows
the mesh used by the Player. The optimization domains of the resulting discretized Player value functions are then
represented using the vertices of the mesh X̂t. We denote the discretized value functions as V̂ and Û for the Player
and the Opponent, respectively. For example, the Player’s value function at time step t between 1 and T − 1 is given
by

V̂t (x̂t−1, it) = min
x̂t ∈ X̂t ∩Θ

(it)
t (x̂t−1)

{
c (x̂t−1, x̂t) + max

it+1 ∈ Nit

V̂t+1 (x̂t, it+1)

}
. (20)

For the detailed definition of all discretized value functions, see Appendix E.1.

We denote the optimal strategies induced from the discretized value functions as π̂∗ and σ̂∗ for the Player and the
Opponent, respectively. Specifically, the Player’s discretized optimal policy at time step t between 1 and T − 1 is
given by

π̂∗t (x̂t−1, it) ∈ argmin
x̂t ∈ X̂t ∩Θ

(it)
t (x̂t−1)

{c (x̂t−1, x̂t) + Ût+1 (x̂t, it)}. (21)

For the detailed definition of discretized optimal policies, see Appendix E.2.

Remark 4. At every time step t, the discretized value V̂t corresponds to the optimal worst-case performance of the
Player using the discretization scheme X̂ . This implies that the Opponent has perfect knowledge of the discretization
scheme used by the Player. Moreover, the Opponent exploits this knowledge when maximizing the Player cost-to-go at
every time step t.

If both the Player and Opponent apply strategies π̂∗ and σ̂∗, then the game value Û0 (G,Q) in (30c) is realized. In
this case, Û0 (G,Q) denotes the game total cost approximated by discretization when both agents apply their optimal
strategies. On the other hand, if the Opponent unilaterally deviates and applies a strategy different from σ̂∗, then the
game will terminate with a total cost less than or equal to Û0 (G,Q) , which is favorable to the Player. Similarly, the
total cost will be greater than or equal to Û0 (G,Q) if the Player unilaterally deviates from π̂∗, putting the Player at a
disadvantage. Whenever one agent deviates from its optimal strategy, the optimal strategy of the undeviated agent also
changes accordingly. Moreover, it is also noteworthy that Û0(G,Q) ≥ U0(G,Q) as it is shown in the next section,
which means that the approximate equilibrium induced by discretizing the Player’s domain yields, as expected, a lower
Player performance than the actual equilibrium of the game.
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4.3 Error Bounds for Discretization

In this subsection, we discuss the relation between the discretization size δX ,t and the performance level ε that bounds
the discretization error |Û0 (G,Q)− U0 (G,Q)|. In the end, we introduce an algorithm that computes the discretized
optimal policies.

Based on the Lipschitz continuity properties of the value functions, one expects to have a better approximation of the
optimal value function with a finer mesh. However, the discretized value function at time step t is computed based on
the discretized value at t + 1 as shown in (20). Consequently, the approximation error propagates over time, and it is
relatively unclear how large a discretization size δX ,t needs to be at every time step t to provide the desired level of
performance guarantee. We answer the above question in the following theorem.

Theorem 3. Given a discretization scheme {δX ,t}Tt=0 satisfying (19a)-(19c), the difference between the discretized
value function and the optimal value function is bounded, for all t ∈ {1, . . . , T} and x̂t−1 ∈ X̂t−1 ∩Q(it−1)

t−1 , as
follows:

Ut (x̂t−1, it−1) ≤ Ût (x̂t−1, it−1) ≤ Ut (x̂t−1, it−1) + LcδX ,T +

T−1∑
τ=t

(Lc + Lv,τ+1)δX ,τ , (22)

Vt (x̂t−1, it) ≤ V̂t (x̂t−1, it) ≤ Vt (x̂t−1, it) + LcδX ,T +

T−1∑
τ=t

(Lc + Lv,τ+1)δX ,τ , ∀ it ∈ Nit−1
. (23)

Proof. See Appendix E.3.

Remark 5. Theorem 3 states that discretization introduces a drop in Player’s performance, assuming that the Oppo-
nent properly counteracts. Nonetheless, with a sufficiently fine mesh {δX ,τ}Tτ=t, the max-min performance Ût under
discretization does not deviate too much from the optimal max-min performance Ut.

As a direct consequence of Theorem 3, the following corollary provides error bounds for the game value after dis-
cretization. In the following, we denote the discretization scheme {δX ,t}Tt=0 as δX .

Corollary 1. The optimal game value Û0 (V,Q) due to discretization exceeds the optimal game value U0 (V,Q) by
at most

ε(δX ) =

T−1∑
τ=1

(Lc + Lv,τ+1)δX ,τ + Lv,1δX ,0 + LcδX ,T . (24)

Proof. See Appendix E.3.

Corollary 1 implies that with a proper discretization scheme δX , the Player’s performance computed using the dis-
cretized value functions decreases by at most ε(δX ) compared to the optimal performance U0 (V,Q). Furthermore,
the performance drop diminishes as the discretization sizes δX ,t approaches zero. Given a desired performance bound
ε, one discretization scheme that achieves the desired performance is given by

δX ,0 =
ε

(T + 1)Lv,1
, δX ,T =

ε

(T + 1)Lc
, δX ,t =

ε

(T + 1)(Lc + Lv,t+1)
, t ∈ {1, . . . , T − 1}. (25)

The following algorithm summarizes the procedure for computing the discretized optimal values. Based on the dis-
cretized values, the discretized optimal policies can be easily constructed via (31) and (32).

Algorithm 1: Solve Discretized Value Function
Inputs: An aCBC instance 〈G,Q, c,R, T 〉, desired suboptimality bound ε;

1 Compute the Lipscthiz constants Lc and LΘ;
2 Compute the discretization scheme δX via (25);
3 Construct meshes X̂ according to the computed δX and (19);
4 Compute the discretized optimal value functions under X̂ according to (20);
5 Return Discretized value functions V̂ and Û

9



5 Numerical Simulations

For the sake of simplicity, and for illustrative purposes, we consider an aCBC game on a two-dimensional space where
all sets are box sets. For some real numbers a1 < b1 and a2 < b2, we define the two-dimensional box set as the
Cartesian product [a1, b1]× [a2, b2]. With X also being a box in R2, the reachability correspondence is defined as:

R(x) = {y ∈ X : ‖x− y‖∞ ≤ ρ}, (26)

for some ρ > 0. Taking the Euclidean norm c (x,y) = ‖x − y‖2 as the cost function, one can verify that the cost
function c is 1-Lipschitz under the Manhattan distance. Furthermore, for all time steps t and for all it ∈ V , the
correspondance Θ

(it)
t is 1-Lipschitz continuous under the Hausdorff distance. The proofs of these facts are provided

in Lemma 9 and Lemma 13 in Appendix F. Given these Lipschitz constants, one can use (25) to derive the desired
discretization sizes δX for a given suboptimality bound ε.

Figure 4: An illustrative aCBC instance with nested convex regions. The left schematic gives the convex sets used for this problem
definition. The bottom right schematic shows the optimal policy found using discretization. The top right schematic shows the
2-node graph used in this scenario.

We first verify that the discretized algorithm indeed converges to the optimal solution. The “nested” convex region
example in Figure 4 has a simple optimal solution, where the Player starts at any point within the intersection of all
convex regions (marked in grey) and does not move. Under this optimal strategy, regardless of the actions of the
Opponent, the Player can achieve zero cost.

However, as the discretization mesh X̂t changes over time, there may not be a point that is a vertex for all intermediate
meshes. Consequently, the Player may move slightly from time to time under the computed optimal discretized policy,
incurring a discretization error (see the zoom-in plot in Figure 4). Since the optimal value U0 is zero, the discretized
value Û0 is exactly the discretization error. To verify that the discretization scheme in (25) indeed achieves the required
performance, we run Algorithm 1 with different ε values and plot the corresponding discretization errors in Figure 5.
One can see that the discretization error diminishes as ε approaches zero. Furthermore, the discretization error is
bounded by the desired error bound ε provided in Algorithm 1, which validates the bounds derived in (24).

Figure 5: suboptimality bound vs. actual error plot.
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Next, we present a more complicated scenario with a graph of three nodes and a two-step horizon, with reachable
sets of size ρ = 0.36. Figure 6 shows the convex regions Q and the graph G. If a convex region is selected by the
Opponent, it is filled with color. The darker color marks the intersection of the reachable sets and the corresponding
convex sets. For example, the darker region inQ(3)

2 depictsR(x1)∩Q(3)
2 , where x1 is the point selected inQ(1)

1 . The

Figure 6: The Max-Min trajectory from the discretized optimal policies.

trajectory (in black color) in Figure 6 is the max-min trajectory induced by the discretized optimal policies computed
under a desired error bound ε = 0.2. The trajectory of the Opponent is 1→ 1→ 3. One can see that at the initial time
step the Player selects a point close to the vertical mid-point of Q(1)

0 to balance the two possible convex regions Q(1)
1

andQ(3)
1 at the next time step. The Opponent is then indifferent regarding its next state selection between nodes 1 and

3. Similarly, at time step 1, the Player selects a horizontal mid-point in Q(1)
1 to balance between the convex regions

Q(1)
2 andQ(3)

2 that may be selected at time step 2. Finally, Figure 7 depicts the scenario when one of the agents slightly
deviates from its discretized optimal policy, leading to a suboptimal Û0. One can see an increase in the cost when the
Player deviates and a decrease in the cost when the Opponent deviates. Notice that when the Player deviates and does
not select a vertical mid-point in Q(1)

1 , the Opponent counteracts and selects Q(1)
3 to maximize the Player’s error.

Figure 7: Trajectories with unilateral deviation. The left figures shows the case when the Player deviates and the right figure shows
the case when the Opponent deviates.
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6 Conclusion

In this work, we have extended the convex body chasing problem to an adversarial setting, where a Player chases a
sequence of convex bodies assigned adversarially by an Opponent. We showed that under the assumption that the set
of convex bodies is finite and known to both agents, max-min optimal policies can be obtained, which have a stronger
performance guarantee than those in the classical CBC literature that use the competitive ratio. We showed how to
compute the optimal value of the game and proved its continuity under certain assumptions. A discretization scheme
has also been proposed to numerically solve for the value function of the game with performance guarantees for
the corresponding discretized policies. Numerical examples verified the theoretical developments. Future work will
address the case of the probabilistic selection of the Opponent of the convex sets, and the extension of the numerical
solution beyond box convex sets to address more realistic scenarios. We also plan to utilize this framework to introduce
a cost structure to adversarial resource allocation problems, such as the dynamic Defender-Attacker Blotto Games [17].
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Appendix A Proof of Lemma 1

Proof. From Defintion 3, it follows that Γ is upper semi-continuous (usc). Let the set-valued map F̃ : C  Y such
that F̃ (x) = F for all x ∈ C. Notice that Graph(F̃ ) = {(x, z) ∈ C × Y : z ∈ F̃ (x) = F} = C × F is closed in
X × Y . By Corollary 2.12 in [19], the correspondence Γ being usc with compact values on C and Graph(F̃ ) being
closed imply that Ξ : C  Y is usc.

It remains to show that Ξ is also lower semi-continuous (lsc) on C. Fix x ∈ C, and consider an open set E ⊆ Y
such that E ∩ Ξ(x) 6= ∅. Since F and Γ(x) are convex and closed, the set Ξ(x) is also closed and convex. By the
assumption that int(Ξ(x)) 6= ∅, E ∩ Ξ(x) 6= ∅ implies the open set E ∩ int(Ξ(x)) is also nonempty. Let now G be
a non-empty open set such that

G ⊆ E ∩ int(Ξ(x)) = E ∩ int(Γ(x) ∩ F ) ⊆ E ∩ (Γ(x) ∩ F ) = E ∩ Ξ(x). (27)

From (27), it follows that the non-empty open set G is a subset of Γ(x), hence Γ(x) ∩ G 6= ∅. By lower semi-
continuity of Γ on C, there exists a neighborhood H of x such that Γ(x′)∩G 6= ∅ for all x′ ∈ H . Since G ⊆ F from
(27), we also have

Γ(x′) ∩G = G ∩ Γ(x′) ∩ F = G ∩ Ξ(x′) 6= ∅. (28)
Furthermore, since G ⊆ E as shown in (27), it follows that E ∩ Ξ(x′) 6= ∅ for all x′ ∈ H . Therefore, for any open
set E ⊆ Y such that Ξ(x) ∩E 6= ∅, there exists a neighborhood H of x such that Ξ(x′) ∩E 6= ∅ for all x′ ∈ H . By
Definition 2, Ξ is lsc on C.

Finally, upper and lower semi-continuity of correspondence Ξ onC imply the continuity of Ξ onC by Definition 3.

Appendix B Proof of Theorem 1

Proof. We only need to show the continuity of the value functions Vt and Ut with t ≥ 1. We first prove the continuity
of the Player’s value function Vt by induction.

Base case: Consider t = T , fix i ∈ V and let j ∈ Ni. The continuity of cost function c : X × X → R and the
compactness of Θ

(j)
T (xT−1) imply that the infimum in (3) is attainable and finite for any fixed xT−1 ∈ Q(i)

T−1. Hence,
(3) can be written as

VT (xT−1, j) = min
xT ∈ Θ

(j)
T (xT−1)

c (xT−1,xT ).

From Lemma 4, we know that the compact-valued correspondence Θ
(j)
T is continuous on Q(i)

T−1. Together with the

continuity of the cost function c onQ(i)
T−1×X , Lemma 2 implies that the Player’s value function VT (·, j) : Q(i)

T−1 → R
is continuous.

Inductive hypothesis: Let some t ∈ {1, . . . , T − 1}, and suppose that Vt+1 (·, k) : Q(j)
t → R is continuous for all

j ∈ V and k ∈ Nj .

Induction step: Fix i ∈ V and let j ∈ Ni. We want to show that Vt (·, j) : Q(i)
t−1 → R is continuous. Since Vt+1 (·, k)

is always continuous on Q(j)
t for all k ∈ Nj , Lemma 5 implies that the function gt(·, j) : Q(j)

t → R characterized by

gt(xt, j) , max
k ∈ Nj

Vt+1 (xt, k)

in (10b) is also continuous. Together with the continuity of the cost function c on Q(i)
t−1 × Q

(j)
t , one can further

conclude that the function ft : Q(i)
t−1 ×Q

(j)
t → R characterized by

ft (xt−1,xt) , c (xt−1,xt) + gt(xt, j)

is also continuous. Since Θ
(j)
t (xt−1) is compact, the infimum in Vt (xt−1, j) is attainable and finite for all xt−1 ∈

Q(i)
t−1. Therefore, (4) can be written as

Vt (xt−1, j) = min
xt∈Θ

(j)
t (xt−1)

{
c (xt−1,xt) + max

k ∈ Nj

Vt+1 (xt, k)

}
= min

xt∈Θ
(j)
t (xt−1)

ft (xt−1,xt).

From the continuity of ft and the compact-valued correspondence Θ
(j)
t on Q(i)

t−1 × Q
(j)
t and Q(i)

t−1 respectively,
Lemma 2 implies that the Player’s value function Vt(·, j) is continuous on Q(i)

t−1. This completes the induction step.
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Based on the relation between Vt and Ut in Lemma 3, for all t ∈ {1, . . . , T} and i ∈ V , the continuity of Vt(·, j) on
Q(i)
t−1 for all j ∈ Ni implies the continuity of Ut(·, i) : Q(i)

t−1 → R as a direct consequence of Lemma 5.

B.1 Supporting Results for Theorem 1

Recall the following definition of the Player’s value function Vt.

Vt (xt−1, it) = inf
xt ∈ Θ

(it)
t (xt−1)

{
c (xt−1,xt) + max

it+1 ∈ Nit

Vt+1 (xt, it+1)

}
.

Notice that the optimization domain depends on xt−1, which is characterized by the correspondence Θ
(it)
t . In order to

show that Vt is continuous with respect to xt−1, we need to first ensure the continuity of the correspondence Θ
(it)
t .

The following lemma provides us with the desired continuity property of Θ
(it)
t .

Lemma 4. For all t ∈ {1, . . . , T} and it ∈ V , the correspondence Θ
(it)
t is continuous on Q(j)

t−1 for all j such that
it ∈ Nj .

Proof. Fix t ∈ {1, . . . , T} and it ∈ V . Under Assumptions 1 and 6, we know that the reachability correspondence
R : X  X is continuous, and R(x) is compact and convex. Under Assumptions 2 and 4, for the closed and convex
set Q(it)

t , we have int(R(xt−1) ∩ Q(it)
t ) 6= ∅ for all xt−1 ∈ Q(j)

t−1 where it ∈ Nj . The continuity of Θ
(it)
t then

follows directly from Lemma 1.

Lemma 5. Let X ⊆ Rd and N > 2, and let, for all i ∈ {1, . . . , N}, fi : X → R be continuous. Then, the function
fmax(x) = maxi∈{1,...,N} fi(x) is continuous.

Proof. The lemma can be easily proved using the identity max{a, b} = 1
2

(
(a+ b)− |a− b|

)
.

Appendix C Proof of Lemma 3

Lemma 3. For all t ∈ {1, . . . , T}, the Opponent value Ut (xt−1, it−1) is related to the Player value Vt (xt−1, it) via

Ut (xt−1, it−1) = max
it ∈ Nit−1

Vt (xt−1, it). (12)

Similarly, for all t ∈ {1, . . . , T − 1}, the Player value Vt (xt−1, it) is related to the Opponent value Ut+1 (xt, it) via

Vt (xt−1, it) = min
xt ∈ Θ

(it)
t (xt−1)

{c (xt−1,xt) + Ut+1 (xt, it)}. (13)

Furthermore, for t = 0,
U0 (G,Q) = max

i0 ∈ V
V0 (i0), (14)

V0 (i0) = min
x0 ∈Q

(i0)
0

U1 (x0, i0). (15)

Proof. We first apply induction to prove that (12) holds for all t ∈ {1, . . . , T} and it−1 ∈ V .

Base Case: At t = T , (10a) and (11a) directly imply that for all iT−1 ∈ V ,

UT (xT−1, iT−1) = max
iT ∈ NiT−1

VT (xT−1, iT ).

Inductive Hypothesis: Suppose at some t ∈ {2, . . . , T}, (12) holds for all it−1 ∈ V .

Induction Step: We want to show that (12) also holds for all it−2 ∈ V . It follows from (11b) that, for all it−2 ∈ V ,

Ut−1 (xt−2, it−2) = max
it−1 ∈ Nit−2

 min
xt−1 ∈ Θ

(it−1)

t−1 (xt−2)

{c (xt−2,xt−1) + Ut (xt−1, it−1)}

 .
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Replacing Ut (xt−1, it−1) in the above equation with the assumed relation in the inductive hypothesis and combining
with (10b), yields

Ut−1 (xt−2, it−2) = max
it−1 ∈ Nit−2

 min
xt−1 ∈ Θ

(it−1)

t−1 (xt−2)

{c (xt−2,xt−1) + max
it ∈ Nit−1

Vt (xt−1, it)}


= max
it−1 ∈ Nit−2

Vt−1 (xt−2, it−1).

We conclude that (12) holds for all it−2 ∈ V , which completes the induction step.

Furthermore, we have that U1 (x0, i0) = maxi1 ∈ Ni0
V1 (x0, i1) for all i0 ∈ V . By expressing U1 in terms of V1,

(10c) and (11c) directly indicate U0 (V,Q) = maxi0 ∈ V V0 (i0). After proving the relation in (12) and (14), the
Opponent value’s relation to the Player value represented by (13) and (15) are direct consequences of substituting (12)
into (10b) and (10c) respectively.

Appendix D Proof of Theorem 2

Proof. We will only prove the above result for Vt through induction since the case for Ut can be easily obtained from
the relations between Vt and Ut using Lemma 7.

Base case: Let t = T , and let iT−1 ∈ V and iT ∈ NiT−1
. From Assumption 4, we know that Θ

(iT )
T (x) 6= ∅ for all

x ∈ Q(iT−1)
T−1 . Then, for all xT−1, x′T−1 ∈ Q

(iT−1)
T−1 ,we have∣∣VT (xT−1, iT )− VT (x′T−1, iT )

∣∣ =

∣∣∣∣∣ min
xT∈Θ

(iT )

T (xT−1)

c(xT−1,xT )− min
x′T∈Θ

(iT )

T (x′T−1)

c(x′T−1,x
′
T )

∣∣∣∣∣
≤

∣∣∣∣∣ min
xT∈Θ

(iT )

T (xT−1)

c(xT−1,xT )− min
xT∈Θ

(iT )

T (xT−1)

c(x′T−1,xT )

∣∣∣∣∣︸ ︷︷ ︸
A

+

∣∣∣∣∣ min
xT∈Θ

(iT )

T (xT−1)

c(x′T−1,xT )− min
x′T∈Θ

(iT )

T (x′T−1)

c(x′T−1,x
′
T )

∣∣∣∣∣︸ ︷︷ ︸
B

.

By Assumption 7, we have
∣∣c(xT−1,xT )− c(x′T−1,xT )

∣∣ ≤ Lc
∥∥xT−1 − x′T−1

∥∥ for all xT ∈ Θ
(iT )
T (xT−1). Con-

sequently, and since Θ
(iT )
T (xT−1) is compact, Lemma 6 implies that A ≤ Lc

∥∥xT−1 − x′T−1

∥∥. Since c (x′T−1, ·) is
Lipschitz continuous with respect to xT ∈ Q(iT )

T and the compact-valued correspondence Θ
(iT )
T is Lipschitz under the

Hausdorff distance by Assumption 8, Lemma 8 implies that B ≤ LΘLc
∥∥xT−1 − x′T−1

∥∥. Consequently, we have∣∣VT (xT−1, iT )− VT (x′T−1, iT )
∣∣ ≤ Lc(1 + LΘ)

∥∥xT−1 − x′T−1

∥∥ = Lv,T
∥∥xT−1 − x′T−1

∥∥ .
Inductive Hypothesis: Suppose at some t ∈ {1, . . . , T − 1}, Vt+1 (·, it+1) is Lv,t+1-Lipschitz continuous onQ(it)

t for
all it ∈ V and it+1 ∈ Nit .

Induction Step: Fix it−1 ∈ V and let it ∈ Nit−1
. Recalling (10b), we have

Vt (xt−1, it) = min
xt∈Θ

(it)
t (xt−1)

{
c (xt−1,xt) + max

it+1∈Nit

Vt+1(xt, it+1)

}
.

From the inductive hypothesis and Lemma 7, we have that Ut+1(xt, it) = maxit+1∈Nit
{Vt+1(xt, it+1)} is also

Lv,t+1-Lipschitz with respect to xt ∈ Q(it)
t . By repeating the process as in the base case using Lemma 6 and

Lemma 8, and combining with the fact that c is Lc-Lipschitz continuous with respect to xt yields that Vt(xt−1, it) is
Lipschitz continuous with Lipschitz constant (Lc + Lv,t+1)(1 + LΘ). Plugging in the expression of Lv,t+1, finally
yields

Lv,t = (Lc + Lv,t+1)(1 + LΘ) = (Lc + Lc

T−t∑
k=1

(1 + LΘ)k)(1 + LΘ) = Lc

T−t+1∑
k=1

(1 + LΘ)k,

which completes the induction.
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D.1 Supporting Results for Theorem 2

Lemma 6. Let a compact set X ⊆ Rd and continuous functions f, g : X → R. Let ε ≥ 0, and suppose that, for all
x ∈ X , |f(x)− g(x)| ≤ ε. Then, |minx∈X f(x)−minx∈X g(x)| ≤ ε.

Proof. Let x̂ ∈ argminx∈X f(x). It follows that

min
x∈X

g(x)− ε ≤ g(x̂)− ε ≤ f(x̂) = min
x∈X

f(x).

Similarly, let x̃ ∈ argminx∈X g(x), so that

min
x∈X

f(x) ≤ f(x̃) ≤ g(x̃) + ε = min
x∈X

g(x) + ε.

In follows immediately that ∣∣∣min
x∈X

f(x)−min
x∈X

g(x)
∣∣∣ ≤ ε.

Lemma 7. Let X ⊆ Rd and N > 2, and let fi : X → R be Li-Lipschitz continuous for all i ∈ {1, . . . , N}. Then, the
function fmax(x) = maxi∈{1,...,N} fi(x) is L-Lipschitz continuous with L = maxi Li.

Proof. We will only prove the case where N = 2. The case N > 2 can be shown by induction. Let x,x′ ∈ X . By the
Lipschitz continuity of f1 and f2 we have that

f1(x′) ≤ f1(x) + L1 ‖x− x′‖ ≤ fmax(x) + L ‖x− x′‖ ,
f2(x′) ≤ f2(x) + L2 ‖x− x′‖ ≤ fmax(x) + L ‖x− x′‖ .

It follows that
fmax(x′) ≤ fmax(x) + L ‖x− x′‖ .

By symmetry, we also have fmax(x) ≤ fmax(x′) + L ‖x− x′‖, and consequently the function fmax is L-Lipschitz
continuous.

Lemma 8. Consider a Lipschitz continuous function f : Y → R with Lipschitz constant Lf and a compact-valued
correspondence Γ : X  Y , which is Lipschitz continuous under the Hausdorff distance with Lipschitz constant
LΓ. Then, the real-valued function ψ(x) = miny∈Γ(x) f(y) is also Lipschitz continuous with Lipschitz constant of
Lψ = LfLΓ.

Proof. Let x,x′ ∈ X . It follows that

|ψ(x)− ψ(x′)| =
∣∣∣∣ min
y∈Γ(x)

f(y)− min
y∈Γ(x′)

f(y)

∣∣∣∣ .
The continuity of f and the compactness of Γ(x) imply that the set of minima of f over the domain (Γ(x) ∪ Γ(x′))
is non-empty. Consequently, the minimum can be attained in either Γ(x), Γ(x′), or both. Without loss of generality,
consider the case where the minimum is attained in Γ(x). Formally,(

argmin
y∈Γ(x)∪Γ(x′)

f(y)

)
∩ Γ(x) 6= ∅.

In this case, there exists y∗ ∈ Γ(x) such that

f(y∗) = min
y∈Γ(x)

f(y) = min
y∈Γ(x)∪Γ(x′)

f(y) ≤ min
y∈Γ(x′)

f(y),

which implies that

|ψ(x)− ψ(x′)| = min
y∈Γ(x′)

f(y)− min
y∈Γ(x)

f(y) = min
y∈Γ(x′)

f(y)− f(y∗).

From the Lipschitz continuity of the correspondence Γ and the definition of the Hausdorff distance, we have

inf
y∈Γ(x′)

‖y∗ − y‖ ≤ distH(Γ(x′),Γ(x)) ≤ LΓ ‖x− x′‖ .
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By the compactness of Γ(x′), there exists ỹ ∈ Γ(x′) such that

‖y∗ − ỹ‖ = inf
y∈Γ(x′)

‖y∗ − y‖ ≤ LΓ ‖x− x′‖ .

Together with the Lipschitz continuity of the function f , we conclude that, for all x, x′ ∈ X ,

|ψ(x)− ψ(x′)| = min
y∈Γ(x′)

f(y)− f(y∗) ≤ f(ỹ)− f(y∗) ≤ Lf ‖ỹ − y∗‖ ≤ LΓLf ‖x− x′‖ .

Appendix E Theoretical Results on Discretization

E.1 Discretized Value Functions

The following are the propagation rules for the discretized Player value functions. Notice that the x-argument domain
and the x-optimization domain of the discretized value functions are characterized by the discretized state spaces
{X̂t}Tt=0.

V̂T (x̂T−1, iT ) = min
x̂T ∈ X̂T ∩Θ

(iT )

T (x̂T−1)

c (x̂T−1, x̂T ), (29a)

V̂t (x̂t−1, it) = min
x̂t ∈ X̂t ∩Θ

(it)
t (x̂t−1)

{
c (x̂t−1, x̂t) + max

it+1 ∈Nit

V̂t+1 (x̂t, it+1)

}
, ∀ t = 1, . . . , T − 1, (29b)

V̂0 (i0) = min
x̂0 ∈ X̂0 ∩Q

(i0)
0

max
i1 ∈ Ni0

V̂1 (x̂0, i1). (29c)

Similarly,

ÛT (x̂T−1, iT−1) = max
iT ∈NiT−1

{
min

x̂T ∈ X̂T ∩Θ
(iT )

T (x̂T−1)

c (x̂T−1, x̂T )

}
, (30a)

Ût (x̂t−1, it−1) = max
it ∈Nit−1

{
min

x̂t ∈ X̂t ∩Θ
(it)
t (x̂t−1)

{c (x̂t−1, x̂t) + Ût+1 (x̂t, it)}

}
, ∀ t = 1, . . . , T − 1, (30b)

Û0 (V,Q) = max
i0 ∈V

min
x̂0 ∈ X̂0 ∩Q

(i0)
0

Û1 (x̂0, i0). (30c)

E.2 Discretized Policies

The discretized optimal Player policies are defined as

π̂∗T (x̂T−1, iT ) ∈ argmin
x̂T ∈ X̂T ∩Θ

(iT )

T (x̂T−1)

c (x̂T−1, x̂T ), (31a)

π̂∗t (x̂t−1, it) ∈ argmin
x̂t ∈ X̂t ∩Θ

(it)
t (x̂t−1)

{c (x̂t−1, x̂t) + Ût+1 (x̂t, it)}, ∀ t = 1, . . . , T − 1, (31b)

π̂∗0 (i0) ∈ argmin
x̂0 ∈ X̂0 ∩Q

(i0)
0

Û1 (x̂0, i0). (31c)

Similarly, the optimal discretized Opponent policy is defined as

σ̂∗T (x̂t−1, it−1) ∈ argmax
it ∈Nit−1

V̂t (x̂t−1, it), ∀ t = 1, . . . , T, (32a)

σ̂∗0 (G,Q) ∈ argmax
i0 ∈V

V̂0 (i0). (32b)

E.3 Discretization Error Bounds

Theorem 3. Given a discretization scheme {δX ,t}Tt=0 satisfying (19a)-(19c), the difference between the discretized
value function and the optimal value function is bounded, for all t ∈ {1, . . . , T} and x̂t−1 ∈ X̂t−1 ∩Q(it−1)

t−1 , as
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follows:

Ut (x̂t−1, it−1) ≤ Ût (x̂t−1, it−1) ≤ Ut (x̂t−1, it−1) + LcδX ,T +

T−1∑
τ=t

(Lc + Lv,τ+1)δX ,τ , (22)

Vt (x̂t−1, it) ≤ V̂t (x̂t−1, it) ≤ Vt (x̂t−1, it) + LcδX ,T +

T−1∑
τ=t

(Lc + Lv,τ+1)δX ,τ , ∀ it ∈ Nit−1
. (23)

Proof. We will prove this theorem by induction.

Base case: Let t = T , let iT−1 ∈ V , and x̂T−1 ∈ X̂T−1 ∩ Q(iT−1)
T−1 , and let iT ∈ NiT−1

. From (10a) and (29a), we
have that

VT (x̂T−1, iT ) ≤ V̂T (x̂T−1, it).

Let x∗T ∈ argmin
xT∈Θ

(iT )

T (x̂T−1)
c (x̂T−1,xT ) be the optimal Player action at time T . It follows from (19c) and the

Lipschitz continuity of the cost function c that there exists x̂∗T ∈ X̂T ∩Θ
(iT )
T (x̂T−1) such that

|c (x̂T−1,x
∗
T )− c (x̂T−1, x̂

∗
T )| ≤ LcδX ,T .

Consequently, using (10a) and (29a), we have

V̂T (x̂T−1, iT ) ≤ VT (x̂T−1, iT ) + LcδX ,T .

Using Lemma 3, it can be easily obtained that

UT (x̂T−1, iT−1) ≤ ÛT (x̂T−1, iT−1) ≤ UT (x̂T−1, iT−1) + LcδX ,T .

Inductive Hypothesis: Suppose at some time step t ∈ {2, . . . , T}, (22) and (23) hold for all x̂t−1 ∈ X̂t−1 ∩Q(it−1)
t−1 .

Induction Step: For ease of notation, we first define

ε̂t = LcδX ,T +

T−1∑
τ=t

(Lc + Lv,τ+1)δX ,τ .

Now fix it−2 ∈ V and x̂t−2 ∈ X̂t−2 ∩ Q(it−2)
t−2 , and let it−1 ∈ Nit−2

. From the inductive hypothesis and (29b), it
follows that

Vt−1 (x̂t−2, it−1) ≤ V̂t−1 (x̂t−2, it−1).

Moreover, notice that

V̂t−1 (x̂t−2, it−1) ≤ min
x̂t−1 ∈ X̂t−1 ∩Θ

(it−1)

t−1 (x̂t−2)

{c (x̂t−2, x̂t−1) + Ut (x̂t−1, it−1)}+ ε̂t

≤ Vt−1 (x̂t−2, it−1) + (Lc + Lv,t)δX ,t−1 + ε̂t
= Vt−1 (x̂t−2, it−1) + ε̂t−1,

where the first inequality is the result of (29b) from the inductive hypothesis on Ût. The second inequality is a
consequence of (19c) from the Lipschitz continuity of Ut and c with respect to x̂t−1-argument.

Using a similar argument as in the base case, we then have

Ût−1 (x̂t−2, it−2) ≤ Ut−1 (x̂t−2, it−2) ≤ Ût−1 (x̂t−2, it−2) + ε̂t−1.

This completes the induction.

Corollary 1. The optimal game value Û0 (V,Q) due to discretization exceeds the optimal game value U0 (V,Q) by
at most

ε(δX ) =

T−1∑
τ=1

(Lc + Lv,τ+1)δX ,τ + Lv,1δX ,0 + LcδX ,T . (24)
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Proof. Fix i0 ∈ V . From Lemma 3 we have

V0 (i0) = min
x0 ∈Q

(i0)
0

U1 (x0, i0), (33)

V̂0 (i0) = min
x̂0 ∈ X̂0 ∩Q

(i0)
0

Û1 (x̂0, i0). (34)

Combining the above value function relations with (22) in Theorem 3, we have

V0 (i0) ≤ min
x̂0 ∈ X̂0 ∩Q

(i0)
0

U1 (x̂0, i0) ≤ V̂0 (i0),

and

V̂0 (i0) ≤ min
x̂0 ∈ X̂0 ∩Q

(i0)
0

U1 (x̂0, i0) + LcδX ,T +

T−1∑
τ=1

(Lc + Lv,τ+1)δX ,τ (35)

≤ V0 (i0) + Lv,1δX ,0 + LcδX ,T +

T−1∑
τ=1

(Lc + Lv,τ+1)δX ,τ . (36)

Inequality (35) is the result of (22) in Theorem 3, while inequality (36) results from (19b) and the Lipschitz continuity
of U1 with respect to the x̂0-argument. Therefore, for all i0 ∈ V , we have

V0 (i0) ≤ V̂0 (i0) ≤ V0 (i0) + Lv,1δX ,0 + LcδX ,T +

T−1∑
τ=1

(Lc + Lv,τ+1)δX ,τ .

Using the relation between Û0 and V̂0 one easily arrives at

U0 (V,Q) ≤ Û0 (V,Q) ≤ U0 (V,Q) + Lv,1δX ,0 +

T−1∑
τ=1

(Lc + Lv,τ+1)δX ,τ + LcδX ,T .

Appendix F Proofs Related to the Numerical Simulations

In the numerical simulation example, the state space X and the given convex sets Q are both assumed to be two-
dimensional boxes of the form of [a, b] × [c, d] where a < b and c < d. The reachability correspondence R on X is
defined via the∞-norm as in (26).
Lemma 9. Let the cost be defined by c(x,y) = ‖x − y‖2. This cost is 1-Lipschitz continuous, that is, for all
(x,y), (x′,y′) ∈ X × X ,

|c (x,y)− c (x′,y′)| ≤ (‖x− x′‖2 + ‖y − y′‖2).

Proof. For all (x,y), (x′,y′) ∈ X × X , using the Triangle Inequality, we have that

|c (x,y)− c (x′,y′)| = |‖x− y‖2 − ‖x
′ − y′‖2|

≤ ‖x− y − x′ + y′‖2
≤ ‖x− x′‖2 + ‖y − y′‖2 .

Lemma 10 and Lemma 11 below are needed to prove the Lipschitz continuity of the reachability correspondence R
and the intersection correspondence Θ

(i)
t .

Lemma 10. Let P and Q be boxes in Rd such that P ∩Q 6= ∅. Then, for all q ∈ Q,

argmin
p∈P

‖p− q‖2 ⊆ P ∩Q. (37)

Consequently,
min
p∈P

‖p− q‖2 = min
p∈P ∩Q

‖p− q‖2 . (38)
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Proof. Since P and Q are boxes in Rd, we can write

P =

d∏
k=1

[ak, bk], Q =

d∏
k=1

[ck, dk],

for some ak < bk and ck < dk. Since boxes and norms are compact and continuous, respectively, it
follows that argminp∈P ‖p− q‖2 6= ∅ for all q ∈ Q. Finding minp∈P ‖p− q‖2 is equivalent to finding
minpk ∈ [ak,bk] |pk − qk| for all k ∈ {1, . . . , d}. Moreover, P ∩ Q 6= ∅ implies that [ak, bk] ∩ [ck, dk] 6= ∅ for
all k ∈ {1, . . . , d}.
Now, fix q ∈ Q. Let p̂ ∈ argminp∈P ‖p− q‖2 and let K = {k ∈ {1, . . . , d} : qk /∈ [ak, bk]}. For all k ∈ K, we
have

p̂k ∈ argmin
pk ∈ [ak,bk]

|pk − qk| ⊆ {ak, bk}.

Since [ak, bk] ∩ [ck, dk] 6= ∅, then at least one of ak and bk is within the interval [ck, dk]. We will next show that,
for all k ∈ K, p̂k ∈ [ck, dk]. Without loss of generality, assume bk ∈ [ck, dk] and ak /∈ [ck, dk]. Since ak < bk,
bk ∈ [ck, dk] and ak /∈ [ck, dk], then ak < ck ≤ bk < qk ≤ dk, implying that qk − ak > qk − bk > 0. Therefore,
bk ∈ argminpk ∈ [ak,bk] |pk − qk|, we have p̂k = bk. We conclude that, for all k ∈ K, we have p̂k ∈ [ak, bk] ∩ [ck, dk].

For all k ∈ {1, . . . , d} such that qk ∈ [ak, bk], one can easily observe that p̂k = qk. Hence, p̂k ∈ [ak, bk] ∩ [ck, dk].
Finally, for fixed q ∈ Q, let p̂ ∈ argminp∈P ‖p− q‖2. We then have

p̂ ∈
d∏
k=1

([ak, bk] ∩ [ck, dk]) =

(
d∏
k=1

[ak, bk]

) ⋂ (
d∏
k=1

[ck, dk]

)
= P ∩Q.

This proves (37), which further implies (38).

Lemma 11. The correspondence A : Rd  Rd defined as

A(x) = {y ∈ Rd : ‖y − x‖∞ ≤ ρ}, (39)

is 1-Lipschitz continuous under the Hausdorff distance.

Proof. From (39), one can write A(x) as

A(x) =

d∏
k=1

[xk − ρ, xk + ρ] , (40)

which is a box in Rd. Let x,x′ ∈ Rd, and let h = x′ − x. Notice that A(x′) = A(x) + h, which implies that there
exists y′ ∈ A(x′) such that ‖y − y′‖2 = ‖h‖2 for all y ∈ A(x). Consequently,

min
y′∈A(x′)

‖y − y′‖2 ≤ ‖x− x′‖2 ,

which further implies that
max

y∈A(x)
min

y′∈A(x′)
‖y − y′‖2 ≤ ‖x− x′‖2 .

In a similar way, one can also show that

max
y′∈A(x′)

min
y∈A(x)

‖y − y′‖2 ≤ ‖x− x′‖2 .

From Definition 4, we have that, for all x,x′ ∈ Rd,

distH (A(x),A(x′)) ≤ ‖x− x′‖2 .

This completes the proof.

Lemma 12. The reachability correspondence R : X  X in (26) is 1-Lipschitz continuous under the Hausdorff
distance. That is, for all x,x′ ∈ X ,

distH (R(x),R(x′)) ≤ ‖x− x′‖2 .
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Proof. From (26) and (39) one can writeR(x) as follows:

R(x) =

(
d∏
k=1

[xk − ρ, xk + ρ]

)
∩ X = A(x) ∩ X ,

where A(x) and X are both boxes in Rd. For all x,x′ ∈ X , one obtains that x ∈ R(x) and x′ ∈ R(x′). Therefore,
A(x) ∩ X and A(x′) ∩ X are both non-empty. From Lemma 10, and for all y′ ∈ X , we have that

min
y∈A(x)

‖y − y′‖2 = min
y∈R(x)

‖y − y′‖2 .

Combining the above results, along with Lemma 11, we have, for all y′ ∈ R(x′), that
min

y∈R(x)
‖y − y′‖2 ≤ max

y′∈R(x′)
min

y∈R(x)
‖y − y′‖2

= max
y′∈R(x′)

min
y∈A(x)

‖y − y′‖2

≤ max
y′∈A(x′)

min
y∈A(x)

‖y − y′‖2

≤ ‖x− x′‖2 .
In a similar manner, one can also show that

max
y∈R(x)

min
y′∈R(x′)

‖y − y′‖2 ≤ ‖x− x′‖2 .

In conclusion, for all x,x′ ∈ X , we have
distH (R(x),R(x′)) ≤ ‖x− x′‖2 ,

thus completing the proof.

Lemma 13. For all t ∈ {1, . . . , T} and for all it ∈ V , the intersection correspondence Θ
(it)
t is 1-Lipschitz under the

Hausdorff distance. That is,

distH

(
Θ

(it)
t (x),Θ

(it)
t (x′)

)
≤ ‖x− x′‖2 , ∀ x,x′ ∈ Q(j)

t−1, where it ∈ Nj .

Proof. Fix t ∈ {1, . . . , } and it ∈ V . Notice that both Q(it)
t and R(x) are boxes in X , which implies that the

intersection Θ
(it)
t (x) is also a box in X . Let ‖x− x′‖2 = η. From Lemma 12 we have

distH (R(x),R(x′)) ≤ η. (41)
For ease of notation, define the following set

(R(x′))η = {z′ ∈ Rd : min
y′∈R(x′)

‖z′ − y′‖2 ≤ η}.

From the definition of the Hausdorff distance, (41) implies that R(x′) ⊆ (R(x))η and R(x) ⊆ (R(x′))η . It follows

from the definition of Θ
(it)
t (x) that

Θ
(it)
t (x) = R(x) ∩Q(it)

t ⊆ (R(x′))η ∩Q
(it)
t .

SinceR(x′) ∩Q(it)
t 6= ∅, Lemma 10 implies that for all z′ ∈ (R(x′))η ∩Q

(it)
t ,

min
y′∈R(x′)

‖z′ − y′‖2 = min
y′∈R(x′)∩Q(it)

t

‖z′ − y′‖2 ≤ η.

Therefore, Θ
(it)
t (x) ⊆ (R(x′))η ∩Q

(it)
t ⊆

(
Θ

(it)
t (x′)

)
η
, which further indicates that

max
y∈Θ

(it)
t (x)

min
y′∈Θ

(it)
t (x′)

‖y − y′‖2 ≤ η.

Using a similar approach, one can also show that
max

y′∈Θ
(it)
t (x′)

min
y∈Θ

(it)
t (x)

‖y − y′‖2 ≤ η.

Finally, we have that
distH

(
Θ

(it)
t (x),Θ

(it)
t (x′)

)
≤ η = ‖x− x′‖2 .
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