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Abstract—Future fifth-generation (5G) cellular networks,
equipped with energy harvesting devices, are uniquely positioned
to closely interoperate with smart grid. New interoperable func-
tionalities are discussed in stochastic two-way energy trading
and online planning to improve efficiency and productivity.
Challenges lie in the unavailability of a-priori knowledge on fu-
ture wireless channels, energy pricing and harvesting. Lyapunov
optimization techniques are utilized to address the challenges and
stochastically optimize energy trading and planning. Particularly,
it is able to decouple the optimization of energy trading and
planning during individual time slots, hence eliminating the need
for joint optimization across a large number of slots.

Keywords: Fifth-Generation (5G), smart grid, two-way energy
trading, energy planning, stochastic optimization.

I. INTRODUCTION

Communication network and smart grid have been indepen-

dently evolving despite both aiming to substantially improve

productivity, efficiency and sustainability. On one hand, the up-

coming fifth-generation (5G) cellular networks are anticipated

to be densely deployed with a significantly reduced coverage

area per cell. This is due to explosively increasing mobile traf-

fic and propagation-unfriendly high-frequency spectrum which

only avails for communication purpose [1]. Unfortunately,

the overall energy consumption of base stations (BSs) would

become increasingly overwhelming, and contribute adversely

to the reduction of global carbon dioxide emissions. On the

other hand, smart grid is expected to usher in controllabil-

ity, interoperability and sustainable exploitation of renewable

energy sources, or renewables (RES) for short. Equipped

with smart meters, smart grid is able to embrace brand new

functionalities such as distributed energy generation, two-way

energy flows, energy trading and redistribution, and energy

demand management [2].

This paper explores the potential of co-evolution of commu-

nication system and smart grid, as is becoming prominently

important due to the fact that BSs are increasingly equipped

with energy harvesting capabilities, such as solar panels and

wind turbines [3], for economical and ecological purposes.

RES (e.g., up to 10,000 KW per BS) can be harvested to

supplement persistent supplies from the conventional power

grid and power cellular systems [4]. Manufacturers, such

as Ericsson, Huawei, and Vodafone, have started developing

Work in this paper was supported by the National Natural Science Foun-
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Municipal Education Commission.

“green” BSs that can be powered jointly by persistent supplies

and harvested RES [3].

Under the co-evolution of communication system and smart

grid, traditional energy consumers, such as BSs, can po-

tentially become an integral part of the grid, generate and

redistribute energy, and trade energy with the grid through

the smart meters. The BSs can purchase energy off the grid

while in shortage of RES, and sell extra energy back to the

grid when RES are in abundance [2]. Such two-way energy

trading (TWET) allows extra energy to be redistributed for

environmental benefits and financial gains of 5G. Moreover,

the energy prices of the smart grid can diverge contractually

over different timescales, i.e., real-time price (e.g., per minute)

versus long-term price for days or months. While wireless

transmissions and energy consumptions are real-time, energy

harvesting depending on ambient environments can operate

at an interval of minutes or hours different from the real-

time and long-term energy pricing intervals. To this end, a

foresighted plan of energy usage in advance, also known as

“multi-timescale energy planning (MTEP)”, is important to

balance energy load and relieve pressure on the grid, and hence

improve the reliability and sustainability of the grid.

In this paper, we present a new framework of TWET and

MTEP, where stochastic optimization theory is exploited to

capture the temporal and spatial randomnesses of both 5G

and smart grid in terms of energy price, RES availability, and

wireless channel. The minimization of the time-average energy

cost of 5G subject to the time-varying harvested RES amounts

and energy prices is asymptotically equivalently reformulated

to the minimization of a convex closed-form upper bound

of the instantaneous cost per timeslot, which in turn can be

optimally solved by using convex techniques. This approach is

further extrapolated to the case of multiple different timescales,

where the instantaneous minimization per timeslot is carried

out under the prediction of future RES arrivals and energy

prices at longer time horizons based on the past. Extensive

simulations show that the energy cost with MTEP can be saved

up to 58%.

In a different yet relevant context, a range of energy-efficient

transmission schemes have been developed for 5G systems. In

[5], a string tautening algorithm was proposed to produce the

most energy-efficient schedule for delay-limited traffic, first

under the assumption of negligible circuit power, and then
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Fig. 1. A smart grid powered CoMP system. Two BSs with local RES
harvesting devices and batteries perform TWET with the main grid.

extended to non-negligible constant circuit powers [6], [7]

and energy-harvesting communications [8], [9]. Particularly,

coordinated multi-point (CoMP) enables BSs to collaborate for

effective inter-cell interference management, thereby substan-

tially improving the energy efficiency of 5G. This technology

has been standardized by 3GPP, and extensively studied for

energy-efficient applications [10]. Other active researches on

energy-aware wireless techniques are under the way to guar-

anteeing the quality of service (QoS) of wireless applications

using non-persistent RES [11], [12].

The rest of this paper is organized as follows. In Section II,

the system model is presented. In Sections III and IV, we

propose the new TWET and MTEP algorithms. In Section V,

the asymptotic optimality of the proposed algorithms is es-

tablished. In Section VI, numerical results demonstrate the

merits of the proposed schemes, followed by conclusions in

Section VII.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a CoMP down-

link system, where a set of I := {1, . . . , I} BSs (e.g.,

macro/micro/pico BSs) serves a set of K := {1, . . . ,K}
mobile users. Each BS is equipped with M transmit antennas,

and each user has a single receive antenna. Assume that BSs

can harvest RES to support their transmissions. Furthermore,

each BS can purchase energy from or sell energy to the grid

at time-varying prices via TWET. Equipped with batteries, the

BSs can take advantage of energy price fluctuations, and can

store energy for later use. All BSs are connected to a central

controller, which not only collects the communication data

from BSs, but also the energy prices via locally installed smart

meters.

Suppose that the transmissions are slot-based and experience

quasi-static downlink channels, which remain invariant within

a slot and vary between slots. For illustration convenience, the

slot duration is normalized to unity, so “energy” and “power”

become interchangeably used throughout this paper.

A. CoMP Transmissions

Consider a scheduling horizon indexed by the set T :=
{0, . . . , T − 1}. Per slot t, let hik,t ∈ CM denote the

vector channel from BS i to user k, ∀i ∈ I, ∀k ∈ K; let

hk,t := [h′
1k,t, . . . ,h

′
Ik,t]

′ collect the channel vectors from

all BSs to user k, and Ht := [h1,t. . . . ,hK,t]. With linear

transmit beamforming performed across the BSs, the vector

signal transmitted to user k is: qk(t) = wk(t)sk(t), ∀k,

where sk(t) is the information-bearing scalar symbol with

unit-energy, and wk(t) ∈ C
MI is the beamforming vector

across the BSs serving user k. The received vector for user

k at slot t is therefore

yk(t) = hH
k,tqk(t) +

∑

l 6=k

hH
k,tql(t) + nk(t) (1)

where hH
k,tqk(t) is the desired signal of user k,

∑

l 6=k h
H
k,tql(t)

is the inter-user interference, and nk(t) is an additive circularly

symmetric complex Gaussian (CSCG) noise with zero mean

and variance σ2
k.

The signal-to-interference-plus-noise ratio (SINR) at user k
is given by

SINRk({wk(t)}) =
|hH

k,twk(t)|2
∑

l 6=k(|hH
k,twl(t)|2) + σ2

k

. (2)

The transmit power at BS i is given by

Px,i(t) =
∑

k∈K

wH
k (t)Biwk(t) (3)

where the matrix

Bi := diag




0, . . . , 0
︸ ︷︷ ︸

(i−1)M

, 1, . . . , 1
︸ ︷︷ ︸

M

, 0, . . . , 0
︸ ︷︷ ︸

(I−i)M




 ∈ R

MI×MI

selects the corresponding rows out of {wk(t)}k∈K to form the

i-th BS’s beamforming vector of size M × 1.

To guarantee QoS per slot user k, the central controller

selects a set of {wk(t)} satisfying [cf. (2)]

SINRk({wk(t)}) ≥ γk, ∀k (4)

where γk denotes the target SINR value per user k.

B. Smart Grid Operations

Each BS exploits RES. Let At := [A1(t), . . . , AI(t)]
′

collect the harvested RES at slot t across all BSs. Let C0
i

denote the initial stored energy, and Ci(t) the state of charge

of BS i at the beginning of slot t. Each battery has a finite

capacity Cmax
i . A minimum level Cmin

i is required at any time

for the sake of battery health. With Pb,i(t) denoting the amount

of battery charging (Pb,i(t) > 0) or discharging (Pb,i(t) < 0)

at slot t, the stored energy then obeys: ∀i, t,

Ci(t+ 1) = Ci(t) + Pb,i(t), Cmin
i ≤ Ci(t) ≤ Cmax

i . (5)

The amount of energy (dis)charged is bounded by

Pmin
b,i ≤ Pb,i(t) ≤ Pmax

b,i (6)

where Pmin
b,i < 0 and Pmax

b,i > 0.

The total energy consumption Pg,i(t) of BS i consists of the

beamformers’ transmit power Px,i(t), and a constant power

Pc > 0 consumed by air conditioning, data processor, and



circuits. The total consumption Pg,i(t) is bounded by Pmax
g,i .

Therefore,

Pg,i(t) = Pc + Px,i(t) = Pc +
∑

k∈K

wt
k

H
Biw

t
k ≤ Pmax

g,i (7)

The grid can supply Pg,i(t) if the harvested RES are

insufficient. A BS can also sell its surplus energy (whenever

the RES are abundant) back to the grid. It is clear that the

shortage energy of BS i that needs to be purchased from the

grid is max{Pg,i(t) − Ai(t) + Pb,i(t), 0}, while the surplus

energy is max{Ai(t)− Pg,i(t)− Pb,i(t), 0}.

With the buying and selling prices αt and βt, the condition

αt ≥ βt holds to avoid meaningless buy-and-sell activities. Per

slot t, the energy transaction cost of BS i is therefore given

in a convex form by

G(Pg,i(t), Pb,i(t)) = max
{
αt[Pg,i(t)−Ai(t) + Pb,i(t)],

βt[Ai(t)− Pg,i(t)− Pb,i(t)]
}

(8)

Note that at any slot each BS can either purchase electricity

from the grid at price αt, or sell surplus to the grid at the

price βt. For conciseness, we concatenate all the variables; i.e.,

ξt := {αt, βt,At,Ht, ∀t}, and suppose that ξt is independent

and identically distributed (i.i.d.) across time.

III. SINGLE-TIMESCALE TWET

Over the scheduling horizon T , the central controller of

CoMP seeks the optimal schedule for cooperative transmit

beamforming vectors {wk(t)}k,t and battery (dis)charging

energy {Pb,i(t)}i,t, to minimize the total network cost
∑

t∈T

∑

i∈I G(Pg,i(t), Pb,i(t)), while guaranteeing QoS, i.e.,

SINRk({wk(t)}) ≥ γk, ∀k, t. The problem of interest is

formulated as

G
∗ := min

{wk(t),Pb,i(t),C
t
i
}

lim
T→∞

1

T

T−1
∑

t=0

∑

i∈I

E[G(Pg,i(t), Pb,i(t))]

(9)

s. t. (4), (5), (6), (7), ∀t,

where the expectation of G(·) is taken over all sources of

randomness.

The SINR constraints in (4) can be rewritten into convex

second-order cone (SOC) constraints through proper rear-

rangement [13]; that is,
√
∑

l 6=k

|hH
k,twl(t)|2 + σ2

k ≤ 1√
γk

Re{hH
k,twk(t)},

Im{hH
k,twk(t)} = 0, ∀k.

(10)

Although (9) is convex based on (8) and (10), it is difficult

to solve since the minimization of average total cost is over the

infinite time horizon. Particularly, the (dis)charging operations

are coupled across time through the battery level changes. The

decision at current slot can affect the decisions further down

into the future.

By recognizing that (5) can be interpreted as an energy

queue recursion, we apply the time decoupling technique to

Algorithm 1 Two-Way Energy Trading (TWET)

1: Initialization: Select Γ and V , and introduce a virtual

queue Qi(0) := Ci(0) + Γ, ∀i.
2: Energy trading and beamforming: At every slot t, ob-

serve a realization ξt, and decide {w∗
k(t), ∀k;P ∗

b,i(t), ∀i}
by solving (12). The BSs perform two-way energy trading

with the main grid and coordinated beamforming based on

{w∗
k(t), ∀k;P ∗

b,i(t), ∀i}.

3: Queue updates: Per slot t, (dis)charge the battery based

on {P ∗
b,i(t), ∀i}, so that the stored energy Ci(t + 1) =

Ci(t) + P ∗
b,i(t), ∀i; and update the virtual queues Qi(t+

1) := Ci(t+ 1) + Γ, ∀i.

turn (9) into a tractable form [14]. Over the infinite time

horizon, (5) can be replaced by

lim
T→∞

1

T

T−1∑

t=0

E[Pb,i(t)] = 0, ∀i. (11)

We can then resort to the Lyapunov optimization method

[15] to achieve asymptotically optimal solution for (9). Intro-

ducing two critical parameters, namely a “queue perturbation”

parameter Γ and a weight parameter V , the problem to be

solved becomes

min
{wk(t),Pb,i(t)}

∑

i∈I

{

V G(Pg,i(t), Pb,i(t))+Qi(t)Pb,i(t)

}

s. t. (6), (7), (10), (12)

where we define a virtual queue Qi(t) := Ci(t) + Γ, ∀i, t.
Given that G(·) is convex and increasing, G(Pg,i(t), Pb,i(t))

is jointly convex in (wk(t), Pb,i(t)) [16, Sec. 3.2.4]. It readily

follows that (12) is a convex optimization problem, and can be

solved via off-the-shelf solvers, as summarized in Algorithm 1.

IV. MULTI-TIMESCALE MTEP

A more general case of energy trading between 5G and

smart grid can involve multiple timescales of real-time wire-

less transmission, energy harvesting, and short-term/long-term

energy pricing, as discussed earlier. Long-term energy buy-

ing prices are lower than real-time prices on average. This

discrepancy can be further exploited to reduce the energy

cost of 5G, as compared to TWET. To this end, MTEP is

expected to plan energy usage and purchase ahead-of-time

over multiple timescales. For illustration convenience, here

we consider two different timescales, i.e., real-time for a

short slot and ahead-of-time for a long interval. The wireless

transmission is synchronized with the real-time energy pricing,

while the output of energy harvesting is synchronized with the

ahead-of-time energy pricing.

At the beginning of each “coarse-grained” interval, namely

at time t = nT , n = 1, 2, . . ., Ai,n denotes the RES amount

collected per BS i ∈ I, and An := [A1[n], . . . , AI [n]]
′. Given

An, the central controller decides the energy amount Ei[n] to

be used in the next T slots per BS i, i.e., the grid supplies an

average energy amount of Ei[n]/T per slot t = nT, . . . , (n+



1)T−1. Given Ei[n] and Ai[n], the shortage energy purchased

from the grid for BS i is max{Ei[n]−Ai[n], 0}; or the surplus

energy sold to the grid is max{Ai[n]−Ei[n], 0}. BS i either

buys energy from the grid at the ahead-of-time price αlt
n , or

sells energy to the grid at price βlt
n . We set αlt

n > βlt
n to avoid

meaningless buy-and-sell activities. The ahead-of-time energy

transaction cost of BS i is therefore given by

Glt(Ei[n]) := max{αlt
n(Ei[n]−Ai[n]), β

lt
n (Ai[n]−Ei[n])}.

(13)

Let ξltn := {αlt
n , β

lt
n ,An, ∀n} collect all the random variables

evolving at this slow timescale.

With nt := ⌊ t
T
⌋, the real-time energy buying and selling

prices αrt
t and βrt

t , and Ai(t) in (8) substituted by
Ei[nt]

T
, the

real-time energy transaction cost of BS i is given by

Grt(Ei[nt], Pg,i(t), Pb,i(t)) := max
{
αrt
t [Pg,i(t)

− Ei[nt]

T
+ Pb,i(t)], β

rt
t [

Ei[nt]

T
− Pg,i(t)− Pb,i(t)]

}
(14)

Let ξrtt := {αrt
t , β

rt
t ,Ht, ∀t} collect all the random variables

evolving at this fast timescale.

According to (13) and (14), we can define the energy

transaction cost for BS i per slot t as:

Φi(t) :=
1

T
Glt(Ei[nt]) +Grt(Ei[nt], Pg,i(t), Pb,i(t)). (15)

Let X := {Ei[n], ∀i, n;Pb,i(t), Ci(t), ∀i, t;wk(t), ∀k, t}. The

goal is to design an online energy management scheme that

decides the ahead-of-time energy-trading amounts {Ei[n], ∀i}
at every t = nT , battery (dis)charging amounts {Pb,i(t), ∀i},

and the CoMP beamforming vectors {wk(t), ∀k} per slot t, so

as to minimize the total time-average energy cost. The problem

of MTEP is to find

Φ∗ :=min
X

lim
N→∞

1

NT

NT−1∑

t=0

∑

i∈I

E{Φi(t)}

subject to (5), (6), (7), (10), ∀t
(16)

where Φ∗ is the optimal solution, and the expectations of Φi(t)
are taken over all sources of randomness.

We can generalize the Lyapunov optimization techniques

to achieve the asymptotically optimal solution for (16). Both

ahead-of-time and real-time decisions on energy trading can be

accommodated. This consists of multiple asynchronous Lya-

punov optimization processes running at different timescales.

Problem (16) can be decoupled into two subproblems. One

is real-time energy trading and beamforming at each fine-

grained time slot within a coarse-grained interval n, given

the energy plan made at the beginning of the interval Ei[n].
Since (16) recedes to (9), we can just run Algorithm 1 with

Ai(t) =
Ei[nt]

T
in (12). The other subproblem is ahead-of-time

energy planning of the optimal E∗
i [n], as given by

min
{Ei[n]}

∑

i∈I

{

V
[
Glt(Ei[n]) +

τ+T−1∑

t=τ

E{Grt(Ei[n],

Pg,i(t), Pb,i(t))}
]
+

τ+T−1∑

t=τ

Qi(τ)E{Pb,i(t)}
}

s. t. (6), (7), (10), ∀t = τ, . . . , τ + T − 1 (17)

where the expectations are taken over ξrtt .

Next we develop an efficient solver of (17). Suppose that

ξrtt is i.i.d. across time slots. We can suppress t from all

optimization variables, and rewrite (17) as (with short-hand

notation Qi[n] := Qi(nT ))

min
{Ei[n]}

∑

i∈I

{V G
lt(Ei[n]) + TE[V G

rt(Ei[n], Pg,i(ξ
rt
t ), Pb,i(ξ

rt
t ))

+Qi[n]Pb,i(ξ
rt
t )]}

s. t.

√

∑

l 6=k

|hH
k wl(ξrt

t )|2 + σ2
k ≤ 1√

γk
Re{hH

k wk(ξ
rt
t )},

Im{hH
k wk(ξ

rt
t )} = 0, ∀k, ξrt

t (18a)

P
min
b ≤ Pb,i(ξ

rt
t ) ≤ P

max
b , ∀i, ξrt

t (18b)

Pc +
∑

k∈K

w
H
k (ξrt

t )Biwk(ξ
rt
t ) ≤ P

max
g , ∀i, ξrt

t , (18c)

which can be further reformulated as an unconstrained opti-

mization problem with respect to Ei[n], as given by

min
{Ei[n]}

∑

i∈I

[

V Glt(Ei[n]) + T Ḡrt({Ei[n]})
]

, (19)

where we define

Ḡrt({Ei[n]}):= min
{Pi,Pb,i,wk}

∑

i∈I

E

{

VΨrt(Ei[n], Pb,i(ξ
rt
t ),wk(ξ

rt
t ))

+Qi[n]Pb,i(ξ
rt
t )

}

s. t. (18a), (18b), (18c) (20)

with the compact notation Ψrt(Ei[n],wk(ξ
rt
t ), Pb,i(ξ

rt
t )) :=

Grt(Ei[n], Pg,i(ξ
rt
t ), Pb,i(ξ

rt
t )).

Since E[VΨrt(Ei[n],wk(ξ
rt
t ), Pb,i(ξ

rt
t ))+Qi[n]Pb,i(ξ

rt
t )] is

jointly convex in (Ei,wk, Pb,i), then the minimization over

(wk, Pb,i) is within a convex set; thus, (18a)-(18c) are convex

with respect to Ei[n] [16, Sec. 3.2.5]. Hence, (19) is generally

a nonsmooth and unconstrained convex problem, and can be

solved using the stochastic subgradient method.

The subgradient of Glt(Ei[n]) can be written as

∂Glt(Ei[n]) =







αlt
n , if Ei[n] > Ai[n];

βlt
n , if Ei[n] < Ai[n];

any x ∈ [βlt
n , α

lt
n ], if Ei[n] = Ai[n].

With the optimal solution {wE
k (ξ

rt
t ), P

E
b,i(ξ

rt
t )} for (20), the

partial subgradient of Ḡrt({Ei[n]}) with respect to Ei[n]



Algorithm 2 Multi-Timescale Energy Planning (MTEP)

1: Initialization: Select Γ and V , and introduce a virtual

queue Qi(0) := Ci(0) + Γ, ∀i.
2: Ahead-of-time energy planning: Per interval τ = nT ,

observe a realization ξltn , and determine the energy

amounts {E∗
i [n], ∀i} by solving (17). Then the BSs trade

energy with the main grid based on {E∗
i [n], ∀i}, and

request the grid to supply an average amount E∗
i [n]/T

per slot t = τ, . . . , τ + T − 1.

3: Energy trading and beamforming: Run Algorithm 1

with Ai(t) =
Ei[nt]

T
in (12).

4: Queue updates: Per slot t, (dis)charge the battery based

on {P ∗
b,i(t), ∀i}, so that the stored energy Ci(t + 1) =

Ci(t) + P ∗
b,i(t), ∀i; and update the virtual queues Qi(t+

1) := Ci(t+ 1) + Γ, ∀i.

is ∂iḠ
rt({Ei[n]}) = V E{∂Ψrt(Ei[n],w

E
k (ξ

rt
t ), P

E
b,i(ξ

rt
t ))},

where

∂Ψrt(Ei[n],w
E
k (ξ

rt
t ), P

E
b,i(ξ

rt
t )) =







−βrt

t

T
, if

Ei[n]
T

> ∆;
−αrt

t

T
, if

Ei[n]
T

< ∆;

x ∈ [
−αrt

t

T
,
−βrt

t

T
], else,

and ∆ := Pc +
∑

k w
E
k

H
(ξrtt )Biw

E
k (ξ

rt
t ) + PE

b,i(ξ
rt
t ).

Let ḡi(Ei) := V ∂Glt(Ei) + T∂iḠ
rt({Ei}). The sub-

gradient descent iteration can be employed to find the optimal

E∗
i [n] for (19), as

E
(j+1)
i [n] = [E

(j)
i [n]− µ(j)ḡi(E

(j)
i [n])]+, ∀i (21)

where j denotes iteration index, and {µ(j)} collects stepsizes.

Since the distribution of ξrtt is unknown a priori, a stochastic

subgradient approach is derived based on the past realizations

{ξrtτ , τ = 0, 1, . . . , nT − 1}. We can randomly draw a realiza-

tion ξrtτ from past realizations, and run the following iteration

E
(j+1)
i [n] = [E

(j)
i [n]− µ(j)gi(E

(j)
i [n])]+, ∀i (22)

where gi(E
(j)
i [n]) := V (∂Glt(E

(j)
i [n]) + T∂Ψrt(E

(j)
i [n],

wE
k (ξ

rt
τ ), P

E
b,i(ξ

rt
τ ))) with {wE

k (ξ
rt
τ ), P

E
b,i(ξ

rt
τ )} obtained by

solving a convex problem (20) with Ei[n] = E
(j)
i [n]. The

iteration (22) can asymptotically converge to the optimal

{E∗
i [n], ∀i} as j → ∞ [16].

The proposed MTEP is presented in Algorithm 2.

V. ASYMPTOTIC OPTIMALITY OF TWET AND MTEP

The asymptotic optimality of the proposed Algorithms 1 and

2 can be established through the following theorems.

Theorem 1 [17]. If we set Q0
i = C0

i − V ᾱ + Pmin
b,i −

Cmin
i , ∀i, and select a V ≤ V max, then the TWET algorithm

yields a feasible dynamic control scheme for (9), which is

asymptotically optimal in the sense that

G∗ ≤ lim
T→∞

1

T

T−1∑

t=0

∑

i∈I

E[Ĝ(t)] ≤ G∗ +
M1

V

where Ĝ(t) denotes the resultant cost under the proposed

TWET algorithm; ᾱ := max{αt, ∀t}, β := min{βt, ∀t},

M1 := 1
2

∑

i(max{Pmax
b,i ,−Pmin

b,i })2, and V max :=

mini{Cmax
i − Cmin

i + Pmin
b,i − Pmax

b,i }/(ᾱ− β).

Theorem 2 [18]. If we set Q0
i = C0

i − V ᾱ + TPmin
b,i −

Cmin
i , ∀i, and select a V ≤ V max, Then the proposed MTEP

yields a feasible dynamic control scheme for (16), which is

asymptotically near-optimal in the sense that

Φ∗ ≤ lim
N→∞

1

NT

NT−1∑

t=0

∑

i∈I

E[Φ̂i(t)] ≤ Φ∗ +
M2

V

where Φ̂i(t) denotes the resultant cost under the pro-

posed MTEP algorithm; ᾱ := max{αrt
t , ∀t}, β :=

min{βrt
t , ∀t}, M2 := T

2

∑

i(max{Pmax
b,i ,−Pmin

b,i })2, and

V max := mini{Cmax
i − Cmin

i + T (Pmin
b,i − Pmax

b,i )}/(ᾱ− β).
Clearly, Algorithms 1 and 2 provide solutions as close to

the optimum G∗ or Φ∗ as possible, if we have very small price

difference (ᾱ − β) or very large battery capacities {Cmax
i }i.

VI. NUMERICAL TESTS

Comparison studies are conducted between Algorithms 1

and 2, as well as an offline scheme [19] to benchmark their

performances. Note that the offline benchmark is an ideal

scheme with a-priori knowledge of future channel states,

energy prices and RES arrivals. We also simulate a heuristic

algorithm (Heu) that minimizes the instantaneous energy cost

per slot without battery (dis)charging.

We considered two BSs, each with two transmit antennas, to

serve three single-antenna mobile users. The system bandwidth

is 1 MHz. For simplicity, we randomly generate the channel

coefficients as zero-mean complex-Gaussian random variables

with unit variance. We set Pmax
b,i = 2 kWh, Pmin

b,i = −2 kWh,

Cmax
i = 60 kWh, and Cmin

i = 0. The SINR requirement

is γreq
k = 5 dB for all users (unless otherwise specified). A

coarse-grained interval consists of T = 5 time slots. The

ahead-of-time and real-time energy buying prices αlt
n and αrt

t

follow folded normal distributions with E{αlt
n} = $1.5/kWh

and E{αrt
t } = $2.3/kWh. The corresponding selling prices

are βlt
n = 0.9×αlt

n and βrt
t = 0.3×αrt

t . The harvested energy

Ai[n] also yield from a folded normal distribution, with an

average rate of 1.6 kWh/slot.

The average transaction costs of the four algorithms are

depicted under different battery capacities Cmax
i in Fig. 2.

Clearly, the growth of Cmax
i from 40 to 120 has no impact on

the average costs of the offline scheme and the Heu, but causes

the other two to monotonically decrease. In particular, reduc-

tions of 42% and 58% can be achieved using Algorithms 1

and 2 when Cmax
i = 120 kWh, respectively, as compared to

the Heu. Algorithm 2 always outperforms Algorithm 1 and

the Heu, since Algorithm 2 is able to take advantage of multi-

timescale energy pricing, while Algorithm 1 can only work

with real-time prices. The Heu without battery (dis)charging

has to purchase much more expensive energy from the real-

time energy market, thus resulting in the highest transaction

cost.
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Fig. 2. Average energy transaction cost versus battery capacity Cmax
i .
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Fig. 3. Average energy transaction cost versus SINR requirements.

Fig. 3 compares the average energy costs of the four

algorithms under different SINR requirements γreq
k . It can be

seen that all the average costs increase with the growth of

γ
req
k (which represents more strict SINR requirements). Again,

Algorithm 2 outperforms Algorithm 1 and the Heu, incurring

a cost closest to the offline benchmark, given the same SINR

requirement. However, note that the optimal offline counterpart

cannot work in practice due to the lack of future stochastic

system information.

Fig. 4 plots the average energy costs against the energy

harvesting rate (in kWh/slot). We can see that the costs decline

linearly with the growth of energy harvesting capability. Also,

it can be observed that the gap between Algorithm 2 and

the offline benchmark remains almost unchanged; while that

between Algorithms 1 and 2 decreases as the energy harvesting

rate increases. We can conclude that the long-term energy

planning in MTEP is particularly effective to the systems with

limited energy harvesting capability.

VII. CONCLUSION

In this article, we present a new framework of TWET and

MTEP, where Lyapunov optimization techniques are exploited

to capture the temporal and spatial randomnesses of both 5G

and smart grid in terms of energy price, RES, and wireless

channel. Simulation results show that effective MTEP is able

to save 58% of the energy cost of 5G.
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