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ABSTRACT 

Adaptive Façades (AFs) have proven to be effective as a building envelope that can enhance energy effi-

ciency and thermal comfort. However, evaluating the performance of these AFs using the current building 

performance simulation (BPS) tools is complex, time-consuming, and computationally intensive. These 

limitations can be overcome by using a machine learning (ML) model as a method to assess the AF system 

efficiently during the early design stage. This study presents an alternative approach using an Artificial 

Neural Network (ANN) model that can predict the hourly cooling loads of AF in significantly less time 

compared to BPS. To construct the model, a generative parametric simulation of office tower spaces with 

an AF shading system were simulated in terms of energy consumption using Honeybee add-on in Grass-

hopper which are linked to EnergyPlus for training the ANN model. The prediction results showed a highly 

accurate model that can estimate cooling loads within seconds.  

Keywords: Adaptive Façade, Automatic Control, Cooling Energy Demand, Machine Learning, Artificial 

Neural Network. 

1 INTRODUCTION 

According to the International Energy Agency (IEA), energy consumption by buildings is increasing sig-

nificantly; currently, buildings account for 40% of the global energy use. Furthermore, the IEA reported 

that energy demand is estimated to increase by 30% by 2035 (Building and Codes 2013). Therefore, differ-

ent countries have formed new regulations to achieve net zero buildings (NZB) and reduce CO2 emissions. 

To meet the current targets of designing high performance buildings with the future of nearly zero energy 

buildings (NZEB), there is a need to continue the advances made in the design, technology, and materials 

of buildings. The building envelope plays an important role in achieving this target; it acts as a separator 

element between the indoor and outdoor environments of a building and is a crucial factor that determines 

the quality of indoor conditions (Sadineni et al. 2011). Since despite the extreme temperatures in hot cli-

mates, highly curtain wall glazing systems are the dominant type of building envelopes found in most high-

rise and mid-rise buildings, it is vital to install shading systems on such buildings to control the penetration 

of solar radiation into the internal spaces. The intense solar radiation can have an impact on increasing the 

cooling energy loads required to achieve human comfort in these offices. 



Alammar and Jabi 

Because buildings are exposed to dynamic environmental factors, where outdoor conditions change con-

tinuously throughout the day and the year, numerous studies have been conducted regarding substituting 

the static envelope with an adaptive one (Choi et al. 2017a; Elzeyadi 2017; Hosseini et al. 2019a; Samadi 

et al. 2020; Shi et al. 2020; Tabadkani et al. 2021a). Researchers and designers around the world have 

developed adaptive façades (AF) to achieve greater efficiency and performance by exploiting the dynamic 

environment. These AFs have unique features or behaviours that repeatedly and reversibly change over 

time according to variable boundary conditions and respond to changing requirements, aiming to improve 

the overall building performance (Loonen et al. 2017). Due to the multi-functionality and complexity of 

predicting the performance of AF systems, this study proposes a framework to predict AF energy perfor-

mance early in the design process using supervised machine learning (ML) methods. The ML approach 

promises greater efficiency in the evaluation of building performance than does conventional simulation 

(Chakraborty and Elzarka 2019). Artificial neural networks (ANN) have been successfully used to predict 

buildings’ energy performance in most studies because of their ability to address non-linear problems. Thus, 

ANN could be applicable to predict the performance of a building with an AF once the system is trained 

with a sufficient set of data. 

2 RESEARCH BACKGROUND  

2.1 Adaptive Façade Overview  

The advances in architectural envelopes have changed the design approach from static and conventional 

envelopes to adaptive and responsive ones that aim to improve the performance of the whole building. 

Nguyen and Aiello (2013) promoted the application of adaptable buildings to optimise energy consumption, 

while Ghaffarianhoseini et al. (2016) concluded that intelligent façades can contribute to reducing energy 

and responding to indoor and outdoor environments. Giovannini et al. (2015) developed the Shape Variable 

Mashrabiya (SVM) shading system for an office building in Abu Dhabi. The authors applied the shading 

in two different orientations – the east and west façades – to analyse the effect of the SVM shading system 

on reducing the global energy demand and annual lighting demand. The results revealed the immense po-

tential of an adaptive façade shading system on both daylighting and energy saving. Overheating problems 

were minimized, and "consequently the EPc values (-17.2% and -9.9% compared to SG41 and to venetian 

blinds (VB), respectively)" Page (6).  

Assessing the applicability of AFs during the early stages of design is extremely significant, but it is mostly 

restricted to the existing simulation tools for faster quantification (Tabadkani et al. 2021b). Loonen et al. 

(2017) stated that predicting the performance of buildings with AFs is a challenging task that is mostly 

determined by the local boundary conditions, interactions with the building’s users, and other building 

systems. The authors also examined the methods of simulation in both conventional static building enve-

lopes and adaptive envelopes. In traditional static envelopes, the simulation process is less complex and 

requires certain factors, such as the U-value and g-value, in order for predictions to be made. On the other 

hand, an AF is more complex and has a variety of factors, which makes accurately predicting the building 

performance of an AF more challenging. Some of these factors are: (1) the time variation behaviour, (2) 

modelling the dynamic operation of the façade adaptation, and (3) the multiple physical domains. There-

fore, some of the existing simulation tools were not developed for predicting performance with an AF spe-

cifically. Moreover, these tools are limited and provide misleading information for adaptive systems 

(Loonen et al. 2017).  

According to the literature, most designers evaluate AF using their own simulation strategy because there 

is no straightforward approach to assess the performance of AF for energy performance or for human com-

fort (Attia 2019; Tabadkani et al. 2020c, 2021b). Therefore, inaccurate results might be obtained when 
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assessing their performance and applicability in the long term (Tabadkani et al. 2020c). Since the develop-

ment of AF by many researchers has increased significantly in recent years (Elzeyadi 2017; Hosseini et al. 

2019b; Böke et al. 2020; Bui et al. 2020; Panya et al. 2020; Shi et al. 2020), it is essential to find an alter-

native approach that requires less computation knowledge and that is less time consuming to predict their 

performance efficiently during the early design stages.    

2.2 Artificial Neural Network for Predicting the Performance of AFs  

In recent years, several studies have been conducted on integrating the ML approach for the prediction of 

building performance, which includes building-energy performance, estimating heating and cooling loads, 

daylighting, human comfort, and indoor temperatures. Zhao and Magoulès (2012) agreed that the ML ap-

proach has proven to be efficient in the prediction of building performance. Unlike conventional modelling 

methods, supervised ML has major benefits in terms of requiring less computation time and less effort and 

of being computationally inexpensive (Huang et al. 2015). Regarding a simulation-based model approach, 

Keshtkarbanaeemoghadam et al. (2018) developed a neural network (NN) model, trained by a back-propa-

gation algorithm (BP), to estimate the total heating energy demand of a shelter located in Iran. The study 

obtained its data by conducting 328 computer simulations using a Grasshopper plugin linked to the Ener-

gyPlus engine. Nine inputs were selected to train and test the NN: “wall thickness, wall U-value, wall R-

value, window U-value, window R-value, number of occupants, equipment load, and infiltration rate” Page 

(734). According to the results, the best ANN model had an MSE of 0.73, which indicates that the ANN 

model is a promising approach and can serve as a substitute for other methods to predict the heating energy 

demand in buildings.  

In another similar approach, Wong et al. (2010) conducted a simulation using EnergyPlus to generate a 

database of daily energy consumption for office buildings with daylighting. Then, these generated data 

were used to train and test the developed ANN model to predict daily building energy usage in fully air-

conditioned office buildings in the early design stages.  The results for “cooling, heating, electric lighting 

and total building electricity were 0.994, 0.940, 0.993, and 0.996, respectively” Page (551), which repre-

sents a highly predictive model. To date, no studies have explored the integration of ANN into predicting 

the energy performance of AFs. In addition to the abovementioned studies related to the existing perfor-

mance simulation tools, these tools are not developed specifically for AFs but provide limited and mislead-

ing information for adaptive systems (Loonen et al. 2017). Therefore, this shortfall emphasizes the need to 

examine different approaches for the performance of AFs in the initial design stage to speed up the predic-

tion process of AFs.   

3 RESEARCH METHODOLOGY  

The methodological framework of this research is divided into three main stages. In the first stage, a gen-

erative parametric simulation of office spaces with an AF shading system was modelled and simulated in 

terms of energy consumption using EnergyPlus. In the second stage, an automatic (closed loop) shading 

control was employed to actuate the behaviour changes of the AF system on an hourly basis based on two 

predefined environmental sensors. The aim of these two stages was to assess the impact of AFs on the 

energy performance of a shared office room and to create a large synthetic database of hourly cooling 

energy demand (Wh/m2) for training data. These datasets were synthetically produced through an iterative 

loop. In the third stage, an ANN surrogate model was developed and evaluated in terms of its ability to 

predict the hourly cooling demand of an AF system for a closed office space. In order to achieve a high 

accuracy model, a hyper-parameter tuning analysis was performed by evaluating and training several ANN 

models using K-fold cross validation method. In this research, the Honeybee and Ladybug Grasshopper 
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plugins in conjunction with EnergyPlus were used to generate and simulate the model in terms of energy 

consumption.  

3.1 Simulation Settings  

A hypothetical high-rise office building in the downtown of Riyadh, Saudi Arabia, was generated as a case 

study. The office building has 30 floors with a building height of 120 m, which is the common height 

situation found in the centre of the King Abdullah Financial District. The dimensions of the layout and core 

area were fixed in all floors of the building as follows: (35 m * 35 m), with a total area of 1225 m2 (see 

Figure 1). In this study, only shared side-lit office zones with an adaptive shading system were examined 

on each floor of the proposed office building, which faced the main orientations (north, south, east, west) 

to quantify the impact of an AF on building energy performance. The variable input parameters for this 

research were selected considering the building envelope properties and the dynamic behaviour changes of 

the AF shading system, namely hour, date, month, orientation, building context, external wall U-value, 

glazing type U-value, solar radiation setpoint, operative temperature setpoint, shade factor (SF), and open-

ing ratio. Tables 1 and 2 lists the fixed and dynamic input parameters used in this research to conduct the 

energy analysis using the EnergyPlus engine.  

 

Figure 1. Closed office room with detailed constructions and sensor location. 

 

Table 1. Dynamic simulation parameters 

Dynamic Input Parameter Assigned Value(s) No. of Iterations  

Orientation South, West, North, East  4 

Building Context 00 Low, Medium, High 3 

Building Context 01 Low, Medium, High 3 

Façade Level Hight  lower than average, Average, and Higher 

than average 

3 

Exterior wall – U-value 0, 1, 3 W/m2 K 3 

Glazing type – U-value 0, 1, 2, 3 W/m2 K 4 
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Table 2. Fixed simulation parameters 

Parameter Assigned Value(s) 

Location  Riyadh, Saudi Arabia  

Space type  Shared Office Room  

Glazing ratio 80 %  

Room width,  height, and  length 4.00 m - 4.00 m - 6.00 m 

Cooling/ Heating set points C: 24 C / H: 22 C 

HVAC system  ideal air load system 

Number of people 2 people  

Lighting density 3 W/m2 

Number of occupants 0.5 ppl/m2 

Equipment load (W/m2) 2 W/m2 

Infiltration rate 0.0001 (m3/s m2) 

 

The material parameters of the office were defined based on ASHRAE 90.1-2010 climate region number 

1, a database provided by EnergyPlus (ASHRAE materials databases) as the recommended materials for 

the climate zone of the study, which were assigned for a hot-dry climate region. Different types of external 

walls for the office room were considered with distinct U-values. Partitions/interior walls were assumed to 

be adiabatic and to be gypsum board with a U-value of 2.58 (ASHRAE 90.1-2010), which means that there 

was no heat transfer across the interior walls. In addition, glazing was considered as one of the main varia-

bles in the energy simulation of the model. Therefore, different types of glazing system (single U-value 

5.82, double clear U-value 2.71, double Low-e coating U-value 1.63, and triple glazing- Krypton Filled U-

value 0.57) were investigated for the studied model, which had different solar heat coefficient values and 

thermal transmittance U-values (Gadelhak and Lang 2016). Table 3 lists the specifications for the construc-

tion material parameters that were implemented in this study.  

  

Total No. of iterations   1296  

Month  March, June, September, December - 

Day  01 – 31  - 

Hour  1:00 - 24:00 - 

Shading States A, B, C, D, E, F - 

Total No. of hourly cooling data   3,794,688 
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Table 3. Characteristic of materials used in the simulation 

Material Name   

 

Layers U-value R-value 

ASHRAE90.1-2010 

EXTWALLMASS CLIMATEZONE 1 

1IN Stucco  

8IN CONCRETE HW RefBldg 

1/2IN Gypsum 

3.690821 0.270942 

ASHRAE 90.1-2010 EXTWALL 

MASS CLIMATEZONE ALT-RES 1 

1IN Stucco 

8IN CONCRETE HW RefBldg 

Mass Wall Insulation R-4.23 IP 

1/2IN Gypsum 

0.983672 1.016599 

ASHRAE 90.1-2010 EXTWALL 

METAL CLIMATEZONE 1-2 

Metal Siding 

Metal Building Wall Insulation R-

9.45 IP, 1/2IN Gypsum 

0.573406 1.743964 

3.2 Automatic Control System  

The study implemented the following steps to control the changing behaviour of the AF: (1) controlling the 

opening size of the external AF shading system based on two outdoor and indoor sensors; (2) calculating 

the annual SF per hour of each shading state to be translated as a transmittance schedule; (3) calculating the 

annual incident SR on the exterior surface hourly; and (4) establishing a control scheme through Energy 

Management System (EMS), which is an embedded function in EnergyPlus, to define sensors, control, and 

actuators on hourly time steps (Hong and Lin 2013) (see Figure 2). According to the literature, an AF 

system is triggered automatically by environmental stimuli, such as SR, relative humidity, surface temper-

ature, etc. The combination of both Solar radiation (SR) as a sensor at the exterior surface and operative 

temperature (OT) in the interior space provided the best system in terms of energy performance and human 

comfort (Tabadkani et al. 2020a; van Moeseke et al. 2007; Evola et al. 2017). Thus, an automatic shading 

control based on two predefined sensors, specifically SR and OT, was employed as environmental sensors 

to adjust the opening ratio of the AF system in an automatic way with the integration of a closed (feedback) 

loop control system. For the purpose of this study, a simple parametric unit shaped in a kinetic prismatic 

modular element was implemented with a scaling and translating movements. The aim of this pattern is to 

provide hierarchical configurations and self-shading geometry for the envelope. Thus, six different shading 

states that varied in terms of their opening ratio (State-A 100%, State-B 80%, State-C 60%, State-D 40%, 

State-E 20%, State-F 0%) were defined based on SR and OT thresholds see Figure (3). The shading system 

closed when the external total SR on the exterior surface and OT exceeded a chosen set point. The SR range 

varied between 0  and 450 W/m2 with a 50 W/m2 step, while the OT ranged from 21 oC to 24 oC. These 

thresholds were determined based on some of the previous studies that recommended an appropriate acti-

vation threshold for each climate zone (Al Touma and Ouahrani 2017; Yun et al. 2017; Tabadkani et al. 

2020b). To this end, a conditional statement was coded within the EMS interface an embedded function in 

EnergyPlus to adjust the desired opening ratio based on the defined program logic. The shading (state A) 

is fully open when the SR is equal to or below 50 W/m2 and the OT is equal to or below 21 oC. On the 

other hand, shading (state F) is fully closed when the SR is equal to or above 450 W, and the OT is higher 

than 24 oC. Other intermediate shading states were considered in between these thresholds.  

 

Figure 2. Energy management system (EMS) principles. 
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Figure 3. Modelling process of the AF geometry with scaling movements. 

4 ANN’S SURROGATE MODEL DEVELOPMENT  

Employing sufficient data is essential to have a satisfactorily accurate ANN model that can predict the 

hourly cooling energy demand. For this purpose, 1,296 simulation iterations of an office room with AF 

were performed by the Honeybee plugin with various inputs to train the model. A total of 1,581,120 (1296 

* 4 months (122 days) *10 hours) hourly cooling energy data was recorded, corresponding mainly to the 

variation of the AF system per hour together with other input parameters. Cooling loads in kWh/m2 were 

generated as an output of the ANN model and a total of thirteen variables were used as inputs as follows: 

month, hour, day, orientation, building 00, building 01, façade level height, glazing type U-value W/m2K, 

exterior wall U-value W/m2K, AF opening ratio, AF-SF, SR W/m2, and OT. The generated energy results 

database was uploaded to the Design Explorer webpage, which is a web-based tool allowing comparison 

analysis between the studied input parameters (http://tt-acm.github.io/DesignExplorer/?ID=BL_3fQFpeE). 

Based on all studied cases, the total annual energy consumption of the office room with AF shading system 

ranges from 142 kWh/m2 to 82 kWh/m2. The simulation results were compared with the CIBSE energy 

consumption benchmark for existing office buildings (CIBSE Guide F 2012). According to CIBSE Guide 

F, energy benchmarks for good practice of air-conditioned standard offices in the UK count approximately 

128 kWh/m2 per year of treated floor area for HVAC, whereas for typical practice count for 226 kWh/m2 

per year  (CIBSE Guide F 2012). Most models in the current study achieved below the CIBSE practice 

recommendations except some models that has a higher U-value. To construct the ANN model, three main 

steps needed to be considered: (1) Data pre-processing, (2) Model training and hyper-parameter optimisa-

tion, and (3) Model validation (Westermann and Evins 2019). Regrding the machine learning modelling, 

we used ANN in the form of a regression learning using Pytorch. ANN is considered as a surrogate method 

to approximate any continuous function by virtue of the universal approximation theorem.  

  

The ANN network is constructed of basic units named neurons, and it is assumed that these neurons are 

arranged in different layers. Each neuron takes the input from the previous layer where the inputs are mul-

tiplied with weights. The output of a neuron is a non-linear function of the linear combination of weighted 

inputs, described by the following equation. 

𝑦 =  𝜎 (𝑥1𝑤1 +  𝑥2𝑤2 +  𝑥3𝑤3) 

The non-linear function σ is called the activation function. In the experiments, the activation used was the 

Rectified Linear Unit (ReLU), which is defined as follows: 

𝜎(𝑥) = max(0, 𝑥). 
 

For the experiments, the network architectures used were one-, two-, three-, and four-layer networks with 

64, 128, 256, and 512 neurons: that is, for an n-layer network, all the n-layers had 64, 128, 256, or 512 

neurons. In total, the model selection was done from a total of 16 network configurations. The details are 

explained in Section 6.  So, the function, y, approximated by the neural network of n layers, is as follows: 

𝑦 = 𝜎 … 𝜎(𝜎 (𝑋1𝑊1))𝑊2 … )𝑊𝑛 

                                          

          

       
             

    

             

                                     

about:blank
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Here 𝑋1 is the input matrix of dimensions N x d, where N is the number of data points, d is the dimension 

of the data, and 𝑊1 is the weight matrix in the first layer of dimensions d x 𝑑1. Similarly, 𝜎 (𝑋1𝑊1) forms 

the input for the second layer, and 𝑊2 is the weight matrix for the second layer and has the dimensions 𝑑1x 

𝑑2. The datasets may have complex patterns that may not have linear dependencies. In other words, to 

detect these patterns, it is necessary to analyse the non-linear interactions in the input data space. The non-

linear function 𝜎 was used in this regard. The objective was to find a function in terms of the inputs that 

gives the cooling load as an output. A NN was used to approximate this function. For this purpose, the NN 

was used in a regression setting using the selected inputs. Then, the discrete inputs were one-hot encoded. 

The network was then trained to predict the cooling loads as an output. The data flow overview of the 

modelling process is described in Figure 4.  

 

 
Figure 4. Data flow overview. 

The performance of the network was evaluated with the root mean square error (RMSE) value, mean abso-

lute error (MAE), and 𝑅2 score. The RMSE value describes the square of the difference between the actual 

cooling load values and the predicted ones. On the other hand, the MAE value describes the absolute value 

of the difference between the two. The difference is also known as the residual. Both the values can take 

any value greater than zero, and a model is said to be performing well when both values are as low as 

possible. The 𝑅2-value evaluates the scatter of the predicted values around the regression line. In statistics, 

it is also called the coefficient of determination. It is defined as the ratio of variance explained by the model 

to the total variance. The performance metrics were calculated using the following formulae. 

RMSE = √
1

|𝑦|
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦̂(𝑖))22
 

MAE (y, 𝑦̂) =  
1

|𝑦|
∑ |𝑦(𝑖) − 𝑦̂(𝑖)|

|𝑦|
𝑖=1  

 

𝑅2 (y, 𝑦̂) = 1 - 
∑ (𝑦(𝑖)− 𝑦̂(𝑖))2|𝑦|

𝑖=1

∑ (𝑦(𝑖)− 𝑦̅)2|𝑦|
𝑖=1

 

4.1 Experiments Settings   

In this section, we describe the details of the NN modelling procedures for predicting the cooling loads. 

The objectives of the modelling are as follows: (1) choosing the optimal architecture: in our experiments, 

one-, two-, three- and four-layer architectures were considered. Each of these architectures was tested with 

64, 128, 256 and 512 neurons. Hence, the first step was to choose the optimal architecture from these op-

tions. The k-fold cross validation methodology was adopted for this, and the process is explained in detailed 

in Section 5. (2) analyzing the performance of the optimal architecture: once the right architecture had been 
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chosen, a machine learning model had to be built such that it could be used as a surrogate mechanism to 

predict the cooling loads from the inputs described in Table 1 without performing the actual simulations.   

Apart from choosing the right architecture, the other parameters were fixed as follows. The dropout rate 

was chosen as 0.5, batch size as 20000, number of epochs as 100 and the early stopping criteria as 10 

epochs. The hardware used was Intel Xeon E5-2630 CPU, 80 GB RAM, and Nvidia GeForce GTX 1080-

Ti GPU. For learning, the Backpropagation (BP) algorithm [9] was used. The weights of the layers were 

initialized using the Kaiming initialization method (Kaiming et al. 2015). 

4.2 Data Pre-Processing  

Data pre-processing refers to the processing steps that the categorical data inputs must undergo. The cate-

gorical inputs must be given an appropriate mathematical representation to improve the performance of the 

network rather than using them as such. The discrete inputs used for the modelling were hour, month, date, 

orientation, building 00, building 01, glazing type U-value, and exterior wall U-value. One-hot encoding 

(Seger 2018) is the data pre-processing that is applied to the categorical inputs. One-hot encoding is a 

mechanism to represent categorical variables as a mathematical vector that contains zeros and ones. The 

vector will have a dimension equal to the number of possible values it can take. A value of one is given to 

the coordinate corresponding to the value taken by the variable, and the remaining coordinates will be zero. 

For better representation, the one-hot encoded categorical features were fed into an embedding layer. In 

this layer, the one-hot encoded vector already created was again changed to another meaning vector rather 

than being used in their original form of just ones and zeros. The continuous inputs used for the modelling 

were level height, AF (opening percentage), AF-SF, SR, and OT. These inputs were fed into the batch 

normalizing layer (Ioffe and Szegedy 2016). Then, the data were fed into the ANN in batches. Since the 

network was not fed with the entire data, the data distribution tended to vary as each batch was processed. 

This caused some instability with the learning process. To rectify this effect, batch normalization was in-

troduced. This standardized the input in the form of batches that were fed to the ANN layers. It helped to 

stabilize the learning process and reduced the number of epochs required to train the networks. 

4.3 Operations Inside the Layers  

(1) Linear layer + ReLU: The input to the network was given to a dense or linear layer. For the non-linear 

activation of the inputs in the neurons in the linear layer, the ReLU function defined as f(x) = max(0, x) 

was used. (2) Batch normalization: The output of ReLU was batch normalized. Batch normalization con-

cepts were discussed in the previous section. (3) Dropout regularization: Dropout is a mechanism to en-

sure the generalization capability of the network by avoiding over-fitting. It is the process of disabling 

certain neurons randomly so that the learning process becomes robust, and dependency on specific neurons 

is decreased.  The percentage of neurons to be disabled is treated as a hyper-parameter, and it was taken as 

0.5 out of 1 in these experiments. (4) Output of the network: The output of the network is a neuron without 

any activation function: that is, the input of the neuron is multiplied by the weight, and no further processing 

is done. 

5 K-FOLD CROSS VALIDATION  

A neural network can have a different number of layers where each layer can have a different number of 

neurons. To address this, a k-fold cross validation experiment was conducted. Choosing an appropriate 

network is important to avoid the under-fitting and over-fitting of the data and to achieve better generaliza-

tion of the network to be used in the unseen future data.  Therefore, we started with a one-layer network, 

and added numbers of neurons to it in steps. Firstly, 32 neurons were given, then 64, and then 128. The 

experiment was repeated for two-layer, three-layer, and four-layer networks. For this experiment, the data 
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was split into training, validation, and test sets. The models were trialled using the training and validation 

data splits, and the model that was finally chosen was tested with the test data.  

5.1 Data Split 

Initially, the whole data set was split into training, validation, and testing sets: 80% of the data was assigned 

to the training set, 6.67% to the validation set, and the remaining 13.37% was assigned to the testing se. 

The k-fold cross validation was then done on the training fold and the chosen value of k was 5.  For the k-

fold cross validation procedure, one of the folds became the testing set, and the remaining folds became the 

training set. In this case, one-third of the testing case data was reserved as the validation set for that partic-

ular instance of the validation procedure. Table 4 reports a summary of the average across five folds while 

doing the k-fold cross validation. To provide fuller representation of the chosen architecture, the results are 

graphically visualized in Figure 5. Moreover, the performance metrics of the best performing model from 

the one-, two-, three-, and four-layer networks are given in Figure 6.  

 

No. of layers No. of neurons in each layer RMSE MAE R2- score 

1 128 0.000478 0.0383 0.862678 

2 128 0.000547 0.04106 0.75022 

3 128 0.000703 0.04616 0.620949 

4 128 0.00074 0.0492 0.690268 

Table 4. Sensitivity analysis results for ANN architecture. 

The results are graphically represented as shown in Figure 5 and 6.  

 

Figure 5. K-fold cross validation results on choosing ANN architecture. 

From these figures, we can note the following. 

i) As we increase the number of layers, the RMSE increases. The best results are for networks with 

only one layer.  

ii) The performance score drops for deeper networks compared to shallow networks.  

iii) This indicates that having deeper networks with a large number of neurons results in over-fitting 

or poor generalization to the data. 

iv) On the other hand, the performance of deeper networks with a lower number of neurons (64 and 

128) is comparatively better than that of those with a larger number of neurons.  

v) The performance decreased when more layers were added.  
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vi) The trend discussed in the previous point was followed by all three performance metrics, namely 

RMSE, MAE and R2 score.  

vii) Based on the experiments, the architecture chosen was a 1-layer neural network with 128 neu-

rons. For all these experiments, the train/test ratio of the data used was 80%/20%, the learning 

rate was 0.01, the number of epochs was 100, and the batch size was 20,000 

 

Figure 6. RMSE, MAE and R3 score of the best performing models among different layers. 

6 TESTING THE SELECTED ARCHITECTURE   

The one-layer network with 128 neurons was selected through the k-fold cross validation applied to the 

validation set and the test set. For this purpose, a new model was built using the entire training set. This 

model was tested with the test set.  The results obtained are as follows: the RMSE value was 0.00008809, 

MAE was 0.00718157, and the R2-score was 0.8531965. The training loss and validation loss of this net-

work are plotted in Figure 7. As we can see from the figure, the training loss starting from 0.20 decreased 

steeply to less than 0.01 in the first few iterations. This indicates that our neural network has learned in the 

desired way. We tested the model for some randomly cases of actual and predicted values on different days 

of the year (21st March, 21st June, 21st September, and 21st December), and building orientations (South, 

West, North, and East). we observed that the ANN model can accurately predict the cooling load in seconds 

compared to BPS tools.  

 

Figure 7. Training and validation loss against number of epochs. 

7 CONCLUSION AND RECOMMENDATIONS    

This paper aimed to find an alternative method to evaluate the performance of adaptive façade systems to 

avoid the difficulties that are faced while making predictions using the existing BPS tools. To achieve this, 

a supervised machine learning approach was employed, specifically an ANN model, to estimate the hourly 
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cooling demand of AF in hot climates. Initially, the AF model was performed using the Honeybee and 

Ladybug add-ons in the Rhino/Grasshopper software to create a large synthetic datasets of cooling loads. 

After the simulation, the generated data were then used to train, validate, and test the proposed ANN model.  

To discover the best prediction outcome of the ANN model, a hyper-parameter tuning analysis was per-

formed to select the most suitable architecture. We tested the architecture with different numbers of hidden 

layers and neurons through a k-fold cross-validation technique. Based on our experiment, we noted the 

following observations: (1) at the conclusion of our experiment, we found that the one-hidden-layer net-

work with 128 neurons performed better than other networks. Therefore, we fixed the model, choosing 

these parameters as follows: a one-layer neural network with 128 neurons, a train/test ratio of 80%/20%, a 

learning rate of 0.01, 100 epochs, and a batch size of 20,000. (2) The best results achieved were an RMSE 

value of 0.00008809, MAE pf 0.00718157, and an R2-score of 0.8531965. (3) We compared the results of 

the ANN model with the actual simulated output for random cases, and we observed that the ANN model 

shows a strong and promising approach to predict the cooling load with greater accuracy.  

Due to the unavailability of a real dataset, we resorted to creating a synthetic one in a generative parametric 

system using a simulation-based approach. Furthermore, the case study focused only on a hot climate region 

and tall office towers within an urban context, so its applicability to other climates remains to be tested in 

future work. Planned future work will experiment with other machine learning techniques such as Decision 

Tree (DT), and Recurrent Neural Network (RNN) to compare our findings to these models in terms of 

model prediction accuracy. We are also planning to integrate other building performance metrics and de-

velop a ML surrogate model to assess the overall performance of AF.  
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