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Abstract—Integrating mobile edge computing (MEC) and wire-
less power transfer (WPT) has been regarded as a promising
technique to improve computation capabilities for self-sustainable
Internet of Things (IoT) devices. This paper investigates a
wireless powered multiuser MEC system, where a multi-antenna
access point (AP) (integrated with an MEC server) broadcasts
wireless power to charge multiple users for mobile computing.
We consider a time-division multiple access (TDMA) protocol for
multiuser computation offloading. Under this setup, we aim to
maximize the weighted sum of the computation rates (in terms
of the number of computation bits) across all the users, by
jointly optimizing the energy transmit beamformer at the AP, the
task partition for the users (for local computing and offloading,
respectively), and the time allocation among the users. We derive
the optimal solution in a semi-closed form via convex optimization
techniques. Numerical results show the merit of the proposed
design over alternative benchmark schemes.

Index Terms—Mobile edge computing (MEC), wireless power
transfer, computation offloading, energy beamforming.

I. INTRODUCTION

As an enabling technique to provide cloud-like computing

for various low-latency and computation-extensive Internet of

Things (IoT) applications such as augmented reality and au-

tonomous driving, mobile edge computing (MEC) has received

growing attentions from both industry and academia [1]–[12].

At the edge of radio access networks such as access points

(APs), MEC servers are deployed therein. The IoT devices

are generally of small size and low power. Depending on the

computation task is partitionable or not, the resource-limited

IoT devices can offload part or all of their computation tasks

to the APs, respectively; then the installed MEC servers can

execute the offloaded tasks on behalf of these devices.

On the other hand, radio-frequency (RF) signal based

wireless power transfer (WPT) provides a viable solution for

powering self-sustainable IoT devices by deploying dedicated

energy transmitters to broadcast energy wirelessly [13]–[15].

Wireless powered communication networks (WPCNs) and si-

multaneous wireless information and power transfer (SWIPT)

paradigms can achieve ubiquitous wireless communications in

a self-sustainable way. It is also expected that WPT can facil-

itate self-sustainable ubiquitous computing for IoT devices.

Note that the prior works in [9], [10] investigated the

wireless powered MEC systems with one or more wireless IoT

devices in a self-sustainable way. Specifically, in [9] the single

∗The author would like to thank his colleague Prof. Jie Xu for the careful
discussions and comments in this work.

user maximizes the probability of successful computation with

binary offloading, where each task is not partitionable but

offloaded as a whole or locally computed by user itself.

Assuming that each task is partitionable and a time-division

multiple access (TDMA) protocol is adopted for the partial

offloading, [10] minimized the total energy consumption for

the AP by jointly optimizing the energy transmit beamforming,

the task partition and the central processing unit (CPU) fre-

quency per user, as well as the TDMA based time allocations

for computation offloading across the users.

Different from the above works, this paper considers a

wireless powered MEC system with limited resources. The

AP employs energy transmit beamforming to simultaneously

charge multiple users for mobile computing. The downlink

WPT and the computation offloading are operated over or-

thogonal frequency bands. Suppose that the partial offloading

is allowed for each user. As in [10], a TDMA protocol

is employed to coordinate multiuser computation offloading.

Under this setup, we aim to maximize the weighted sum of

computation rates (in terms of the number of computation bits

over a particular time block) across all the users subject to the

limited MEC computation capacity and the AP transmit power

budget constraints. We jointly optimize the energy transmit

beamformer at the AP, the task partition for local computing

and offloading for each user, as well as the time allocation

among the users. Using the Lagrange dual method, we derive

the optimal solution in a semi-closed form. Numerical results

show the merit of the proposed joint design over alternative

benchmark schemes.

The remainder of the paper is organized as follows. Sec-

tion II presents the system model and formulates the weighted

sum of computation rates maximization problem of our inter-

est. Section III develops an efficient algorithm to obtain the

optimal solution in a semi-closed form. Section IV provides

numerical results, followed by the conclusion in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless powered multiuser MEC system, where

an N -antenna AP (with an integrated MEC server) employs

RF signal based transmit energy beamforming to charge a set

K , {1, . . . ,K} of single-antenna users. The downlink WPT

and the wireless communication (for offloading) are assumed

to operate over orthogonal frequency bands simultaneously.

We consider a time block of finite duration T for both the

WPT and the MEC. Assume that the task is partitionable

http://arxiv.org/abs/1707.05276v1


2

for each of the K users. Relying on the harvested energy in

one block, each user can then arbitrarily partition its task into

two parts for local computing and for offloading to the MEC

server, respectively. Note that the computation task at each user

must be accomplished before the end of this block; hence, the

number of computation bits over the block can measure the

computation rate. In addition, we assume that the AP perfectly

knows the computation information of all the K users, as well

as the channel state information (CSI) from/to the K users.

A. Energy Transmit Beamforming from AP to Users

Let s ∈ CN×1 and Q , E[ssH ] denote the energy-bearing

transmit signal by the AP and the energy transmit covariance

matrix, respectively, where E[·] and the superscript H denote

the stochastic expectation and the Hermitian transpose, respec-

tively. Let Pmax denote the maximum transmit power at the

AP. We then have the following energy transmit beamforming

constraint at the AP:

tr(Q) , E[‖s‖2] ≤ TPmax, (1)

where ‖ · ‖ and tr(·) denote the Euclidean norm and the trace

operation, respectively. In general, the AP can use multiple

energy beams to deliver the wireless energy, i.e., Q can be of

any rank [13]. Let hi ∈ CN×1 denote the channel vector from

the AP to user i ∈ K, and define Hi , hih
H
i , ∀i ∈ K. The

harvested energy amount by user i over this block is then

Ei = TηE
[

∣

∣hH
i s
∣

∣

2
]

= Tηtr(QHi), (2)

where | · | denotes the absolute value of a scalar and 0 < η ≤ 1
is the energy conversion efficiency per user. Both the local

computing and offloading for user i ∈ K in the block are

powered the harvested energy Ei.

B. Computation Task Execution for Users

Over the duration-T block, the computation task for user

i ∈ K is partitioned into two parts with ℓi ≥ 0 and qi ≥ 0 bits

for offloading and local computing, respectively, in parallel.

1) Computation Offloading from Users to the AP: Consider

a TDMA protocol for the K users’ offloading, where the

block is divided into 2K time slots each with duration ti,
∀i ∈ {1, . . . , 2K}. These users offload their computation bits

to the AP one by one in the first K time slots. After the of-

floaded tasks having been executed at the MEC server, the AP

sends the computation results back to the K users in the next

K time slots sequentially. As in [10], the computation time

consumed at the MEC server is negligible and the user can

download the computation results immediately after the first

K time slots, i.e., ti ≈ 0, ∀i ∈ {K +1, . . . , 2K}. In addition,

we ignore the energy consumption for transmitting/receiving

the computation results in this paper. As a result, the TDMA

based offloading time allocation across the K users is

K
∑

i=1

ti ≤ T. (3)

Let gi ∈ CN×1 denote the channel vector from user i to the

AP and pi ≥ 0 the transmit power for user i’s offloading in

time slot ti. The maximum ratio combining (MRC) receiver

is further assumed for the AP to decode the information. The

achievable offloading rate (in bits/sec) for user i is then

ri = B log2

(

1 +
pig̃i
Γσ2

)

, ∀i ∈ K, (4)

where B denotes the bandwidth, g̃i , ‖gi‖
2 denotes the

effective channel power gain from user i to the AP, σ2 is the

noise power at the receiver of the AP, and Γ ≥ 1 is a constant

accounting for the gap from the channel capacity due to a

practical coding and modulation scheme. For simplicity, Γ = 1
is assumed throughout this paper. As a result, the number of

offloaded bits ℓi by user i to the AP can be expressed as

ℓi = riti, ∀i ∈ K. (5)

Consider an MEC server with limit computation capacity. Let

Lmax be the maximum number of computation bits that can

be executed at the MEC server over the block. We then have

the following computation capacity constraint:

K
∑

i=1

ℓi ≤ Lmax. (6)

It is worth noting that computation offloading incurs energy

consumption at both the K users and the AP. Per user i ∈ K,

in addition to the transmit power pi, a constant circuit power

pc,i > 0 (by the digital-to-analog converter (DAC), filter, etc.)

is consumed. The offloading energy consumption at user i is

Eoffl,i =
ti
g̃i
β

(

ℓi
ti

)

+ pc,iti, (7)

where β(x) , σ2(2
x

B − 1) is a monotonically increasing and

convex function with respect to x. Note that to avoid the issue

of dividing by zero, we define β
(

ℓi
ti

)

= 0 when either ℓi = 0

or ti = 0 holds.

2) Local Computing at Users: We next consider the local

computing for executing qi computation bits at each user

i ∈ K. Let Ci be the number of CPU cycles required for

computing one computation bit at user i. Then the total

number of CPU cycles for the qi bits is Ciqi. By applying

the dynamic voltage and frequency scaling (DVFS) technique

[2], user i can adjust the CPU frequency fi,n for each cycle

n ∈ {1, . . . , Ciqi}, where 0 < fi,n ≤ fmax
i and fmax

i denotes

user i’s maximum CPU frequency. As the local computing

should be accomplished before the end of the block, we have

the following computation latency requirements:

Ciqi
∑

n=1

1

fi,n
≤ T, ∀i ∈ K. (8)

Accordingly, the consumed energy for local computing at user

i ∈ K is given by

Eloc,i =

Ciqi
∑

n=1

ζif
2
i,n, (9)

where ζi > 0 is the effective capacitance coefficient that

depends on the chip architecture at user i. In order to minimize

the energy consumption while satisfying the latency constraint,
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it is optimal for each user to set the CPU frequencies to be

identical for different CPU cycles (see [10, Lemma 3.1]). By

using this fact and letting the constraints in (8) be met with

strict equality, we have

fi,1 = · · · = fi,Ciqi = Ciqi/T, ∀i ∈ K. (10)

As the maximum CPU frequency fmax
i is specified for each

user i ∈ K, we have the following constraints for the numbers

of computation bits by local computing:

0 ≤ qi ≤
Tfmax

i

Ci

, ∀i ∈ K. (11)

By substituting (10) in (9), the energy consumption Eloc,i is

re-expressed as

Eloc,i =
ζiC

3
i q

3
i

T 2
. (12)

C. Energy Harvesting Constraints at Users

To achieve self-sustainable operation, the energy harvesting

constraint needs to be imposed such that the totally consumed

energy at the user cannot exceed the harvested energy Ei in

(2) per block [14]. By combining the computation offloading

energy in (7) and the local computation energy in (12), the total

energy consumed by user i within the block is Eoffl,i +Eloc,i.

Therefore, we have

ζiC
3
i q

3
i

T 2
+

ti
g̃i
β

(

ℓi
ti

)

+ pc,iti ≤ Tηtr (QHi) , ∀i ∈ K. (13)

D. Problem Formulation

We are interested in utilizing the constrained commu-

nication/computation resources at the AP to maximize the

total computation rates across all the users. Different users

usually have different priorities. Accordingly, we maximize

the weighted sum-number of users’ computation bits subject

to the MEC computation capacity and the transmit power

constraints at the AP. Let ωi > 0 denote the positive weight

for user i that characterizes the priority of its computation

task. Mathematically, the weighted sum of computation rates

maximization problem is formulated as

(P1) : max
Q�0,t,ℓ,q

K
∑

i=1

ωi(qi + ℓi) (14a)

s.t. 0 ≤ ti ≤ T, 0 ≤ ℓi ≤ Lmax, ∀i ∈ K (14b)

(1), (3), (6), (11), and (13),

where t , [t1, . . . , tK ]†, ℓ , [ℓ1, . . . , ℓK ]†, and q ,

[q1, . . . , qK ]† with the superscript † being the transpose op-

eration; Q � 0 guarantees Q to be positive semidefinite.

Note that problem (P1) is convex and can thus be efficiently

solved by the interior-point method [16]. Nevertheless, to gain

more engineering insights, we next leverage the Lagrange dual

method to obtain the optimal solution in a semi-closed form.

III. OPTIMAL SOLUTION TO PROBLEM (P1)

In this section, we obtain the optimal solution to (P1) in a

semi-closed form and develop an efficient algorithm.

Let ρ ≥ 0, µ ≥ 0, θ ≥ 0, and λi ≥ 0 be the Lagrange

multipliers for (1), (3), (6), and the i-th constraint in (13),

∀i ∈ K, respectively. The partial Lagrangian of problem (P1)
is given by

L (Q, t, ℓ, q,λ, µ, ρ, θ) = tr

((

K
∑

i=1

TηλiHi − ρI

)

Q

)

+ µT + ρTPmax + θLmax +

K
∑

i=1

(

ωiqi −
λiζiC

3
i q

3
i

T 2

)

+

K
∑

i=1

(

(ωi − θ)ℓi −
λiti
g̃i

β

(

ℓi
ti

)

− µti − λipc,iti

)

. (15)

The dual function of problem (P1) is then

Φ(λ, µ, ρ, θ) = max
Q�0,t,ℓ,q

L2 (Q, t, ℓ, q,λ, µ, ρ, θ) (16)

s.t. (11) and (14b).

Consequently, the dual problem of (P1) is expressed as

(D1) : min
λ,µ,ρ,θ

Φ(λ, µ, ρ, θ) (17a)

s.t. G(λ, ρ) ,

K
∑

i=1

ηλiHi − ρI � 0 (17b)

µ ≥ 0, ρ ≥ 0, θ ≥ 0, λi ≥ 0, ∀i ∈ K. (17c)

Note that the constraint (17b) is to ensure that the dual function

Φ(λ, µ, ρ, θ) is bounded from above (see Appendix A). Denote

by S the set of (λ, µ, ρ, θ) characterized by (17b) and (17c).

Since problem (P1) is convex and satisfies the Slater’s

condition, strong duality holds between (P1) and (D1) [16].

As a result, we can solve (P1) by equivalently solving the

dual problem (D1). For convenience of presentation, we

denote (Q∗, t∗, ℓ∗, q∗) as the optimal solution to problem

(16) under given (λ, µ, ρ, θ) ∈ S, (Qopt, topt, ℓopt, qopt) as

the optimal solution to (P1), (λopt, µopt, ρopt, θopt) as the

optimal solution to (D1).

A. Evaluating the Dual Function Φ(λ, µ, ρ, θ)

First, we obtain the dual function Φ(λ, µ, ρ, θ) under any

given (λ, µ, ρ, θ) ∈ S. Note that problem (16) can be de-

composed into (2K + 1) subproblems as follows, one for

optimizing Q, K for optimizing qi’s, and another K for jointly

optimizing ti’s and ℓi’s, respectively.

max
Q

tr (G(λ, ρ)Q) s.t. Q � 0 (18)

max
qi

ωiqi −
λiζiC

3
i q

3
i

T 2
s.t. 0 ≤ qi ≤

Tfmax
i

Ci

(19)

max
ti, ℓi

(ωi − θ)ℓi −
λiti
g̃i

β

(

ℓi
ti

)

− µti − λipc,iti

s.t. 0 ≤ ti ≤ T, 0 ≤ ℓi ≤ Lmax, (20)

where i ∈ K.
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For problem (18), under the condition of G(λ, ρ) � 0, the

optimal value of (18) is zero and the optimal solution Q∗ to

(18) can be any positive semidefinite matrix in the null space

of G(λ, ρ). Note that the optimal solution Q∗ = 0 of (18) is

used only for evaluating the dual function Φ(λ, µ, ρ, θ).
Next, consider the i-th subproblems in (19) and (20). As

both problems are convex and satisfy the Slater’s condition,

one can obtain their solutions in semi-closed forms based on

the Karush-Kuhn-Tucker (KKT) conditions [16], as stated in

the following two lemmas, respectively.

Lemma 3.1: Under given (λ, µ, ρ, θ) ∈ S, the optimal solu-

tion of the number of local computing bits q∗i to problem (19)

can be obtained as follows.

• If λi = 0, we have q∗i = Tfmax
i /Ci;

• If λi > 0, we have

q∗i = min

(
√

ωiT 2

3λiζiC3
i

,
T fmax

i

Ci

)

. (21)

Proof: See Appendix B.

Lemma 3.2: The optimal solution of the offloading time t∗i
and the number of offloading bits ℓ∗i to problem (20) are given

below.

• If λi = 0 and ωi−θ > 0, we have t∗i = 0 and ℓ∗i = Lmax;

• If λi = 0 and ωi − θ ≤ 0, we have t∗i = 0 and ℓ∗i = 0;

• If λi > 0 and ωi − θ ≤ λiσ
2 ln 2/(Bg̃i), we have t∗i = 0

and ℓ∗i = 0;

• If λi > 0 and ωi − θ > λiσ
2 ln 2/(Bg̃i), the optimal

offloading rate is given by

r∗i = B log2

(

(ωi − θ)Bg̃i
λiσ2 ln 2

)

, (22)

and ℓ∗i = r∗i t
∗
i , where

t∗i























=0, if
λi

g̃i
(β(r∗i )− r∗i β

′(r∗i )) + µ+ λipc,i > 0

∈[0, T ], if
λi

g̃i
(β(r∗i )− r∗i β

′(r∗i )) + µ+ λipc,i = 0

=T, otherwise,
(23)

and β′(x) denotes the first-order derivative with respect

to x.

Proof: See Appendix C.

As stated in Lemma 3.2, if λi

g̃i
(β(ri)− riβ

′(ri)) + µ +
λipc,i = 0, t∗i ∈ [0, T ] is generally not a unique solution;

in this case, we set t∗i = 0 to facilitate the dual function

evaluation. An additional procedure will be used in Section III-

C to retrieve the optimal primary topt, together with Qopt.

By combining Q∗ = 0 and Lemmas 3.1–3.2, the dual

function Φ(λ, µ, ρ, θ) in (D1) can be evaluated.

B. Obtaining (λopt, µopt, ρopt, θopt) to Minimize Φ(λ, µ, ρ, θ)

Note that the dual function Φ(λ, µ, ρ, θ) is convex but

non-differentiable in general. As a result, problem (D1)
can be solved by subgradient based methods such as the

ellipsoid method [17]. For the objective function in (17a),

the subgradient with respect to (λ, µ, ρ, θ) is given by
[

−
ζ1C

3
1q

∗3
1

T 2 −
t∗1
g̃1
β
(

ℓ∗1
t∗
1

)

− pc,1t
∗
1, . . . ,−

ζKC3
K
q∗3
K

T 2 −
t∗
K

g̃K
β
(

ℓ∗
K

t∗
K

)

−

pc,Kt∗K , T −
∑K

i=1 t
∗
i , TPmax, Lmax −

∑K

i=1 ℓ
∗
i

]†
. As in [10],

the subgradient for the constraint in (17b) is given by
[

ηvHH1v, . . . , ηv
HHKv, 0, −1, 0

]†
, where v ∈ CN×1

is an eigenvector corresponding to the largest eigenvalue of

G(λ, ρ) and is given by v = argmax‖ξ‖=1 ξ
HG(λ, ρ)ξ.

Furthermore, the subgradients for the constraints in (17c) are

given by eK+1, eK+2, eK+3, and ei, ∀i ∈ K, respectively,

where ei is the standard unit vector with one in the i-th entry

and zeros elsewhere in R
(K+3)×1.

C. Finding (Qopt, topt, ℓopt, qopt) to Problem (P1)

With the optimal dual (λopt, µopt, ρopt, θopt), it remains

to determine the optimal solution for (P1). Specifically, by

replacing λ with λopt in Lemma 3.1, one can obtain the

optimal qopt to (P1), and accordingly find the optimal CPU

frequencies as fopt
i,1 = · · · = fopt

i,Ciq
opt

i

= Ciq
opt
i /T , ∀i ∈ K.

By replacing (λ, µ, θ) with (λopt, µopt, θopt) in Lemma 3.2,

we obtain the offloading rate ropti and accordingly ℓopti =
ropti topti , ∀i ∈ K. Nevertheless, as t∗i is generally non-unique

in (23), one cannot obtain topti (and ℓopti ) directly here but

requires an additional procedure. By substituting qopt and

ℓi = ropti ti, ∀i ∈ K, in problem (P1), we have the following

semidefinite program (SDP) to obtain Qopt and topt:

(Qopt, topt) = argmax
Q�0, t

K
∑

i=1

ωi(q
opt
i + tir

opt
i ) (24)

s.t.
ζiC

3
i (q

opt
i )3

T 2
+

ti
g̃i
β
(

ropti

)

+ pc,iti ≤ Tηtr (QHi) , ∀i ∈ K

(1), (3),
K
∑

i=1

tir
opt
i ≤ Lmax, and 0 ≤ ti ≤ T, ∀i ∈ K.

Note that the SDP in (24) can be efficiently solved via CVX

[18]. Then the optimal ℓopti ’s are obtained as ℓopti = ropti topti ,

∀i ∈ K. By combining Qopt, topt and ℓ
opt

here, together with

qopt, the optimal solution to problem (P1) is found.

Remark 3.1: It can be readily shown that the optimal

solution to (P1) has the following properties:

1) For all users, it is optimal to leave a strictly positive

number of bits for local computing, i.e., qopti > 0, ∀i.
2) At the optimality, each user fully exploits its harvested

energy, i.e., the energy harvesting constraints in (13) are

active for all users.

Note that the first property is due to the fact that the marginal

energy consumption of local computing is nearly zero when

qopti → 0; hence, it is always beneficial to leave some bits

for local computing. Intuitively, the second property indicates

that all users’ harvested energy must be used up for (P1) to

maximize the weighted sum-number of computed bits subject

to the limited resource and computation latency constraints.

IV. NUMERICAL RESULTS

In this section, numerical results are provided to validate

the performance of the proposed design with joint WPT

and computation offloading optimization, as compared to the

following three benchmark schemes.
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Fig. 1. The average number of computation bits per user versus the maximum
transmit power Pmax at the AP.

1) Local computing only: Each user i ∈ K accomplishes

its computation task by only local computing. This scheme

corresponds to solving (P1) by setting ℓi = 0, ∀i ∈ K.

2) Computation offloading only: Each user i ∈ K accom-

plishes its computation task by fully offloading the computa-

tion bits to the AP. This scheme corresponds to solving (P1)
by setting qi = 0, ∀i ∈ K.

3) Joint design with isotropic WPT: The AP radiates the

RF energy isotropically over all directions by setting Q = pI,

where p denotes the transmit power at each antenna and I is

an N×N identity matrix. This scheme corresponds to solving

(P1) by replacing Q as pI with p being an optimized variable.

In the simulations, the AP is equipped with N = 4 antennas.

The energy conversion efficiency is η = 0.8. All channels

are modeled as independent Rayleigh fading with an average

power loss of 5 × 10−6 (i.e., −53 dB) which corresponds

to a distance of about 5 meters from users to the AP in the

urban environment. We set Ci = 103 cycles/bit, ζi = 10−28,

and the circuit power as pc,i = 10−4 Watt (W) for i ∈ K.

The receiver noise power at the AP is set as σ2 = 10−9 W

and the bandwidth for offloading as B = 2 MHz. We set

the maximum number of computation bits supported by the

MEC and the maximum CPU frequency for each user i ∈ K
as Lmax = 2 × 105 bits and fmax

i = 0.1 GHz, respectively.

In addition, the weights are set to be identical for different

users, i.e., ωi = 1/K , i ∈ K. Accordingly, the objective is to

maximize the average number of computation bits per user.

The results are obtained by averaging over 500 randomized

channel realizations.

Fig. 1 shows the average number of computation bits versus

the AP transmit power Pmax, where K = 10 and T = 0.1 sec.

It is observed that the proposed joint design achieves signif-

icant performance gains over the three benchmark schemes,

and the isotropic WPT design is clearly suboptimal. The per-

formances achieved by all the schemes improve significantly

as Pmax increases. When Pmax ≥ 50 dBm, the average

numbers of computation bits for all the schemes are bounded

from above. This is expected since in this case, the number

of computable bits is fundamentally limited by both the
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Fig. 2. The average number of computation bits per user versus the user
number K .

computation capability and users’ local CPU frequencies. It is

also observed that the local-computing-only scheme achieves

a near optimal performance close to that with the proposed

joint design at small Pmax values. This suggests that most

users prefer computing locally in this case.

Fig. 2 shows the average number of computation bits versus

the user number K , where Pmax = 40 dBm and T = 0.1 sec.

In general, we have similar observations as in Fig. 1. Par-

ticularly, as K increases, the average number of computation

bits per user by all the schemes decreases and the decreasing

with the full-offloading-only scheme is more significantly than

the other three schemes. This is due to the fact that all users

share the finite time block in the full-offloading-only scheme,

thereby leading to drastically decreasing of the number of

offloaded bits when K becomes large.

V. CONCLUSION

In this paper, we investigated a unified WPT-MEC design

for a wireless powered multiuser MEC system. Specifically,

we developed an efficient design framework to maximize the

weighted sum of the computation rates across all the users

subject to the limited computation/communication resource

constraints. Using the Lagrange dual method, we obtained

the optimal solution in a semi-closed form. Numerical results

demonstrate the merit of the proposed joint design over

alternative benchmark schemes.

APPENDICES

A. Proof of G(λ, ρ) � 0

The condition G(λ, ρ) � 0 can be verified by contradiction.

Assume that G(λ, ρ) is not negative semidefinite. Denote

by ϑ ∈ CN×1 an eigenvector corresponding to one positive

eigenvalue of G(λ, ρ). By setting Q = τϑϑH � 0 with τ
going to positive infinity, it follows that

lim
τ→+∞

tr(G(λ, ρ)Q) = lim
τ→+∞

τϑHG(λ, ρ)ϑ = +∞, (25)

which in turn implies that the value Φ(λ, µ, ρ, θ) in (16) is

unbounded from above over Q � 0. Hence, to ensure that

Φ(λ, µ, ρ, θ) is bounded from above, it requires G(λ, ρ) � 0.



6

B. Proof of Lemma 3.1

Given λ, we solve problem (19) for each user i ∈ K. When

λi = 0, the objective function in (19) becomes ωiqi. It is

evident that q∗i = Tfmax
i /Ci is optimal for problem (19).

For λi > 0, the Lagrangian of (19), denoted by L̄i, is then

given as

L̄i = ωiqi −
λiζiC

3
i q

3
i

T 2
+ η

i
qi + η̄i

(

Tfmax
i

Ci

− qi

)

, (26)

where η
i
≥ 0 and η̄i ≥ 0 are the Lagrange multipliers

associated with qi ≥ 0 and qi ≤ Tfmax
i /Ci, respectively. It

can be verified that (19) satisfies the Slater’s condition. Based

on the KKT conditions [16], it follows that

η∗
i
q∗i = 0, η̄∗i

(

Tfmax
i

Ci

− q∗i

)

= 0 (27a)

ωi −
3λiζiC

3
i (q

∗
i )

2

T 2
+ η∗

i
− η̄∗i = 0, (27b)

where η∗
i

and η̄∗i are the optimal dual variables, (27a) collects

the complementary slackness conditions, and (27b) is the first-

order derivative condition for L̄i with respect to qi. From (27a)

and (27b), it thus follows that

q∗i = min

(
√

ωiT 2

3λiζiC3
i

,
T fmax

i

Ci

)

. (28)

C. Proof of Lemma 3.2

When λi = 0, the objective function in (20) becomes (ωi−
θ)ℓi−µti. Evidently, if ωi− θ > 0, it follows that t∗i = 0 and

ℓ∗i = Lmax are optimal for (20); otherwise, t∗i = ℓ∗i = 0.

For λi > 0, the Lagrangian of (20) is given by

Li =(ωi − θ)ℓi −
λiti
g̃i

β

(

ℓi
ti

)

− µti − λipc,iti + āiti

+ b̄iℓi + c̄i(T − ti) (29)

where āi ≥ 0, b̄i ≥ 0, and c̄i ≥ 0 are the Lagrangian

multipliers associated with ti ≥ 0, ℓi ≥ 0, and ti ≤ T ,

respectively.

Based on the KKT conditions [16], it follows that

ā∗i t
∗
i = 0, b̄∗i ℓ

∗
i = 0, c̄∗i (T − t∗i ) = 0 (30a)

−
λi

g̃i

(

β

(

ℓ∗i
t∗i

)

−
ℓ∗i
t∗i
β′

(

ℓ∗i
t∗i

))

− µ− λipc,i + ā∗i − c̄∗i = 0

(30b)

(ωi − θ)−
λi

g̃i
β′

(

ℓ∗i
t∗i

)

+ b̄∗i = 0, (30c)

where (ā∗i , b̄
∗
i , c̄

∗
i ) denotes the optimal dual solution, (30a)

collects the complementary slackness conditions, and the left-

hand-side (LHS) terms of (30b) and (30c) are the first-order

derivatives of Li with respect to t∗i and ℓ∗i , respectively. Let

r∗i , ℓ∗i /t
∗
i , and define r∗i = 0 if either ℓ∗i = 0 or t∗i = 0.

From (30a) and (30c), we have

r∗i =







0, if (ωi − θ)Bg̃i ≤ λiσ
2 ln 2

B log2

(

(ωi − θ)Bg̃i
λiσ2 ln 2

)

, otherwise.

(31)

Furthermore, substituting (31) into (30b), we obtain that

ā∗i − c̄∗i =
λi

g̃i
(β (r∗i )− riβ

′ (r∗i )) + µ+ λipc,i. (32)

Clearly, ā∗i − c̄∗i > 0 and ā∗i − c̄∗i < 0 imply that ā∗i > 0
and c̄∗i > 0, respectively. In addition, when ā∗i − c̄∗i = 0, we

have ā∗i = c̄∗i = 0. Based on the complementary slackness

conditions in (30a), it follows that

t∗i























= 0, if
λi

g̃i
(β (r∗i )− riβ

′ (r∗i )) + µ+ λipc,i > 0

∈ [0, T ], if
λi

g̃i
(β (r∗i )− riβ

′ (r∗i )) + µ+ λipc,i = 0

= T, otherwise,

and ℓ∗i = r∗i t
∗
i . Now it completes the proof of Lemma 3.2.
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