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On the Endemic Behavior of a Competitive
Tri1-Virus SIS Networked Model

Sebin Gracy, Mengbin Ye, Brian D.O. Anderson, César A. Uribe.

Abstract—This paper studies the endemic behavior of
a multi-competitive networked susceptible-infected-susceptible
(SIS) model. In particular, we focus on the case where there
are three competing viruses (i.e., tri-virus system). First, we show
that the tri-virus system is not a monotone system. Thereafter, we
provide a condition that guarantees local exponential convergence
to a boundary equilibrium (exactly one virus is endemic, the
other two are dead), and identify a special case that admits the
existence and local exponential attractivity of a line of coexistence
equilibria (at least two viruses are active). Finally, we identify
a particular case (subsumed by the aforementioned special case)
such that for all nonzero initial infection levels the dynamics of
the tri-virus system converge to a plane of coexistence equilibira.

Index Terms—Epidemic processes, competing viruses, coexis-
tence equilibrium.

I. INTRODUCTION

Mathematical modeling of spreading processes has been an
active area of research for several decades. It has spanned
multiple scientific disciplines such as physics [1]], mathematics
[2], economics [3[], computer science [4], etc. The central
theme involving all such research directions is to derive a
foundational understanding of what causes a disease to spread,
and, then, exploit the said understanding to design effective
mitigation (or eradication) strategies. Towards this end, various
models have been proposed in the literature. This paper deals
with the susceptible-infected-susceptible (SIS) model. More
specifically, we are interested in networked SIS models, where
each node in the network represents a large population and
interconnections between nodes capture the possibility of the
virus spreading between populations [5]-[7].

The vast majority of the literature on (networked) SIS
models concerns the presence of a single virus. However,
in practice, one often encounters several strains of a virus
that might be simultaneously circulating in a community,
as observed during the ongoing COVID-19 crisis. In a sce-
nario where multiple viruses are present, these viruses could
possibly be competin with each other. That is, assuming
there are m > 1 viruses present, an individual (belonging
to a population node) can be infected with at most one
virus at any given time. More precisely, being infected with
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! Another possibility is for the multiple viruses to be co-operative; see [8]
for analysis of a special case.

one virus precludes the possibility of being simultaneously
infected with any of the other m — 1 viruses. Other settings
where such a competing phenomenon is observed include,
but are not limited to, spread of competing opinions on
different social networks, competing products in a market, and
spread of conflicting rumors [9]]. This motivates the need for
multi-competitive networked SIS models. Analysis of multi-
competitive networked SIS models is a much harder problem
than in the single virus case, mainly because the dynamics
exhibited in the multi-virus setting are far richer than those in
the single-virus setting, e.g., there can be multiple attractive
equilibria [[10]-[15]]. The case where m = 2 (also referred to as
competitive bivirus spread) has been relatively well-explored
in recent times; see [[12|-[|18]]. However, settings accounting
for the presence of more than two competing viruses have
not been well studied. The paper [15] (also see [[19] for the
discrete-time version) proposes a multi-competitive networked
SIS model, where m (with m being arbitrary but finite)
viruses are simultaneously active. However, the analysis of
the endemic behavior in [[15]], [[19] is rather restrictive. The
present paper focuses on the special case when m = 3,
i.e., the tri-virus competitive networked SIS model. The set
of equilibria of such a system can be broadly classified into
three categories: the disease-free equilibrium (all three viruses
have been eradicated); the boundary equilibria (two viruses
are dead, and one is alive); and coexistence equilibria (at least
two viruses infect separate fractions of every population node
in the network). Our contributions are as follows:

i) We show that the tri-virus system, unlike the bi-virus

system, is not a monotone system; see Theorem

ii) We identify a necessary and sufficient condition for local
exponential convergence to a boundary equilibrium; see
Theorem 21

iii) We identify a special case (with respect to the class of
system paramaters) that admits the existence (and, under
certain conditions, guarantees the local exponential attrac-
tivity) of a line of coexistence equilibria; see Theorem [3]

iv) For a special case, subsumed by that in we provide a
sufficient condition which ensures that, regardless of the
initial non-zero infection levels, the dynamics of the tri-
virus system converge to a plane of coexistence equilibria;
see Theorem [

Paper Outline

The paper unfolds as follows. We conclude the present sec-
tion by listing the key notations needed in the rest of the paper.



The model, main assumptions, connections between mono-
tone dynamical systems and multi-competitive networked SIS
models, and problem statements of interest are detailed in
Section We rigorously show that the tri-virus system is
not monotone in Section [[IIl whereas Section deals with
the case where at least one virus persists in the network.
The analysis pertaining to the existence and attractivity of a
continuum of coexistence equilibria is split across Sections [V]
and A summary of the paper along with some future
directions of possible interest are provided in Section

Notations

We denote the set of real numbers by R, and the set of

nonnegative real numbers by R, . For any positive integer n,
we use [n] to denote the set {1,2,...,n}. The i*" entry of a
vector x is denoted by z;. The element in the " row and j*!
column of a matrix M is denoted by M;;. We use 0 and 1 to
denote the vectors whose entries all equal 0 and 1, respectively,
and use [ to denote the identity matrix, while the sizes of the
vectors and matrices are to be understood from the context.
For a vector z we denote the square matrix with x along the
diagonal by diag(x). For any two real vectors a,b € R™ we
write a > bif a; > b; foralli € [n],a > bifa > band a # b,
and a > b if a; > b; for all ¢ € [n]. Likewise, for any two
real matrices A, B € R"*™, we write A > B if A;; > By,
foralli € [n], j € [m],and A > Bif A> B and A # B.
For a square matrix M, we use o(M) to denote the spectrum
of M, p(M) to denote the spectral radius of M, and s(M) to
denote the largest real part among the eigenvalues of M, i.e.,
s$(M) = max{Re(\) : A € (M) }.
A square matrix A is said to be Hurwitz if s(A4) < 0. A real
square matrix A is said to be Metzler if all of its off-diagonal
entries are nonnegative. A real square matrix A is said to be a
Z-matrix if all of its off-diagonal entries are nonpositive. A Z-
matrix is an M-matrix if all its eigenvalues have nonnegative
real parts. Furthermore, if an M-matrix has an eigenvalue at the
origin, then we say that it is singular; if each of its eigenvalues
have strictly positive parts, then we say that it is nonsingular.
The matrix A is said to be positive semidefinite if xT Az >0
for all vectors x, and we denote this by A > 0.

II. PROBLEM FORMULATION

In this section, we detail a model that captures the spread
of multiple competing viruses across a population network.
Subsequently, we detail the pertinent assumptions and defini-
tions that will be required in the sequel. Finally, we formally
specify the problems being investigated.

A. Model

Consider a network of n > 2 nodesﬂ where m viruses
compete with each other to infect the nodes. The notion of
competition implies the presence of at least two (but possibly
more) viruses. Throughout this paper, m = 3. In context, each
node represents a well-mixed population of individuals with

2As an aside, SIS models where n = 1 have been studied in, among others,
[20}, Section 2]

a large and constant size. A well-mixed population means
any two individuals in the population can interact with the
same positive probability. A key assumption that underpins
this model is that of homogeneity within the population node,
and (possible) heterogeneity outside the population node. That
is, all individuals within a population node have the same
infection (resp. healing) rates, but individuals in different
population nodes need not necessarily have the same healing
(resp. infection) rate [5].

Within each population, individuals can be partitioned into
four mutually exclusive health compartments: susceptible, in-
fected with virus 1, infected with virus 2, infected with virus 3.
More precisely, no individual can be simultaneously infected
by more than one virus. We say a population node is healthy
if all individuals belong to the susceptible compartment;
otherwise we say it is infected. An individual, belonging to
population ¢ (where ¢ € [n]), in the susceptible compartment,
can transition to the “infected with virus k” (for k € [m])
compartment at a rate 3 > 0. An individual in population i
that is infected with virus k recovers from it based on said
individual’s healing rate with respect to virus k, i.e., 5f > 0.

The spread of m-competing viruses can be modeled using
an m-layer graph G, where the vertices of the graph represent
the population nodes. The k™ layer denotes the contact graph
for the spread of virus k, for each k € [m]. More specifically,
for the graph G, there exists a directed edge from node j to
node ¢ in layer k if, assuming an individual in population j is
infected with virus &, then said individual can infect at least
one (but possibly more) healthy individual in node i. Let E*
denote the edge set corresponding to the k™ layer of G. We
denote by A* (where afj > 0) the weighted adjacency matrix
corresponding to layer k, with the elements in A* being in
one-to-one correspondence with the existence (or lack thereof)
of edges in layer k. That is, (i, j) € E* if, and only if, a}; #
0. Let z¥(¢) denote the fraction of individuals infected with
virus k in population ¢ at time instant t. The evolution of
this fraction can, then, be represented by the following scalar
differential equation [15, Equation 4]:

@y (t) = =62 (8) + (1= 2002, (1) Xjoy Bk (1), (1)

where ﬁfj = ﬁfafj.
Define z*(t) = [2¥(¢),...,25(#)]", D¥ = diag (6¥), and

BF = [ij]nm. Therefore, can be written as

(1) = (= DF 4 (1= X, diag(a' (1)) B )2t (1), ()

Defining z(t) := [2*(t),...,2™(t)]", and R*(z(t)) := (—
Dk +(I->", diag(z'(t)))B*), the dynamics of the system
of all m viruses are given by

Ri(z(t)) 0 ... 0
0 R%*(z(t)) ... 0
ity =| (:( ) N PO
0 0 R™ (x(1))

Note that by setting m = 1 in (3)), one recovers the classic
single-virus SIS model that has been studied extensively in the
literature; see [1]], [5], [7]. Setting m = 2 yields the classic



networked bi-virus SIS model, for which a plethora of results
have been provided in [[10]], [12]-[14], [16]. In this paper,
we are interested in the case when m = 3, i.e., the tri-virus
networked competitive spread.

Define, for k € [3], X¥ = diag(z*). Based on (@), the
dynamics of the tri-virus system can be written as follows:

#(t) = ((1 ~(X'4+ X2+ X%)B - Dl)xl(t), )
#2(t) = ((1 (X' + X4 X)) B2 - D2)x2(t) )

#3(t) = ((1 — (X' + X2 4 X)) B — D3)x3(t). 6)

B. Assumptions and Preliminary Lemmas

We need the following assumptions to ensure that the
aforementioned model is well-defined.

Assumption 1: Suppose that 7 > 0, 8f; > 0 forall i, j € [n]
and k € [3].

Assumption 2: The matrix B¥, for k € [3] is irreducible.

Observe that under Assumption |1} for all k € [3], B is
a nonnegative matrix and D¥ is a positive diagonal matrix.
Moreover, recall that a square nonnegative matrix M has the
irreducibility property if and only if, supposing M is the
(un)weighted adjacency matrix of a graph, the corresponding
graph is strongly connected. Then, noting that non-zero ele-
ments in B* represent directed edges in the set £, we see
that BF is irreducible whenever the k" layer of the multi-layer
network G is strongly connected.

Thanks to Assumption [T} we can restrict our analysis to the
sets D = {x(t) : z*(t) € [0,1]",Vk € [3],35_, 2% < 1}
and D* := {z*(t) € [0,1]"}. Since z¥(¢) is to be interpreted
as a fraction of a population, these sets represent the sensible
domain of the system. That is, if z¥(¢) takes values outside
of DF, then those values would lack physical meaning. The
following lemma shows that x(¢) never leaves the set D.

Lemma 1: |15, Lemma 1] Let Assumption E] hold. Then D
is positively invariant with respect to (3).

Clearly, (0,0,0) is an equilibrium of {@)-(6), and is referred
to as the disease-free equilibrium (DFE). A sufficient condition
for global exponential stability (GES) of the DFE is as follows:

Proposition 1: [[17, Theorem 1] Consider system (@)-(6)
under Assumption [} If s(—D* + B*) < 0, for each k € [3)],
then the DFE is exponentially stable, with domain of attraction
containing D.

Clearly, the conditions in Proposition [1] also imply asymp-
totic convergence to the DFE. However, even when the strict
inequalities in the said proposition are relaxed, one can still
achieve asymptotic convergence to the DFE. This is formalized
in the next proposition, which is a generalization of an
analogous result for the bivirus setting (see [[14, Theorem 1]).

Proposition 2: [[15| Lemma 2] Consider system (@)-(6) under
Assumption [1} If s(—D*+ B¥) < 0, for each k € [3], then the
DFE is the unique equilibrium of system (@)-(6). Moreover, it
is asymptotically stable with the domain of attraction D.

It turns out that for every eigenvalue condition in Proposi-
tion [2| that is violated, one obtains an equilibrium of the form
0,...,%% ...,0) in D, where " is the single-virus endemic

equilibrium corresponding to virus k. This is formalized in the
following proposition.

Proposition 3: [[6, Theorem 2.1] Consider system (@)-(6)
under Assumptions [1] and 2| For each k € [3], there exists a
unique single-virus endemic equilibrium (0,...,Z*,...,0) in
D, with 0 < % < 1 if, and only if, s(B* — D*) > 0.
Analytic methods for computing the single-virus endemic
equilibria have been provided in [1, Theorem 5].

The equilibria of the form (0,...,%" ... 0) are referred
to as the boundary equilibria. The equilibria of the form
(z',22,2%), where at least z and 77 (i,j € [3],i # j) are
nonnegative vectors with at least one positive entry in each of
z' and 77 are referred to as coexistence equilibria. It turns
out that such vectors are in fact strictly positive; see [17}
Lemma 6].

Let J(z!, 22, 23) denote the Jacobian matrix of system (@)-
(6) for an arbitrary point in the state space. Therefore,
J(zt, 22, 23) is as given in (7) below.

C. Monotone dynamical systems and competitive bivirus net-
worked SIS models

Observe that for the case when m = 2, system is, under
Assumption@ monotone [[16, Lemma 3.3] (and, assuming ho-
mogeneous recovery rates, also in [13| Theorem 18]). That is,
setting m = 2 for system (3)), suppose that (2% (0), 2% (0)) and
(x5(0),2%(0)) are two initial conditions in int(D) satisfying
i) 21 (0) > 2}(0) and ii) 2% (0) < 2%(0). Since the bivirus
system is monotone, it follows that, for all ¢, i) ! (t) > xL(¢)
and ii) z%(t) < 2%(t). Further, it has been shown that,
for almost all choices of D, Bt i = 1,2, system @]) has
a finite number of equilibria [16, Theorem 3.6]. Therefore,
from [21, Theorems 2.5 and 2.6] (or [22, Theorem 9.4]), we
know that for almost all initial conditions in D, system
with m = 2 converges to a stable equilibrium point. The
set of initial conditions for which said convergence does not
occur (in which case it is either a) already at an unstable
equilibrium, assuming such an equilibrium exists, or b) in
the stable manifold of an unstable equilibria, or ¢) on a
nonattractive limit cycle, or d) in the stable manifold of a
nonattractive limit cycle) has measure zero. It is not known
if an analogous statement is true for the case when m = 3.
Consequently, understanding the limiting behavior of tri-virus
systems remains open if any of the eigenvalue conditions in
Proposition [2] are violated.

Further, for the case when m = 2, a sufficient condition for
local exponential convergence to a boundary equilibrium has
been identified in [[16, Theorem 3.10], whereas for the m = 3
case no such condition has been identified. Likewise, certain
special (nongeneric) scenarios have been identified which lead
to the existence of a continuum of coexistence equilibria;
see [[14, Theorems 6 and 7]. Improving upon these results,
a broader scenario (but again nongeneric), that accounts for a
larger class of parameters, has been identified which leads to
not only the existence, but also local exponential attractivity,
of a continuum of coexistence equilibria; see [16, Proposi-
tion 3.9]. Analogous results for the m = 3 case are as yet
unavailable.



J(xt 22, 2®) =
—D' + (I - X' — x? - X*)B! — diag(B'z")
— diag(B2%z?)
— diag(B3z?)

D. Problem Statements

Based on the above discussions, our objective in the present
paper is to answer the following questions:

i) Is the tri-virus system monotone?

ii) Can we identify a sufficient condition for local exponen-
tial convergence to a boundary equilibrium?

iii) Can we identify sufficient condition(s) for the existence
and local attractivity of a continuum of coexistence
equilibria?

iv) Can we identify a special case(s) where, irrespective of
the non-zero initial infection levels, the tri-virus dynamics
converge to a continuum of coexistence equilibria?

III. IS THE TRI-VIRUS SYSTEM MONOTONE?

In this section, we seek to conclusively answer whether (or
not) system with m = 3 is monotone.

In order to answer this question, we construct a graph
associated with the Jacobian of system (@)-(6), say G. The
construction follows the outline provided in [23]]. More specif-
ically, the graph G has 3n nodes. The edges of G are based on
the entries in the Jacobian matrix J(z!, z2, 2%). Specifically, if
[J(x!, 22, 23)];; < 0 for i # j, then we draw an edge labelled
with 7= sign; if [J (2!, 22, 23)];; > 0 for i # j, then we draw
an edge labelled with ”+” sign. Thus, G is a signed graph.
Note that G has no self-loops. As an aside, also observe that
since z¥(t) > 0 for k € [3] and t € Ry, it is immediate
that the sign of the elements in J(x!, 22, 2%) do not change
with the argument, so that G is the same for all points in the
interior of D.

We also need the following concept from graph theory. A
signed graph is said to be consistent if every undirected cycle
in the graph has a net positive sign, i.e., it has an even number
of 7-” signs [23]]. We have the following result.

Theorem 1: System (@)-(6) is not monotone.

Proof: Note that the Jacobian J(z!, 2% 2%) is a block
matrix, with all blocks along the off-diagonal being negative
diagonal matrices. Pick any node i, where ¢ € {1,2,...,n}.
Observe that, since all blocks along the off-diagonal of
J(x', 2% x3) are negative diagonal matrices, it is clear that
there exists an edge from node ¢ to node ¢ + n, an edge from
node ¢ + n to node ¢ + 2n, and an edge from node i + 2n
to node ¢. Furthermore, each of these edges have a ”-” sign.
Hence, a loop starting from node i, traversing through nodes
i+n, i+ 2n and back to node i is a 3-length cycle that has an
odd number of negative signs. Therefore, from [23| page 62],
the signed graph G is not consistent. Consequently, from [23}
page 63], it follows that the system (@)-(6) is not monotone. [J

Theorem |1| sheds light on a very interesting phenomenon,
namely that the tri-virus system is not monotone. This is in
sharp contrast to the bi-virus setting, which is known to be

— diag(B'z")
—D? 4 (I — X' — X? — X3)B? — diag(B?z?)
— diag(B3z?)

(N
— diag(B'z")
— diag(B%2?)
—D® 4+ (I — X' — X2 — X3)B® — diag(B%z?)

monotone [16]]. The fact that a bivirus system is monotone
coupled with the fact that for almost all choices of D*, BF,
k = 1,2, the bivirus system has a finite number of equilibria
allows one to draw general conclusions on the limiting behav-
ior of bivirus dynamical systems. By extending the algebraic
geometry arguments in the proof of [16, Theorem 3.6], it
is relatively straightforward to show that even for the tri-
virus system, for almost all choices of D*, B* k = 1,2,3,
there exists a finite number of equilibria. The details are
omitted here in the interest of space. Nonetheless, due to
the findings of Theorem |l| one cannot draw upon the rich
literature on monotone dynamical systems (see [21]) to study
the limiting behavior of system (@)-(6). In general, for non-
monotone systems, no dynamical behavior, including chaos,
can be definitively ruled out [23]].

Another possible consequence of the lack of monotonicity
is as follows: It is known that setting D¥ = I for k € [2] has
no bearing on either the location of equilibria of system (3]
with m = 2 nor on their (local) stability properties [16}
Lemma 3.7]. That is, for a) bivirus systems, where D* = Tand
B¥ = (D*)~!B¥ for k € [2], and b) bivirus systems, where
D¥s are arbitrary positive diagonal matrices, the location of
equilibria are the same for both bivirus systems a) and b). Plus,
local stability of an equilibrium in bivirus system a) implies,
and is implied by, that in bivirus system b). For system (3)) with
m = 3, by extending the arguments from [16, Lemma 3.7], it
is straightforward to show that the location of the equilibria
is the same when, for k € [3], D* = I and B* = (D*)~1B*,
and when D (resp. B¥) are arbitrary positive diagonal (resp.
nonnegative) matrices with the DFs not necessarily being
equal to each other. However, since the tri-virus system is not
monotone, the arguments for stability of equilibria in the proof
of [16, Lemma 3.7] cannot be adapted. As such, for the tri-
virus case, preservation of stability properties remains an open
question when the healing rates for all nodes with respect to
all viruses are ‘scaled’ in the manner above to become unity.

IV. PERSISTENCE OF ONE OR MORE VIRUSES

If one or more of the eigenvalue conditions in Proposition 2]
is violated, then at least one of the viruses persists in the
population. This, in turn, gives rise to a richer possible set of
behaviors, as we will see in the rest of this paper.

In this section, we identify a sufficient condition for local
exponential convergence to a boundary equilibrium. While
similar results exist for the case when m = 2 (see [16l, Theo-
rem 3.10]), to the best of our knowledge, no such result exists
for the m = 3 case. The following theorem addresses this gap,
and establishes that the local stability (resp. instability) of a
boundary equilibrium corresponding to virus 1 is dependent on
whether (or not) the state matrices, obtained by linearizing the



dynamics of viruses 2 and 3 around the single-virus endemic
equilibrium of virus 1, are Hurwitz.

Theorem 2: Consider system (@)-(6) under Assumptions
and The boundary equilibrium (!, 0, 0) is locally exponen-
tially stable if, and only if, each of the following conditions
are satisfied:

i) p((I = X')(D?*)~'B?) < 1; and

i) p((I — X')(D?)~'B%) < 1.
If  p((I-XY)(D*)~'B?) > 1 or if
p((I-X1)(D?)~'B?) > 1, then (£',0,0) is unstable.
The proof follows the strategy outlined for the m = 2 case
in [16, Theorem 3.10].
Proof: Consider the equilibrium point (Z!,0,0), and note that
the Jacobian evaluated at this point is as follows:

J(#',0,0) = (8)
-D'4+(I-XYHB' - B! -B!
0 —D?4+(I-X')B?
0 0

_B
0 ~
-D34+(1-XYH)B3

where B' = diag(B'Z"), for i = 1,2,3.
Observe that the matrix J(#!,0,0) is block upper triangular.
Hence, it is Hurwitz if, and only if, the blocks along the
diagonal are Hurwitz. We will now show that this condition is
fufilled, as a consequence of the assumptions of Theorem [2]
Since (#!,0,0) is an equilibrium point of system (#)-(6), by
considering the equilibrium version of equation (@), we have
the following:

(=D'+ (I - XhHBYHYzt =o. )

By Assumption (1, we have that D! is positive diagonal and
B! is nonnegative. Furthermore, by assumption we know that
B! is irreducible. Moreover, from [17, Lemma 6], it follows
that (I — X') is positive diagonal, implying that (I — X!)B!
is nonnegative irreducible. Thus, we can conclude that the
matrix (—D' 4 (I — X')B?) is irreducible Metzler. From
(17, Lemma 6] we know that 0 < Z'. Hence, by applying
(24, Lemma 2.3] to (9), it must be that 1 s, up to a scaling,
the only eigenvector of (—D' + (I — X')B') with all entries
being strictly positive. Furthermore, 7! is the eigenvector that
is associated with, and only with, s(—D! + (I — X!)B").
Therefore, s(—D' + (I — X')B') = 0.
Define Q := D' — (I — X')B', and note that Q is an M-
matrix. Since s(—Q) = 0 and B! is irreducible, it follows
that @ is a singular irreducible M-matrix. Observe that B!
is a nonnegative matrix, and because B! is irreducible and
#1 > 0, it must be that at least one element in B'is strictly
positive. Therefore, from [25, Lemma 4.22], it follows that
Q + B! is an irreducible non-singular M-matrix, which from
[25, Section 4.3, page 167] implies that — () — B! is Hurwitz.
Therefore, we have that s(—D' + (I — X')B! — B') < 0.
By assumption, p((I — X')(D?)"'B?) < 1 and p((I —
XN (D*)~'B?%) < 1. Therefore, by noting that D? (resp.
D?3) are positive diagonal matrices and B? (resp. B?) are
nonnegative irreducible matrices, from [14, Proposition 1]
it follows that s(—D? 4 (I — X')B?) < 0 (resp. s(—D> +
(I — X')B?) < 0). Since each diagonal block of J(i',0,0)
is Hurwitz, it is clear that J(#',0,0) is Hurwitz. Local

exponential stability of (#!,0,0), then, follows from [26}
Theorem 4.15 and Corollary 4.3].

The proof of necessity follows by first noting that if either
condition in statement i) or that in statement ii) is violated,
then, since at least one of the blcoks along the diagonal of
J(%',0,0) is not Hurwitz, the the matrix J(Z',0,0) is not
Hurwitz. Then, by invoking the necessity part of [26, Theorem
4.15 and Corollary 4.3], the result follows.

The claim for instability can be proved by noting that if
either of the eigenvalue conditions are violated, then, since
J(%',0,0) is block diagonal, the matrix J(Z!,0,0) is not
Hurwitz. The result follows from [26, Theorem 4.7, item
ii)]. d

Analogous results for the boundary equilibria (0, 22,0) and
(0,0,33) can be similarly obtained.

V. EXISTENCE AND ATTRACTIVITY OF A CONTINUUM OF
EQUILIBRIA FOR NONGENERIC TRI-VIRUS NETWORKS

Proposition [3] and Theorem [2] respectively, deal with the
existence and local exponential convergence to a boundary
equilibrium. In this section, we are interested in identifying a
scenario which guarantees the existence and local exponential
attractivity of a continuum of coexistence equilibria.

Let z denote the single-virus endemic equilibrium corre-
sponding to virus 1, with Z = diag(z). Therefore, assuming
D' = I, the vector z fulfils the following:

~I+((I-2)BY)z=0. (10)

Furthermore, since z is an endemic equilibrium, from [[17}
Lemma 6] it follows that 0 < z < 1. Let C be any non-
negative irreducible matrix for which z is also an eigenvector
corresponding to eigenvalue one. That is, C'z = z. Therefore,
from [24, Theorem 2.7], it follows that p(C) = 1, and that
the vector z, up to a scaling, is the unique eigenvector of C'
with all entries being strictly positive. Define

B?:=(I-2)"'C. (11)

We have the following result.
Theorem 3: Consider system (@)-(6) under Assumption [I]
Suppose that D¥ = I for k € [3]. Suppose that B' and B?
are arbitrary nonnegative irreducible matrices; and vector z
and matrix B? are as defined in and (TI), respectively.
Then, a set of equilibrium points of the trivirus equations is
given by (512, (1 — 81)z,0) for all 5, € [0, 1]. Furthermore,
i) if s(—1 + (I — Z)B3) < 0, then the equilibrium set
(812, (1 — B1)2,0), with 81 € [0, 1], is locally exponen-
tially attractive.

ii) if s(—I + (I — Z)B3) > 0, then the equilibrium set
(812, (1 — B1)z,0), with 51 € [0,1], is unstable.

Proof: We first show that, for all 5; € [0, 1], the point
(812, (1 — B1)z,0) fulfils the equilibrium version of equa-
tions (@)-(@). To this end, observe that the right hand side
of @)-(6) evaluated at (812, (1 — 1)z, 0) yields:

(—I4+(I—-p1Z—(1—-p1)Z)BY)pi2

=(-I+({I—-2)B")pz=0, (12)



where (12) follows by noting that §8; is a scalar, and z is
the single-virus endemic equilibrium corresponding to virus 1.
Similarly,

(~I+(I—BiZ — (1 - B)Z)B*)(1 - By)2

— (~I+ (- 2)B)(1-B1)z

= (14 (- 20~ 2)7'C)(1 - 1)z

= (-I+C)1-p1)z=0, (13)

where (I3) follows by noting that Cz = z. Thus, from (12)
and (13), it is clear that, for every 81 € [0,1], (812, (1 —
B1)z,0) is an equilibrium point of system (@)-(6); i.e. there is
a set of equilibrium points (8;z, (1—/1)z,0) with 8, € [0, 1].

Next, observe that, for any 8; € [0,1], the Jacobian
evaluated at (B1z,(1 — f81)z,0) is as given in (14). Hence,
we can rewrite J(51z, (1 — f81)z,0) as

J(Brz, (1= B1)z,0) = [j(ﬂlz’(lo_ﬁl)z’m —I+(1J—Z)B3] ,

where

j(/Blzv (1—51)z,0)

_ [-1+(I—-2)B* - diag(B'$12) — diag(B'812)

- — diag(B2%(1 — B1)z) —I+(I-2Z)B?— diag(B*(1—81)z2)| ’
(10)

. 7 _ — diag(B' 81 2)
while J = [_ diag(B2(1 — 8)2) |

Note that the matrix J(51z,(1 — (1)z,0) is block upper
triangular. Hence, it is clear that s(J(B1z, (1 — $1)z,0)) =

max{s(J(B1z, (1 — 1)2,0),s(—I + (I — Z)B?)}.

Proof of statement i): Consider the matrix
J(B1z, (1 — B1)z,0). Define P := [I(;L 7(} . Therefore,
Pj((ﬂlza (1 - ﬂl)Z,O)P
_ {—I—&-(I—Z)Bl—diag(Blﬁlz) diag(B'B:12) ]
- diag(B2(1 — B1)z) .

—I+(I-2)B?— diag(B?*(1—1)2)
17

Note that PJ((B12,(1 — B1)2,0)P is irreducible Met-
zler. Hence, by considering the element-wise positive vector
EX z'] T and by invoking the equilibrium version of the
equation of the single-virus system corresponding to virus 1,
it follows that PJ((B12, (1 — 1)z,0)Pz = 0. Therefore,
from [24, Lemma 2.3], it follows that s(PJ(B1z, (1 —
B1)z,0)P) = 0, which implies s(.J(512, (1 — 1)z,0) = 0.
Consequently, since, by assumption, s(—I + (I — Z)B?) < 0,
we obtain s(J(81z,(1 — $1)z,0)) = 0. Furthermore, since
s(PJ(B1z,(1 — B1)z,0)P) = 0, then since PJ(B;1z, (1 —
B1)z,0) P is irreducible Metzler, by [24, Theorem 2.7] we
have that the matrix .J(31 2, (1—/31)z, 0) has exactly one eigen-
value at the origin, and all other eigenvalues have negative real
parts. Therefore, since s(—I + (I — Z)B?) < 0, the matrix
J(B1z, (1 — B1)z,0) has exactly one eigenvalue at the origin,
and all other eigenvalues have negative real parts. Hence, the
trivirus equations associated with the line of equilibria define a
one-dimensional center manifold along which the Jacobian is
singular. Therefore, from [26, Theorem 8.2] it follows that the
set of equilibrium points (312, (1 — 81)z,0), with 31 € [0, 1],
is locally exponentially attractive.

Proof of statement ii): By assumption, s(—I+(I—Z)B3) >
0. Hence, s(J(51z,(1 — $1)z,0)) > 0. Therefore, from [26]
Theorem 4.7, statement ii)] it follows that set of equilibrium
points (S1z, (1 — p1)z,0), with 81 € [0, 1], is unstable. B

Observe that the key idea behind Theorem [3] is to fix the
matrix B!, and then choose B? (as given in (TI)) so as
to obtain a locally exponentially attractive (resp. unstable)
equilibrium set, namely (512, (1 — /51)z,0), with 5, € [0,1].
Clearly, the same idea can be applied by the other two possible
pairs, namely (B, B%) and (B2, B?), to obtain corresponding
locally exponentially attractive (resp. unstable) equilibrium set.

The findings of Theorem [3| are not in conflict with the
claim for finiteness of equilibria presented in Section
The elements in matrices D!, B%, i = 1,2,3, are either
a priori fixed to a specific value or they are not. In case
of the latter, we refer to those as free parameters, in the
sense that these are allowed to take any value in R;. The
dimension of the space of free parameters equals the number
of free parameters in the tri-virus system. Each choice of free
parameters yields a realization of system (@)-(6). The set of
choices of free parameters that fall within the special case
identified by Theorem (3| has measure zero.

Remark 1: Note that Theorem [3] admits a non-zero initial
infection level in the network for virus 3. If one were to
assume that z3(0) = 0 for all i € [n], then the trivirus system
of equations (i.e., {@)-(6)) collapses into the bivirus equation
set (i.e., equation (3) where m = 2). Under such a setting,
Theorem [3| coincides with [[16, Proposition 3.9], which, in
turn, subsumes [14, Theorems 6 and 7]; both with respect to
i) admitting a larger class of parameters than [[14, Theorems 6
and 7] (and, assuming the setup in [15] is restricted to the
bi-virus case, [[15, Corollaries 2 and 3]), and ii) providing
guarantees for local exponential attractivity. (|

VI. GLOBAL CONVERGENCE TO A PLANE OF
COEXISTENCE EQUILIBRIA

Section |V] dealt with the existence and attractivity (resp.
instability) of a line of coexistence equilibria. Moving beyond
this, it is of natural interest to identify scenario(s) where a
plane of coexistence equilibria could exist, and furthermore,
seek condition(s) that guarantee local (resp. global) stability
of such a plane of coexistence equilbria. The present section
deals with this issue.

We consider a case where three identical copies of a virus
are spreading over the same graph as formalized next.

Assumption 3: We suppose that

(i) All three viruses are spreading over the same graph.
(i) For all i € [n] 6} =62 =67 > 0.
(i) For all i = j € [n] and (i,5) € €, B; = B}, = B

Note that for the special case identified in Assumption [3}
assuming that the setting in [15] is restricted to the tri-virus
case, the existence of a plane of coexistence equilibrium has
been secured by [15, Corollary 3]. However, [[15, Corollary 3]
does not provide guarantees for even local (let alone global)
convergence to the said plane. To address this shortcoming,
first consider the system

i(t) = (=D + (I — diag(#))B)a(t),  (18)



—I+ (I - Z)B — diag(B'B12)
— diag(Bz(l — B1)z)
0

J(Brz,(1-51)z,0) =

where Z is the unique endemic equilibrium of the single virus
SIS system associated with (D, B), and with B irreducible.
The matrix @ := D — (I — diag(Z))B is a singular irre-
ducible M-matrix, with a simple eigenvalue at 0 and all other
eigenvalues have positive real part. Associated with this simple
zero eigenvalue is the right eigenvector £ > 0 and a left
eigenvector %' > 0'. We assume that @' is normalised to
satisfy &' = 1. Moreover, there exists a positive diagonal
matrix P such that Q := PQ+Q " P > 0. In fact, if we choose
P = diag(@1 /%1, . .., Un/Ty), then it can be verified that Q
is an irreducible M -matrix of rank n — 1, with the nullvector
z associated with the simple eigenvalue at 0, see [25, Section
4.3.4].
Theorem 4: Consider system (@)-(6) under Assumptions [I
and [3| Further, suppose that p(D~'B) > 1. Then
i) For all initial conditions satisfying z'(0) > 0,
2?2(0) > 0,, and 23(0) > 0,, we have that
limg oo (z1(2), 2%(t), 2%(t)) € & exponentially fast,
where

£ = {(Jcl,xz,m3)|a1x1+a2m2—|—a3x3 =7, Zle a; =1},

and 7 is the unique endemic equilibrium of the single
virus SIS dynamics defined by (D, B).

Every point on the connected set £ is a coexistence
equilibrium.

ii)

Proof of statement i): The initial conditions guarantee that,
at some finite time ¢, we have z!(t) > 0,,, 2%(¢t) > 0,,, and
23(t) > 0,,. Define z = x' +22+23,and Z = X'+ X2+ X3,
Therefore, together with Assumption [3| it follows that

i = [— D+ (I — (X*(t) + X2(t) +X3(t)))B} x

(! (1) + 22(t) +2°(1))
=[-D+ (I —Z(t)B](t).

19)
(20)

Since z(t) > 0,,, and p(D~'B) > 1 by hypothesis, it follows
from [[7, Theorem 2] that lim; ., 2(t) = Z exponentially fast.
In fact, Z is the exponentially stable equilibrium of (20), with
domain of attraction z(0) € [0,1]™ \ 0. It follows that, for
all z(0) € [0,1]"\ 0, ||Z — 2(t)|| < ae®" for some positive
constants a, b, with || - || being the Euclidean norm.

The dynamics for virus 4, where ¢ € [3], can be written as

i'(t) = —[D+(I—diag(z))B]a' (t)+(diag(#)—Z(t)) Bx'(t).

Without loss of generality, we consider virus 1 and drop the
superscript. That is, we study the system

() = —Qu(t) + (diag(z) — Z(t)) Bx(t),

where Z(t) is treated as an external time-varying input, and
Q = D — (I —diag(%))B is an irreducible singular M -matrix,
as detailed below (I8). Define the oblique projection matrix
R =1 —%u". Define also ¢ = Rz, and note that %'¢ = 0
and ( = 0 & = = a for some o € R. That is, { is always

21

— diag(B'812)
—I+ (I - Z)B? — diag(B*(1 — 1)z)
0

— diag(B'812)
— diag(B?(1 — $1)z)

14
—I+(-2)B? (14

orthogonal to u, and ( is the zero vector precisely when x is
in the span of .

Observe that ((t) = Ra(t). Substituting in the right of
for @(t), we obtain

((t) = —QC(t) + R(diag() — Z(1))Bx(t),  (22)
by exploiting the fact that QR = Q = RQ.
Consider the Lyapunov-like function
V= ((t) " PC(), (23)

with P defined below (I8). It is positive definite in ¢. Differ-
entiating V' with respect to time yields

V = —2¢(t)T PQC(t) + 2¢(t) T PR(diag(&) — Z(t))Bx(t)

= —(() T Q¢(t) +2¢(¢) T PR(diag(%) — Z(1))Bx(t).  (24)

Due to submultiplicativity of matrix norms, [|C(¢)| <
| R||||z(¢)||. Hence, since ||z(t)| is bounded, 24) yields

V <=0 + kllZ — 2(1)| < —¢(1)TQC(E) + @, (25)

where « and a are positive constants, and the second inequality
is due to the fact that ||z — 2(t)|| < ae™".

Let Ay denote the smallest strictly positive eigenvalue of
Q. The Courant-Fischer min-max theorem [27| Theorem 8.9]
yields

(26)

for all ¢ # O perpendicular to . Since ('@ = 0 holds for
all ¢ € R by definition, (26) holds for all { # 0. Next, and
recalling the definition of P below (T8}, it follows that
p¢TC<CTPC< (TG,

for all ¢, where p = min;e,) @;/%; and p = max;cy,) Ui/ T;.

From (23) it follows that V < —X\((t)T¢ + ae ?,
which further implies that V' < —ApC(t)T ¢ + ae~"t, where
A= Ao /p. Consequently, from (27), it follows that Vv <
—A\V +ae~?. Thus, and recalling the definition of (, it follows
that lim;_,  z(t) = aZ exponentially fast, where a € (0,1)
because z(t) € (0,1)" for all ¢ > 7, for some positive 7.

This analysis holds not only for virus 1, but also virus 2
and virus 3. In other words, lim;_, 2%(t) = ;& for some
a; € (0,1), for all i € [3]. Recall that lim;_, 2(t) = Z,
and we immediately conclude that 2?21 a; = 1, thus proving
statement 1).

Proof of statement ii): We now prove that every point in £
is an equilibrium (coexistence follows trivially by definition).
Consider an arbitrary point (2!, 22, 2%) in £. From @), we

27

have iy = (D4 (- X'— X2 X¥)B)r' (28
= (=D + (I — diag(#))B)ay# =0. (29
By the same arguments, it follows that %(t) = 0 and

#3(t) = 0 at the point (z!,22%,23) in €. In other words,
(x',22,23) is an equilibrium of the system system (@)-(6).
Since this holds for any arbitrary point in &, the proof of

statement ii) is complete. ]



VII. SIMULATIONS

We now present a set of simulations which highlight the key
theoretical results of our paper. We choose D = I,, for i =
1,2, 3, with the following B? matrices, where ij are constants
that are changed depending on the simulation example being
presented.

0 0 0 15 0 15+8%, 0 0
1_ |15 0o o o 2_|o 0 15 0
B'=1%9 15 o o8B =1 0 0 15
0 0 15 0 15 0 0 0

1 0 0.5+063 0

B3 — 0 1+ B3, 0.5 0

- 0 0.5 0 1

0.3+ 33, 0 1.2 0

Initial conditions are obtained as follows. First, for ¢ € [n]
and s € [4], we sample a value p? from a uniform distribution
(0,1). Then, for i € [n] and k € [3] we set z¥(0)
i/ Z§:1 p;;» which ensures that the initial conditions are
in D but otherwise randomized. Note the logarithmic scale of
the time axis.

Example 1: We set 3?3 =0, Bfg = —0.1, 332 = —0.1,
and Bg’l = 0.1. In this example, and following the nota-
tion of Proposition 3| and Theorem [2| we obtain p((I —
1) (D?)"1B? = 0.9829 and p((I—-31)(D3)~1 B3 = 0.99624,
where X' = diag(#'). Thus, (Z',0,0) is locally exponen-
tially stable, and Fig. shows convergence to (#',0,0).
It can be computed that p((I — z%)(D')~'B? 1.0174
and p((I — 7%)(D3)~'B3 = 1.0127 and similarly, p((I —
23)(DY)"'B! = 1.003 and p((I — #3)(D?)~1B? = 0.9863.
Hence, according to Theorem [2, (0,%2,0) and (0,0,23)
are both unstable. Additional simulations with randomized
initial conditions appear to suggest that (7', 0,0) is globally
attractive for initial conditions in the interior of D.

Example 2: We set Bio, =0, 3122 = —0.1, 832 = —0.1, and
/33, = 0.15. Consequently, we obtain p((I —Z')(D?)~1B% =
0.9829 and p((I — #%)(D?)7'B3 = 1.0037. Indeed, we
are able to compute that (0,0,73) is locally exponentially
stable according to Theorem [2| while the two other boundary
equilibria are unstable; see Figure Additional simulations
with randomized initial conditions appear to suggest that
(0,0,73) is globally attractive for initial conditions in the
interior of D.

Example 3: We set 33, = 0.05, 32, = 33, = 33, = 0. In
this example, and following the notation of Theorem [3} we
have a line of equilibria (512, (1 — B1)z,0), with 2 = 11
and 3 € [0,1]. Since p((I — Z)B? = 1.0043, in line with
statement ii) in Theorem E} this line of equilibria is unstable;
see Figure In fact, we can compute that (0,0,%3) is
locally exponentially stable, following reasoning analogous to
that in Theorem [2l Additional simulations with randomized
initial conditions appear to suggest that (0,0, 73) is globally
attractive for initial conditions in the interior of D.

Example 4: We set 33, = —0.1, B2, = 83, = (3, = 0.
Similar to Example 3, we have a line of equilibria (8;z, (1 —
1)z, 0), with z = £1. Now, however, p((I —Z)B* = 0.9911,
and this line of equilibria is locally exponentially attractive
according to statement i) in Theorem [3} see Figure [Id] The

<<<<<< Virus 1
—Virus 2
= =Virus 3

<<<<<< Virus 1
—Virus 2
06 = =Virus 3

Fraction of Infected, xfu)
Fraction of Infected, x"(t)

10" 10% 10° 10°
Time, t

(a) Example 1

4444444 Virus 1
—Virus 2
06 = =Virus 3

4444444 Virus 1
—Virus 2
06 = =Virus 3

Fraction of Infected, xf’(t)
Fraction of Infected, XP(t)

10t 102 10° 10*
Time, t

(c) Example 3

(d) Example 4

Fig. 1: Trajectories of the simulated trivirus system (3), for
different simulation parameters detailed in Section

boundary equilibrium (0, 0, 7%) is unstable, following reason-
ing analogous to that in Theorem [2} Additional simulations
with randomized initial conditions appear to suggest that
(B12, (1 — B1)z,0) is globally attractive for initial conditions
in the interior of D, while the value of ; is dependent on the
initial conditions.

VIII. CONCLUSION

The present paper studied competitive tri-virus spread. In
particular, it was rigorously shown that, unlike the bivirus
system, the tri-virus system is not monotone. We identified a
necessary and sufficient condition for local exponential conver-
gence to a boundary equilibrium. Subsequently, a special case
that admits the existence and local exponential attractivity of a
continuum of coexistence equilibria was identified. Finally, we
identified another special case where, irrespective of the initial
non-zero infection levels, the tri-virus dynamics converge to
a plane of coexistence equilibria. Thus, this paper delineated
(some of) the important differences from the bivirus case and
improved upon the findings in the existing literature.

As previously mentioned, no dynamical behavior can be
ruled out for the tri-virus. Therefore, investigating scenarios
that admit the existence (resp. exclude the possibility of exis-
tence) of limit cycles could be a line of future investigation.
Another problem of possible interest would be to understand
the endemic behavior of time-varying tri-virus SIS models.
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