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Abstract— A new motion planning framework for automated
highway merging is presented in this paper. To plan the merge
and predict the motion of the neighboring vehicle, the ego
automated vehicle solves a joint optimization of both vehicle
costs over a receding horizon. The non-convex nature of feasible
regions and lane discipline is handled by introducing integer
decision variables resulting in a mixed integer quadratic pro-
gramming (MIQP) formulation of the model predictive control
(MPC) problem. Furthermore, the ego uses an inverse optimal
control approach to impute the weights of neighboring vehicle
cost by observing the neighbor’s recent motion and adapts its
solution accordingly. We call this adaptive interactive mixed
integer MPC (aiMPC). Simulation results show the effectiveness
of the proposed framework.

I. INTRODUCTION

One of the major challenges in autonomous driving is
anticipation of neighboring vehicles’ (NV) behavior. The
actions of the ego vehicle affect and are affected by the
actions of neighboring vehicles [1]. This mutual influence
of driving behavior is called interaction.

The motion planning problem in vehicle merging is par-
ticularly a problem where the coupling is significant as there
is a strong mutual influence between the ego vehicle and
its neighbor(s). Unilateral ‘pipeline’ based approaches do
not consider the ability of the ego to influence the trajec-
tory of the NV. Common unilateral approaches [2] include
assumption of constant speed, constant acceleration, speed-
dependent acceleration or intention sharing by NV through
V2V connectivity [3]. The deviations from reality may be
handled through probabilistic models [4], [5]. However, these
approaches tend to be conservative since the motion plans are
computed based on models of NV as if it acts in isolation.
On the other hand, intention sharing through V2V communi-
cation involves practical challenges. The NV may not follow
its shared intentions and it may be impractical in highway
scenarios where intention sharing may not be possible due
to the lack of network availability. Authors in some of
the previous research work have recognized this limitation
of traditional motion planning approaches. [6] presented a
joint collision avoidance approach for robots. [7] presents
an interactive merge management system with a relatively
coarse decision space. It considers only the longitudinal
control of the ego vehicle and does not incorporate system
constraints explicitly.
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Inspired by recent research [8], [9], in this paper we
present an optimal control and inverse optimal control based
method for interactive motion planning in automated driv-
ing highway merging. Our method not only incorporates
the interactions, but also adapts the joint optimization cost
function based on observation of the actual trajectory of
the NV, online. Our hypothesis is that the nature of the
NV is defined by weight it places on various terms in its
cost function. These weights need to be estimated online
through trajectory observations. To facilitate this, we harness
the inverse optimization theory presented in [10].

Figure 1 visually represents our method when there is a
single NV. The ego (blue) vehicle observes the immediate
NV (red) for a few time instants and using the observed
trajectory, imputes a cost function. It then utilizes this
imputed cost function in a joint mixed integer MPC resulting
in an interactive predictive control strategy. Our proposed
framework requires only the current states of the NV which
may be obtained either via V2V connectivity or on-board
sensors. This makes the approach applicable to scenarios
involving unconnected vehicles and out of network-coverage
areas.

The paper is organized as follows: Section II presents the
interactive joint MPC problem formulation. The simulation
model of the NV is also presented. Next, in section III we
briefly discuss the inverse optimization theory for online
estimation of NV’s cost function and its implementation in
the paper. Finally, in section IV we present simulation results
that show the effectiveness of our proposed framework
in online estimation of NV’s behavior, interactive motion
planning and executing safe merging.

Fig. 1: Schematic diagram of the proposed framework
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II. INTERACTION MODELING

In order to capture the interaction, we formulate the
motion planning problem as a joint mixed-integer quadratic
program (MIQP), solved in a receding horizon fashion via
MPC. The cost terms associated with the NV are adapted
online and therefore, we call this adaptive interactive mixed-
integer MPC (aiMPC).

min
uego,uNV ,σlogic

k+N−1

∑
i=k

Jego(xego(i),uego(i))

+ JNV (α,xNV (i),uNV (i))+ JTerminal

(1a)

s.t. xego(i+1) = Adxego(i)+Bduego(i) (1b)
xNV (i+1) = Ad,NV xNV (i)+Bd,NV uNV (i) (1c)

xvehicle(i) ∈ X f ree (1d)
uvehicle(i) ∈ U (1e)

σlogic(i) ∈ {0,1} (1f)

where, Jvehicle, xvehicle, uvehicle and σlogic are the quadratic
cost, states, controls and logical variables respectively with
vehicle ∈ {ego,NV}. α is the vector of weights estimated
online, X f ree is the safe region to avoid collision and U is
the set of admissible controls.

The aiMPC formulation is based on [3]. However, unlike
[3], in this paper we do not assume that the intention of the
NV is shared with the ego. Instead, the joint cost, dynamics
and collision avoidance constraints predict the trajectory
of the ego and NV - capturing the mutual influence over
the MPC horizon. The states of the NV are re-initialized
according to the actual observation at every time step. This
acts as feedback to the controller.

A. The Cost Function

The cost function of the aiMPC includes the cost function
of the ego as well as the NV. In this work, we limit our
analysis to one NV, but the framework can be extended
to multiple immediate NVs. The cost function used here
assumes that the vehicles have already been assigned a
driving schedule which translates to reference velocity and
position. This is consistent with the literature [11] and
involves minimizing the difference between the actual and
reference state.

Jego = qs,ego(sego− sre f )
2 +qv,ego(vego− vre f )

2+

qa,egoa2
ego +ql,ego(lego− lre f )

2 +qa,egou2
a,ego

(2a)

JNV = αs(sNV − sre f ,NV )
2 +αv(vNV − vre f ,NV )

2 +αaa2
NV
(2b)

B. Vehicle Model

Since this is a high level motion planner, consistent with
the state of the art, we use a moderate fidelity kinematic
model.

1) Ego: The model we use for the ego vehicle was
developed by Dollar et al [3] and decouples the lateral and
longitudinal dynamics.

d
dt


s
v
a
l
rl

=


0 1 0 0 0
0 0 1 0 0
0 0 − 1

τ
0 0

0 0 0 0 1
0 0 0 −ω2

n −2ζ ωn




s
v
a
l
rl

+


0 0
0 0
1
τ

0
0 0
0 Kω2

n


[

ua
ul

]

(3)
The vehicle’s longitudinal motion is considered as a dou-

ble integrator with the states being position, velocity and
acceleration, [s,v,a], and time constant τ , while the lateral
motion is cast as a second-order critically damped system
with [l,rl ] being the lateral lane position and rate of change
of lane respectively. ζ is the damping ratio, K is the gain
and ωn is the natural frequency. The control inputs are
longitudinal acceleration ua and lane command ul . It may be
specified that ul is an integer equal to the commanded lane
number. We discretize these dynamics when implementing in
the controller as xego(k+ 1) = Adxego(k)+Bduego(k) where
xego = [s v a l rl ]

T and uego = [ua ul ]
T .

2) NV: The dynamics of the NV (used in joint optimiza-
tion by ego) are modeled as,

d
dt

sNV
vNV
aNV

=

0 1 0
0 0 1
0 0 − 1

τ

sNV
vNV
aNV

+
0

0
1
τ

uNV (4)

These continuous time dynamics are discretized as
xNV (k + 1) = Ad,NV xNV (k) + Bd,NV uNV (k) where xNV =
[s v a]T and uNV is the longitudinal acceleration control. In
this work we assume that the NV drives in its own lane.

TABLE I: Model parameters

Parameter Value

τ 0.275 s
ωn 1.091 rad/s
ζ 1
K 1

C. Joint Collision Avoidance Constraints

The drive-able region X f ree is non-convex. If in the same
lane as NV, the ego vehicle either needs to be ahead of the
front of NV or behind the rear of NV. We utilize the Big M
method [12] to convert this OR constraint to AND, making
it suitable for mixed integer programming.

sego− sNV −Mβ
NV
l −Mµl ≥ (L+gap)−2M (5a)

sNV − sego +Mβ
NV
l −Mµl ≥ (L+gap)−M (5b)

In equation (5), we introduce the logical decision variables
β NV

l and µl . β NV
l is the front-rear indicator. The choice of 1

places ego ahead of the NV in lane l and 0 places it behind.
µl is the lane indicator. If set to 1, ego resides in the lane l
and if set to 0 it does not. In effect, the equation (5a) ensures



that ego maintains a distance equal to the vehicle length L
plus a desired gap ahead of the NV when it is placed in the
same lane and ahead of NV. When this is the case, (5b) gets
inactive. On the other hand, when ego resides behind NV,
(5b) ensures that it maintains L+ gap behind it while (5a)
gets inactive.

D. Control Admissibility

The acceleration control admissibility constraints combine
velocity with the acceleration command to prevent operation
in mechanically infeasible regions [13].

ua ≥ ua,min (6a)
ua ≤ m1v+b1 (6b)
ua ≤ m2v+b2 (6c)

Here, the maximal acceleration is velocity dependent and (6)
is a convex approximation to the feasible region.

E. Simulating the Neighbor

For this work, we simulate the NV as controlled by an
MPC which solves the following quadratically constrained
quadratic program (QCQP)

min
uactual

NV

k+T−1

∑
i=k

JNV (q,xNV (i),xego(i),uactual
NV (i)) (7a)

s.t. xNV (k+1) = Ad,NV xNV (k)+Bd,NV uactual
NV (k) (7b)

xego(i+1) = gpro jection(xego(i)) (7c)
xNV (i) ∈X f ree (7d)

uactual
NV (i) ∈U (7e)

X f ree
.
=

(sNV (i)− sego(i))2

a2 +
(lNV (i)− lego(i))2

b2 ≥ 1 (7f)

Physically, this translates to the NV projecting the ego
vehicle into the future to predict its trajectory over the hori-
zon via the gpro jection() function. This function determines
the future longitudinal and lateral position of the ego from
the current observed states. In this work, we assume that the
NV projects the ego by holding the current longitudinal (v)
and lateral (rl) velocity constant over the horizon. The NV
controller also maintains a safety distance from the ego by
ensuring that it lies outside an ellipse encapsulating the ego
with semi-major axis a, semi-minor axis b and centered on
the ego. Other expressions have the same meaning as before
while it may be noted that uactual

NV is the actual control applied
by NV which is not available to the ego.

III. ESTIMATING NEIGHBOR BEHAVIOR

Inspired by previous research [8], we aim to estimate
the behavior of the neighboring vehicle (NV) online by
observing its trajectory. In the present problem, we define
behavior based on weights associated with various terms in
the cost function of the NV. Our approach imputes [10] these
cost parameters (weights) based on the observed trajectory
(data).

A. Background

In order to keep the paper reasonably self contained, we
give a brief background on imputing a convex objective
function from data. The detailed theory can be found in [10].

The aim is to fit a convex forward optimization problem
(8) to the observed trajectory data,

min
x

f (x) (8a)

s.t. h(x,u) = 0 (8b)
g j(x,u)≤ 0 f or j = 1, ..., p (8c)

where x ∈ Rn are the state data, u ∈ Rm are the controls,
f (x) is a convex function, h(x,u) is linear in x and u
and g j are convex. Assuming that the observed trajectory
is approximately optimal with respect to problem (8), we
define residuals based on the Karush–Kuhn–Tucker (KKT)
conditions. These residuals are deviations from the first order
necessary conditions of optimality.

req = h(x,u) (9a)
rineq = (g j(x,u))+ (9b)

rstat(α,λ ,ν) = ∇ f (x)+Σ
p
j=1λ j∇g j(x,u)+νh(x,u) (9c)

rcomp(λ ) = λ jg j(x,u), j = 1, ..., p (9d)

Here, req and rineq are the primal feasibility conditions
which are independent of the dual variables. We assume
they are close to zero. Now, for the observed trajectory
to be approximately optimal, the residuals rstat and rcomp
are minimized. The dual variables λ ,ν and the imputation
parameter α are the decision variables and

f = ∑
j

α j f j, α = [α1, ...,α j] (10a)

where f j are the basis functions of the cost function. Our
goal is to find α for which f is (approximately) consistent
with the observed trajectory data.

B. Formulation

We fit the following optimization problem to the observed
trajectory.

min
x(i+1)

NV

k−1

∑
i=k−r

JNV (α,x(i+1)
NV ) (11a)

s.t. h(x(i+1)
NV ,x(i)NV ,u

(i)
NV ) = 0 (11b)

g j(x
(i+1)
NV ,x(i+1)

Ego ,u(i)NV )≤ 0, j = 1, ..., p (11c)

where, k is the current time step and the ego vehicle has
observed the trajectory of the NV for previous r time steps.
h captures the NV vehicle dynamics and g j are the convex
inequality constraints in the NV’s optimization problem.
Other expressions have the same meaning as before and we
denote trajectory data time step in the superscript.

With this, the residuals to be minimized are

rstat(α,λ ,ν) = Σ
k
i=k−r[∇JNV +Σ jλ j∇g j +Σ jν j∇h j] (12a)

rcomp(λ ) = Σ
k
i=k−rλ jg j, j = 1, ..., p (12b)



Note that in our formulation, we fit a problem (11) such that
only the state trajectory data of NV is required. Specifically,
problem (11) is carefully chosen such that equation (12)
results in the residuals containing only the state trajectory
terms. This is vital for practical implementation since the
control data of NV may not be easily available.

Finally, the following convex optimization problem is
solved to impute the cost function based on the trajectory
data.

min
α
‖rstat‖2

2 +‖rcomp‖2
2 (13a)

s.t. αs,αv,αa ≥ 0 (13b)
λ j ≥ 0 (13c)

αs +αv +αa = 1 (13d)

IV. SIMULATION RESULTS

We test our method in simulation. A 2-lane highway with
on-ramp is considered where the ego vehicle (blue) needs
to negotiate a merge with the NV (red). The aiMPC is
invoked at a configuration where which vehicle should yield
is ambiguous. As discussed in literature, in the cases where
the two cars are close in longitudinal direction and have
similar speed, successfully executing the merging maneuver
is a very challenging task [14]. This challenge stems from
the unknown future trajectory of the NV and its unknown
nature. We test various cases with NV’s nature defined by
the position, velocity and acceleration weights: qs,qv and qa,
respectively, in its cost function. Qualitatively, for instance,
when qv = 1 the NV is aggressive while when qa = 1 the
NV is conservative in its driving.

The MPC and imputation problems are solved using
GUROBI™ on a PC with Intel® Core™ i7-10750H CPU @
2.60GHz and 8 GB RAM.

TABLE II: Simulation parameters

Simulation Parameter Value

Simulation time 8 s
Sampling time 400 ms

N (Ego Horizon) 15 (6s)
T (NV Horizon) 3 (1.2s)

r (Trajectory Observation) 3 (1.2s)

NV

QCQP MPC

Ego

Behavior Estimator

Joint MPC

aiMPC

α

Xego

XNV

Fig. 2: The simulation process flow of information

A. Comparison with constant velocity and constant acceler-
ation models

We compare our method to constant velocity and constant
acceleration models of NV. These are the baseline cases
where the ego vehicle assumes that the NV remains at the
current observed velocity and acceleration respectively, over
the MPC horizon, at each time instant. The results of an edge
case scenario (Table III) are shown.

TABLE III: Simulation A conditions
NV Nature (qs,qv,qa) v0,ego[m/s] v0,NV [m/s] Method Result

Aggressive (0, 1, 0) 10 12 Constant velocity
non-interactive Ego unable to merge

Aggressive (0, 1, 0) 10 12 Constant acceleration
non-interactive Ego unable to merge

Aggressive (0, 1, 0) 10 12 aiMPC Ego merges behind
46.6% less hindraance

Fig. 3: Constant velocity model for NV (Red): Ego (Blue)
unable to merge

Fig. 4: Constant acceleration model for NV (Red): Ego
(Blue) unable to merge



Fig. 5: aiMPC: Ego (Blue) merges behind NV (Red) and
reduces hindrance to NV

Fig. 6: aiMPC imputation results: initialized with equi-
weighted cost and adapted online based on trajectory ob-
servations

We observe that the ego vehicle is unable to merge in the
baseline cases and also causes hindrance for the NV (Fig.
3, Fig. 4). On the other hand, motion planning via aiMPC
results in successful merging and reduced hindrance (Fig. 5).
The hindrance to NV is reduced by 46.6% (travel distance
increased), which reflects socially compliant driving. This
highlights the utility of interactive motion planning. Fig. 6
shows the online imputation results of NV’s cost by the ego
which are utilized in the interactive planning.

B. Comparison with Non-adaptive MPC

Next, we test the significance of estimating the nature of
NV via the imputation method presented in the paper. We
perform two simulations: one with equi-weighted cost of
NV which remains constant throughout, and the other with
(adaptive) online imputation of the cost.

TABLE IV: Simulation B conditions
NV Nature (qs,qv,qa) v0,ego[m/s] v0,NV [m/s] Method Result

Conservative (0, 0, 1) 11 10 Non-adaptive Ego merges ahead
but jerky

Conservative (0, 0, 1) 11 10 aiMPC Ego merges ahead
smoother

Fig. 7: Non-adaptive cost (left) results in tentative motion
while aiMPC (right) results in smoother motion

Fig. 8: Ego is able to reach nearer to reference velocity
and with lower jerk when the cost is adapted via online
imputation

Fig. 9: aiMPC imputation results: initialized with equi-
weighted cost and adapted online based on trajectory ob-
servations



In the first case (Fig. 7), the ego merges ahead but the
trajectory is not smooth. This tentative motion is due to the
larger prediction error in the joint MPC because of the cost
function mismatch. In the second case (Fig. 7) the cost is
imputed and adapted online. This leads to more accurate
predictions in the joint MPC, resulting in more confident
and smooth motion quantified through lower jerk (Fig. 8).
Fig. 9 shows the online imputation results for this case.

C. Moderate nature of NV

We also test a mixed case where NV has a moderate
nature and places equal weightage on aggressiveness and
conservativeness i.e. qv = 0.5 and qa = 0.5.

TABLE V: Simulation C conditions
NV Nature (qs,qv,qa) v0,ego[m/s] v0,NV [m/s] Method Result

Moderate (0, 0.5, 0.5) 10 10 Non-adaptive Ego unable to merge
Moderate (0, 0.5, 0.5) 10 10 aiMPC Ego merges behind

Fig. 10: Nonadaptive MPC unable to merge in time (left)
while aiMPC facilitates successful merging (right)

Fig. 11: aiMPC does not converge to exact NV nature but
the approximate imputation facilitates timely merging

In this case, the imputation cost does not converge exactly
to the actual nature of NV (Fig. 11), but the close approxi-
mation facilitates successful merging as shown in Fig. 10.

V. CONCLUSIONS

We presented a new optimal control and inverse optimal
control based framework for motion planning of automated
vehicles interacting with neighboring vehicles. We focused
on highway merging scenario due to the significant inter-
active challenges it presents. The proposed framework was
tested in simulation and the results highlight the utility
and significance of motion planning via interactive, online
estimation based adaptive cost identifying MPC in highway
merging. Future work involves identification of higher fi-
delity cost functions and testing of the proposed framework
in vehicle-in-the-loop tests.
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