
Constraint-Driven Optimal Control for Emergent
Swarming and Predator Avoidance

Logan E. Beaver, Student Member, IEEE, Andreas A. Malikopoulos, Senior Member, IEEE

Abstract— In this letter, we present a constraint-driven
optimal control framework that achieves emergent clus-
ter flocking within a constrained 2D environment. We for-
mulate a decentralized optimal control problem that in-
cludes safety, flocking, and predator avoidance constraints.
We explicitly derive conditions for constraint compatibility
and propose an event-driven constraint relaxation scheme,
which we map to an equivalent finite state machine that in-
tuitively describes the behavior of each agent in the system.
Instead of minimizing control effort, as it is common in the
ecologically-inspired robotics literature, in our approach,
we minimize each agent’s deviation from their most efficient
locomotion speed. Finally, we demonstrate our approach
in simulation both with and without the presence of a
predator.

Index Terms— biologically-inspired methods, complex
systems, multi-agent systems, optimal control, optimiza-
tion

I. INTRODUCTION

MULTI-AGENT systems have attracted considerable at-
tention in many applications due to their natural paral-

lelization, general adaptability, and ability to self-organize [1].
One emerging application of multi-agent systems is mimicking
the aggregate motion of certain birds and fish, also known as
cluster flocking or swarming [2]. There are several purported
advantages of cluster flocking in biological systems, including
predator avoidance and estimating total population [3].

In this letter, we derive a distributed control algorithm
that induces cluster flocking in a multi-agent system. Prior
work has primarily relied on reinforcement learning to achieve
predator avoidance, including a multi-level approaches [4]
and policy sharing [5], [6]. Traditional control approaches
tend to achieve swarming behavior by implementing Reynolds
flocking rules using potential fields [2]. These approaches have
two major drawbacks. First, they inevitably drive agents into
a regular lattice formation [7], which is not conductive to
swarming. Second, potential fields are known to cause steady
oscillation in agent trajectories and exacerbate deadlock in
constrained environments [8].

In contrast to existing approaches, we propose a
biologically-inspired approach based on an analysis of sand-
eel schools in the presence of predators [9]. In this letter, we

L.E. Beaver and A.A. Malikopoulos are with the Department of
Mechanical Engineering, University of Delaware, Newark, DE, USA
(emails: lebeaver@udel.edu, andreas@udel.edu).

build on our previous work with set-theoretic control [10]–
[12], where we embed inter-agent and environmental interac-
tions as state and control constraints in an optimal control
problem. Our set-theoretic approach has the advantage of
being interpretable, i.e., the cause of an agents’ action can be
deduced by examining which constraints are currently active.
Our technical results are closely related to the control barrier
function (CBF) literature, particularly multi-agent CBFs [13].
However, our approach does not require the constraints to
be encoded as sub-level sets of a continuous function—we
work with the sets directly. We also propose a solution
to the open problem of constraint incompatibility through
an event-triggered constraint relaxation scheme. Finally, we
present a mapping between constraint-driven control and finite
state machines, which provides a rigorous and interpretable
description of each boids’ behavior. The contributions of this
letter are:

1) a decentralized optimal control algorithm that yields
emergent swarming behavior (Problem 1),

2) an event-triggered scheme to selectively relax constraints
and guarantee feasibility (Lemmas 1–3),

3) a rigorous mapping between constraint-driven control
and finite state machines (Proposition 1), and

4) simulation results demonstrating emergent cluster flock-
ing and predator avoidance behaviors (Section IV).

The remainder of the letter is organized as follows. In
Section II, we formulate the cluster flocking problem and
discuss our working assumptions. In Section III, we derive
our optimal control policy, derive the safe action sets, and
map the problem to a finite state machine. In Section IV,
we validate our results in two simulations with 15 boids; the
first demonstrates emergent cluster flocking, and the second
demonstrates predator avoidance. Finally, we draw conclusions
and propose some directions for future research in Section V.

II. PROBLEM FORMULATION

We consider a set of N ∈ N boids indexed by the set B =
{1, 2, . . . , N}. Each boid i ∈ B obeys second-order integrator
dynamics,

ṗi(t) = vi(t),

v̇i(t) = ui(t),
(1)

where pi(t),vi(t) ∈ R2 correspond to the position and
velocity of each boid, and ui(t) ∈ R2 is the control input.

ar
X

iv
:2

20
3.

11
05

7v
1

 [
m

at
h.

O
C

]
 2

1
M

ar
 2

02
2

We also impose the state and control constraints,

pi(t) ∈ P, (2)
ui(t) ∈ U , (3)

where P ⊂ R2 is a non-empty intersection of half-planes and
U = {u ∈ R2 : ||u||∞ ≤ umax} ensures the boids’ do not
exceed their maximum control input. We employ the infinity
norm to simplify our mathematical exposition; however, the
norm does not impose any restrictions in our approach.

We account for interactions between boids using Voronoi
tessellation [14]. Under this approach, each boid is considered
the center of a Voronoi cell. We define the Voronoi set V(t) ∈
B × B to contain (i, j) and (j, i) when the Voronoi cells i
and j share a common edge. Equivalently, the set V(t) is the
Delaunay triangulation of the boids’ positions.

Definition 1 (Voronoi Neighborhood). The neighborhood of
each boid i ∈ B is the set,

Ni(t) :=
{
j ∈ B : (i, j) ∈ V(t)

}
, (4)

where boid i can receive information, via communication or
sensing, with any other boid j ∈ Ni(t).

As with k−nearest neighbors, the sensing radius of a
Voronoi neighborhood may grow unbounded in general. Sim-
ilar to past work [10], [15], we do not presume the boids
possess infinite sensing capabilities; rather that Definition 1
describes the interactions between boids over their relatively
small separating distances. One potential solution is to only
consider Voronoi neighbors that are within a fixed sensing
range [14], although results from biology demonstrate that this
is, in general, unnecessary [16].

Our objective is to generate emergent swarming behavior,
such that the boids remain close to their neighbors to avoid
predators [3], [6], [9]. To achieve an aggregate swarming mo-
tion, we implement a variation of the disk flocking constraint
proposed in [10]. First, we determine the neighborhood center
for each boid i ∈ B,

ci(t) =
1

|Ni(t)|
∑

j∈Ni(t)

pj(t). (5)

Note that Definition 1 guarantees |Ni(t)| > 0. We use the
neighborhood center to construct the relative position vector,

ri(t) := pi(t)− ci(t). (6)

Finally, to achieve swarming, we require each boid i to
approach and remain within a distance R ∈ R>0 of the
neighborhood center, i.e.,

gi(ri(t), t) =

{
||ri(t)|| −R if ||ri(t)|| ≤ R,
||ṙi(t)||
umax

ui(t) · ri(t) + ṙi(t) · ri(t) o.w.
≤ 0.

Note that the first case is trivially satisfied, i.e., the boid must
remain within the disk while inside the disk. Thus, we write

||ri(t)|| > R =⇒
||ṙi(t)||
umax

ui(t) · r + ṙi(t) · ri(t) ≤ 0. (7)

We emphasize that our objective is not to trap boid i within
the disk of radius R centered at ci(t). Instead, we expect the
switching neighborhood topology and dynamic motion of ci(t)
to drive the swarming behavior. Additionally, the form of (7) is
inspired by energy-saving techniques in [17]. Note that when
boid i travels in the “correct” direction, i.e., ṙi(t) · r < 0,
the control action ui(t) can take some values in the same
direction as ri(t). However, when boid i is traveling in the
“wrong” direction, i.e., ṙi(t) · ri(t) > 0, the control action
ui(t) must be at least partially opposed to ri(t) to drive boid
i toward ci(t).

Next, inspired by the empirical data collected on sand-eels
[9], we model the predator as a ball of radius Γ. We define the
relative distance vector between each boid i and the predator
as,

di(t) := pi(t)− oi(t), (8)

where oi(t) is the position of the predator at time t. To ensure
predator avoidance, we select a value of Γ larger than the
diameter of the predator and employ a similar constraint to
repel the boids,

||di(t)|| < Γ =⇒

− ||ḋi(t)||
umax

ui(t) · d− ḋi(t) · di(t) ≤ 0. (9)

With the constraints defined, our next objective is to design an
optimal control problem such that the individual boid motion
generates emergent swarming behavior. To this end, we impose
the following assumptions on our system.

Assumption 1. Each boid is equipped with a low-level con-
troller that is capable of tracking the control input.

Assumption 2. Communication and sensing between the
boids occurs instantaneously and noiselessly.

We impose Assumptions 1 and 2 to simplify our analysis
and understand how the system performs in the ideal case.
Assumption 1 is common for trajectory generation problems,
and it can be relaxed by introducing robust control terms
or a safety layer, e.g., using a control barrier function [18].
Similarly, Assumption 2 can be relaxed by including time de-
lays and uncertainty explicitly in the formulation and applying
stochastic [19] or robust [20] control techniques.

Assumption 3. The boids have sufficient vertical space to
avoid collisions without an explicit collision-avoidance con-
straint.

Assumption 3 is common in 2D swarming applications [6],
[21]. Furthermore, it has been thoroughly demonstrated that
adding an extra dimension of motion can significantly reduce
the likelihood of collisions [22].

III. SOLUTION APPROACH

We employ gradient flow to generate the control input
for each boid. This a gradient-based optimization technique,
wherein each boids’ control action is a gradient descent step.
This technique has been used successfully to control multi-
agent constraint-driven systems [13], [23], [24]. Our motiva-
tion for gradient flow is twofold. First, it enables the boids to

immediately react to their surroundings without the computa-
tional and communication costs associated with decentralized
trajectory planning [2]. Second, it allows boids to freely
enter and leave the domain, e.g., due to operating constraints,
mechanical failure, or predation. Each boid determines its
current control action by solving an optimal control problem.
First, we derive a set of safe control inputs and guarantee
that it satisfies recursive feasibility, i.e., it remains non-empty
for all future time. For the remainder of our exposition, we
omit the explicit dependence of state variables on t when no
ambiguity arises.

We start with the position constraint (2), which is not an
explicit function of the control input. Let k = 1, 2, . . . ,M
index the M hyperplanes that define the boundary of P . Each
hyperplane k = 1, 2, . . . ,M consists of a normal vector n̂k ∈
R2 and offset bk ∈ R; the signed distance to the surface of
hyperplane k is,

di,k = pi · n̂k + bk, (10)

for boid i ∈ B. Note that our convention assumes the
normal vector nk points away from the feasible region P .
To guarantee constraint satisfaction, we require the derivative
of (10) to be non-positive when the constraint is active, i.e.,

pi · n̂k + bk = 0 =⇒ vi · n̂k ≤ 0. (11)

This safety constraint (11) can be achieved by using a stopping
distance constraint for each k = 1, 2, . . . ,M [24],

gik =
(
pi · n̂k + bk

)
+ α

(
vi · nk

)2
2umax

≤ 0, (12)

where α ∈ R>0 is a parameter that determines the stopping
distance. Note that (12) trivially satisfies (11). This leads to
our definition of the safe action set.

Definition 2 (Safe Action Set). For each boid i ∈ B at time
t, the safe action set is,

Asi (t) :=
{
ui ∈ R2 : ||ui||∞ − umax ≤ 0,

(
pi · n̂k + bk

)
+ α

(
vi · n̂k

)2
2umax

≤ 0,

∀k = 1, 2, . . . ,M
}
.

In our approach, we constrain the boids to remain within
an axis-aligned rectangular domain, i.e., P is constructed from
two pairs of parallel hyperplanes that intersect at right angles.
Next, we present a result that guarantees recursive feasibility
for the safe action set.

Theorem 1. If a boid i ∈ B satisfies (12) at some time t for
a rectangular domain P , then any α ≥ 1 guarantees recursive
feasibility of Asi (t) for all future time.

Proof. Let the rectangular domain P consists of four hyper-
planes, indexed by k = 1, 2, 3, 4 such that n̂1 = −n̂3 and
n̂2 = −n̂4. Without loss of generality, let vi · n̂1 > 0 and
vi ·n̂2 > 0. Taking the derivative of (12) and combining terms
yields,

ġik = vi · n̂k
(

1 +
α

umax

(
ui · n̂k

))
. (13)

We seek a control input such that ġik ≤ 0. For k = 1, 2,
dividing by vi · n̂k > 0 yields a condition on ui,

ui · n̂1 ≤ −
umax

α
, ui · n̂2 ≤ −

umax

α
. (14)

Similarly, for k = 3, 4, dividing by vi · n̂k < 0 implies,

ui · n̂3 ≥ −
umax

α
, ui · n̂4 ≥ −

umax

α
. (15)

Substituting n̂1 = −n̂3 and n̂2 = −n̂4 into (15) yields the
conditions,

ui · n̂1 ≤
umax

α
, ui · n̂2 ≤

umax

α
. (16)

Thus, to guarantee gi,k is nonincreasing, the control input must
satisfy (14) and (16), i.e.,

ui · n̂1 ≤ −
umax

α
≤ umax

α
, (17)

ui · n̂2 ≤ −
umax

α
≤ umax

α
. (18)

This is satisfied by the candidate control action,

ui = −umax

α
n̂1 −

umax

α
n̂2, (19)

as n̂1 · n̂2 = 0 by definition. In our axis-aligned domain, the
control constraint implies,

||ui||∞ = max

{
umax

α
,
umax

α

}
=

1

α
umax, (20)

which satisfies (3) for α ≥ 1. Finally, for the case that vi·n̂k =
0 for any k = 1, 2, 3, 4, the corresponding derivative ġik = 0
for every control input.

Thus, given a feasible initial state, Theorem 1 guarantees
that each boid’s trajectory will remain feasible indefinitely if
its control action is selected from Asi (t). In conjunction with
the safe action set, we also impose the swarming and predator
avoidance constraints, (7) and (9), to achieve emergent cluster
flocking behavior. The following results provide the conditions
for constraint incompatibility, i.e., under what conditions the
set of feasible control actions becomes empty.

Lemma 1. For a boid i ∈ A, let k = 1, 2 index two
perpendicular hyperplanes in the rectangular domain such that
vi · n̂k ≥ 0. Then, if (12) is strictly equal to zero and
||ri|| > Ri, there is no feasible action if none of the conditions,

||ṙi||

(
1
α−1

1
α−1

 (n̂1 · r̂i) +

1
1
α−1

α−1

 (n̂2 · r̂i)

)
≥ ṙi · r̂i, (21)

hold at time t for k = 1, 2.

Proof. Under the premise of Lemma 1, we must determine
when the control constraints,

||vi||
umax

ui · r̂i + ṙi · r̂i ≤ 0, (22)

vi · n̂k
(
1 +

α

umax
(ui · n̂k)

)
≤ 0, (23)

are incompatible. First, ṙi = 0 satisfies (22) for any ui, thus,
we may divide (22) by ||ṙi|| and work with unit vectors for
the remainder of the proof, i.e.,

1

umax
ui · r̂i + ˆ̇ri · r̂i ≤ 0. (24)

Next, we consider the control ui = −u1n̂1−u2n̂2. From the
proof of Theorem 1, (3) and (14) imply that u1 and u2 must
satisfy,

1 ≥ u1
umax

≥ 1

α
, 1 ≥ u2

umax
≥ 1

α
. (25)

The swarming constraint (24) becomes,
u1
umax

(n̂1 · r̂i) +
u2
umax

(n̂2 · r̂i) ≥ ˆ̇ri · r̂i. (26)

The result follows from substituting the bounds (25) into (26).

Lemma 2. For a boid i ∈ A, let k = 1, 2 index two
perpendicular hyperplanes in the rectangular domain such that
vi·n̂k ≥ 0. Then, if (12) is strictly equal to zero and ||di|| > Γ,
there is no feasible action if none of the conditions,

||ḋi||

(
1
α−1

1
α−1

 (n̂1 · d̂i) +

1
1
α−1

α−1

 (n̂2 · d̂i)

)
≤ ḋi · d̂i, (27)

hold at time t for k = 1, 2.

Proof. The proof Lemma 2 is identical to Lemma 1, and thus
we omit it.

Lemma 3. For a boid i ∈ A, let k = 1, 2 index two
perpendicular hyperplanes in the rectangular domain such that
vi · n̂k ≥ 0. Then, if (12) is strictly equal to zero, ||ri|| > Ri,
and and ||di|| > Γ, there is no feasible control action if the
linear system of equations,[

||ṙi||n̂1 · r̂i ||ṙi||n̂2 · r̂i
−||ḋi||n̂1 · d̂i −||ḋi||n̂2 · d̂i

] [u1

umax
u2

umax

]
≥
[
ṙi · r̂i
−ḋi · d̂i

]
has no solution that also satisfies 1

α ≤
u1

umax
≤ 1 and 1

α ≤
u2

umax
≤ 1.

Proof. The proof of Lemma 3 is constructed by satisfying
Lemmas 1 and 2 jointly.

Generally, the problem of constraint incompatibility has
been solved in the ecologically-inspired robotics literature by
introducing slack variables [25], [26]. However, it is unclear
why one would add slack to the predator avoidance constraint
when the premise of Lemma 2 is not satisfied. For this reason,
we use Lemmas 1–3 to construct a finite state machine that
completely describes the behavior of each boid. Note that
defining an appropriate evasive behavior when Lemma 2 holds,
e.g., a fountain [27] or flash [9] maneuver, is beyond the scope
of this work; in our simulations (Section IV), we simply relax
the predator-avoidance constraint.

Proposition 1. Each boid i ∈ B can be modeled as a finite
state machine with three states: 1) Nominal, which considers
the safety, swarming, and predator avoidance constraints;
2) Strained, which relaxes the swarming constraint; and 3)

Evasive, where the boid executes an evasive maneuver. Boid i
transitions between these states based on whether the premises
of Lemmas 1–3 are satisfied at each time; this is presented in
Fig. 1.

Fig. 1. A finite state machine that describes each boids’ feasible action
space based on whether the premise of Lemmas 1–3 are satisfied.

With the feasible action set and finite state machine defined,
each boid i ∈ B also requires a notion of performance to
select the “best” control input. Following the ecologically-
inspired paradigm [25] would suggest minimizing the norm of
the control input; this arguably yields a minimum effort policy.
However, we have previously demonstrated that selecting an
appropriate objective function is critical to achieve a desired
emergent behavior [24]. As discussed in [9], sand-eels tend
to cruise at a constant speed of approximately 2 body lengths
per second. Thus, we require each boid to match an optimal
swimming speed, denoted ||v∗i ||, as closely as possible, i.e.,

Ji
(
vi(t)

)
=
(
||vi(t)|| − ||v∗||

)2
. (28)

We interpret the optimal swimming speed as being bio-
mechanically advantageous, i.e., if J = ||ui|| minimizes
energy consumption, then (28) corresponds to minimum-power
locomotion. Combining the cost (28) with the state-machine
architecture outlined in Proposition 1 yields the optimal con-
trol problem solved by each boid.

Problem 1. For each boid i ∈ B at time t, apply the control
action that solves,

min
ui(t)

(
||vi(t)|| − ||v∗||

)2
subject to:

ui(t) ∈ Asi
(
t), (1), (7), (9),

where (7) and (9) are relaxed according to Proposition 1.

The final step is to tune the system parameters, which we
discuss, along with the simulation results, in the following
section.

IV. SIMULATION

To validate our optimal control policy, we solved Problem
1 for N = 15 boids over a 120 second time interval. Next, we
present our simulation parameters and the physical intuition
behind them, followed by simulations that demonstrate the
desired cluster flocking and predator avoidance behaviors.

Additional details and simulation videos can be found on
the dedicated website of manuscript, https://sites.google.com/
view/ud-ids-lab/swarming.

Based on the information given in [9], we selected a
diameter of 5 cm for each boid, which implies an optimal
speed of approximately 12.5 cm/s. Intuitively, it is desirable for
each boid i ∈ B to have a small actuation limit relative to the
desired speed. Each boid ought to approach its neighborhood
center ci at a high speed, overshoot it, and circle back toward
ci in a wide arc. This circling motion will also influence the
topology of the Voronoi neighborhoods, which will further
perturb the flock. Ideally, these perturbations will push some
boids to the edge of the flock to counteract flock collapse [7].
Additionally, we select a square domain P that is large enough
for cluster flocking to occur. We summarize our simulation
parameters in Table I.

TABLE I
SIMULATION PARAMETERS USED TO GENERATE SWARMING BEHAVIOR.

Domain Length (m) v∗ (m/s) umax (m/s2) R (cm) Γ (cm)

6 0.125 0.1 2.5 25

To simulate the swarming behavior, we initialize all boids at
rest with random initial positions within the domain P such
that none overlap. At each time step, we solve Problem 1
and may relax some constraints according to Proposition 1.
The behavior of the swarm is visualized in Figs. 2 and 3,
which show two time snapshots from the simulation. Figure
2 shows the initial behavior of the boids 21 seconds into the
simulation. Starting near the center of the domain, the boids
begin travelling in the north-western direction and exhibit a
swirling motion. This is is visible from their tails, which
show 8 seconds of trajectory history. After reaching the north-
western hyperplane, the boids quickly turn around and travel to
the south-east. Figure 3 shows behavior qualitatively similar to
the cruising behavior described by [9], where their velocities
are relatively constant in direction and magnitude.

Fig. 2. Boids circling and forming the initial flock at approximately t =
21 seconds; tails show 8 seconds of trajectory history.

Fig. 3. Boids cruising to the south-east at approximately t = 85
seconds after reaching the north-west wall and changing direction; tails
show 8 seconds of trajectory history.

Next, we introduce a simple predator model. The data
in [9] implies that individual sand-eels treat predators as a
moving obstacles. In fact, they explicitly state that “... the
mackerel ate very few of the sand-eels throughout the duration
of the experiment ...”—implying that the predator avoidance
behavior ought to emerge without an antagonistic predator
model. With this justification, our predator follows a simple
rule: orient toward the center of the boid flock and travel in a
straight line for 8 seconds. The predator moves 20% faster
than the boids, and as such it is able to pass through the
swarm and influence its behavior. We found that 8 seconds
was a reasonable tradeoff to have the predator make several
passes through the swarm without requiring significantly more
simulation time. As with the previous simulation, the flock
quickly formed and began cruising across the domain. The
predator made multiple passes through the swarm, and each
time the boids avoided the predator and quickly reformed. A
simulation snapshot is presented in Fig. 4 near t = 52 s, where
the boids qualitatively exhibit the vacuole behavior seen in the
sand-eel experiments [9].

Fig. 4. Left: apparent vacuole behavior exhibited by the boids the
predator approaches from behind. Right: vacuole behavior observed in
sand-eels, recreated from [9].

Finally, we saved the size of each boids’ neighborhood
(Definition 1) at each time instant throughout the simulation.

https://sites.google.com/view/ud-ids-lab/swarming
https://sites.google.com/view/ud-ids-lab/swarming

A histogram of neighborhood size is given in Fig. 5 for
the simulation containing the predator. The distribution of
neighborhood sizes is approximately Weibull, with 4 neighbors
being the most frequent. This supports existing results in the
biology literature [16], which claims that only considering 3–
5 neighbors may be optimal for predator avoidance in 2D
swarms.

Fig. 5. Neighborhood size histogram for N = 15 boids during the 120
second simulation with a predator.

V. CONCLUSION

In this letter, we constructed a decentralized control policy
to generate emergent swarming behavior for boids operating in
a constrained environment. We extended current ecologically-
inspired approaches beyond control minimization and instead
considered an optimal speed. We rigorously linked our event-
triggered scheme for constraint relaxation to a finite state
machine, which guarantees recursive feasibility without the
use of slack variables. To verify the emergence of swarming
behavior, we performed two simulations; one with no predator,
and the second with a velocity obstacle that tracks the centroid
of the flock.

Future work includes extending our analysis to R3 with
explicit collision avoidance constraints. Further exploring the
distribution of neighborhood size for Voronoi neighborhoods is
another compelling direction—particularly whether these dis-
tributions only coincidentally agree with the optimal neighbor-
hood sizes found in the biology literature. Finally, experiments
to replicate swarming behavior with physical robots will likely
yield valuable insights.

REFERENCES

[1] H. Oh, A. R. Shirazi, C. Sun, and Y. Jin, “Bio-inspired self-organising
multi-robot pattern formation: A review,” Robotics and Autonomous
Systems, vol. 91, pp. 83–100, 2017.

[2] L. E. Beaver and A. A. Malikopoulos, “An Overview on Optimal
Flocking,” Annual Reviews in Control, vol. 51, pp. 88–99, 2021.

[3] I. L. Bajec and F. H. Heppner, “Organized flight in birds,” Animal
Behaviour, vol. 78, no. 4, pp. 777–789, 10 2009.

[4] H. M. La, R. Lim, and W. Sheng, “Multirobot cooperative learning for
predator avoidance,” IEEE Transactions on Control Systems Technology,
vol. 23, no. 1, pp. 52–63, 1 2015.

[5] K. Morihiro, T. Isokawa, H. Nishimura, and N. Matsui, “Emergence
of Flocking Behavior Based on Reinforcement Learning,” in Interna-
tional Conference on Knowledge-Based and Intelligent Information and
Engineering Systems, 2006, pp. 699–706.

[6] C. Hahn, T. Phan, T. Gabor, L. Belzner, and C. Linnhoff-Popien, “Emer-
gent Escape-based Flocking Behavior using Multi-Agent Reinforcement
Learning,” in Artificial Life Conference, 2019, pp. 598–605.

[7] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms
and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3,
pp. 401–420, 3 2006.

[8] Y. Koren and J. Borenstein, “Potential Field Methods and their Inherent
Limitations for Mobile Robot Navigation,” in Proceedings of the 1991
IEEE International Conference on Robotics and Automation, 1991.

[9] T. J. Pitcher and C. J. Wyche, “Predator-avoidance behaviours of sand-
eel schools: why schools seldom split,” in Predators and Prey in Fishes,
1983, pp. 193–204.

[10] L. E. Beaver and A. A. Malikopoulos, “Beyond Reynolds: A Constraint-
Driven Approach to Cluster Flocking,” in IEEE 59th Conference on
Decision and Control, 2020, pp. 208–213.

[11] L. E. Beaver, M. Dorothy, C. Kroninger, and A. A. Malikopoulos,
“Energy-Optimal Motion Planning for Agents: Barycentric Motion and
Collision Avoidance Constraints,” in 2021 American Control Confer-
ence, 2021, pp. 1037–1042.

[12] L. E. Beaver, C. Kroninger, and A. A. Malikopoulos, “An Optimal
Control Approach to Flocking,” in 2020 American Control Conference,
2020, pp. 683–688.

[13] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates
for collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[14] B. T. Fine and D. A. Shell, “Unifying microscopic flocking motion
models for virtual, robotic, and biological flock members,” Autonomous
Robots, vol. 35, no. 2-3, pp. 195–219, 10 2013.

[15] E. Cristiani, P. Frasca, and B. Piccoli, “Effects of anisotropic interactions
on the structure of animal groups,” Journal of Mathematical Biology,
vol. 62, no. 4, pp. 569–588, 4 2011.

[16] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Gi-
ardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and
V. Zdravkovic, “Interaction ruling animal collective behavior depends
on topological rather than metric distance: Evidence from a field study,”
Proceedings of the National Academy of Sciences of the United States
of America, vol. 105, no. 4, pp. 1232–1237, 2008.

[17] L. Zhou and S. Li, “Distributed model predictive control for multi-agent
flocking via neighbor screening optimization,” International Journal of
Robust and Nonlinear Control, vol. 27, no. 9, pp. 1690–1705, 6 2017.

[18] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control barrier functions: Theory and applications,” in 2019
18th European Control Conference, ECC 2019. Institute of Electrical
and Electronics Engineers Inc., 6 2019, pp. 3420–3431.

[19] A. Dave and A. A. Malikopoulos, “Structural results for decentralized
stochastic control with a word-of-mouth communication,” in 2020
American Control Conference (ACC). IEEE, 2020, pp. 2796–2801.

[20] B. Chalaki and A. A. Malikopoulos, “Robust learning-based trajectory
planning for emerging mobility systems,” in 2022 American Control
Conference (ACC), 2022 (accepted) arXiv:2103.03313.

[21] C. Hahn, F. Ritz, P. Wikidal, T. Phan, T. Gabor, and C. Linnhoff-
Popien, “Foraging Swarms using Multi-Agent Reinforcement Learning,”
in Artificial Life Conference, 2020, pp. 333–340.

[22] D. Morgan, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh, “Swarm
assignment and trajectory optimization using variable-swarm, distributed
auction assignment and sequential convex programming,” International
Journal of Robotics Research, vol. 35, no. 10, pp. 1261–1285, 2016.

[23] G. Notomista and M. Egerstedt, “Constraint-Driven Coordinated Control
of Multi-Robot Systems,” in Proceedings of the 2019 American Control
Conference, 2019.

[24] L. E. Beaver and A. A. Malikopoulos, “Constraint-driven optimal control
of multi-agent systems: A highway platooning case study,” IEEE Control
Systems Letters, vol. 6, pp. 1754–1759, 2022.

[25] M. Egerstedt, J. N. Pauli, G. Notomista, and S. Hutchinson, “Robot
ecology: Constraint-based control design for long duration autonomy,”
Annual Reviews in Control, vol. 46, pp. 1–7, 1 2018.

[26] T. Ibuki, S. Wilson, J. Yamauchi, M. Fujita, and M. Egerstedt,
“Optimization-Based Distributed Flocking Control for Multiple Rigid
Bodies,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1891–
1898, 4 2020.

[27] F. Berlinger, P. Wulkop, and R. Nagpal, “Self-Organized Evasive
Fountain Maneuvers with a Bioinspired Underwater Robot Collective.”
Institute of Electrical and Electronics Engineers (IEEE), 10 2021, pp.
9204–9211.

	I Introduction
	II Problem Formulation
	III Solution Approach
	IV Simulation
	V Conclusion
	References

