
Graph Neural Network based Service Function
Chaining for Automatic Network Control

DongNyeong Heo
Dept. of Information and Communication Engineering

Handong Global University
Pohang, South Korea

21931011@handong.edu

Stanislav Lange
Dept. of Information Security and Communication Technology

Norwegian University of Science and Technology
Trondheim, Norway

stanislav.lange@ntnu.no

Hee-Gon Kim
Dept. of Computer Science and Engineering

Pohang University of Science and Technology
Pohang, South Korea
sinjint@postech.ac.kr

Heeyoul Choi
Dept. of Information and Communication Engineering

Handong Global University
Pohang, South Korea
heeyoul@gmail.com

Abstract—Software-defined networking (SDN) and the net-
work function virtualization (NFV) led to great developments in
software based control technology by decreasing expenditures.
Service function chaining (SFC) is an important technology to
find efficient paths in network servers to process all of the
requested virtualized network functions (VNF). However, SFC is
challenging since it has to maintain high Quality of Service (QoS)
even for complicated situations. Although some works have been
conducted for such tasks with high-level intelligent models like
deep neural networks (DNNs), those approaches are not efficient
in utilizing the topology information of networks and cannot be
applied to networks with dynamically changing topology since
their models assume that the topology is fixed. In this paper, we
propose a new neural network architecture for SFC, which is
based on graph neural network (GNN) considering the graph-
structured properties of network topology. The proposed SFC
model consists of an encoder and a decoder, where the encoder
finds the representation of the network topology, and then the
decoder estimates probabilities of neighborhood nodes and their
probabilities to process a VNF. In the experiments, our proposed
architecture outperformed previous performances of DNN based
baseline model. Moreover, the GNN based model can be applied
to a new network topology without re-designing and re-training.

Index Terms—Service Function Chaining, Deep Learning,
Graph Neural Network

I. INTRODUCTION

Reducing Capital Expenditure (CAPEX) and Operating Ex-
penditure (OPEX) are consistently critical issues for telecom-
munication network service providers (NSPs). Before ap-
pearances of Software-Defined Network (SDN) and Network
Function Virtualization (NFV), network functions were de-
pendent on hardware middleboxes. The SDN technology [1]
led to network traffic being controlled by a software-based

This work was supported by Institute for Information and communications
Technology Promotion (IITP) grant funded by the Korea government (MSIT)
(No.2018-0-00749, Development of virtual network management technology
based on artificial intelligence), and partly by the Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education (2017R1D1A1B03033341).

Fig. 1. An example of an SFC task on network topology. The request list is
updated by new or expired requests. The SFC model generates resulting paths
for the active requests in the list. The bottom figure shows the generated SFC
paths of one request.

control system. In addition, the NFV technology [2] led
to network functions being virtualized and make them be
separated from hardware middleboxes. With SDN and NFV
technologies, NSPs are capable of deploying and processing
Virtualized Network Functions (VNF) at a relatively low cost
in terms of CAPEX and OPEX. These developments have led
the software-based control system to receive much attention
from NSPs. Also, high-level intelligent software-based control
systems that operate networks automatically have become a
central issue in the network field [3].

A high-level intelligent software-based control system
needs to handle many specific tasks including VNF Deploy-
ment, VNF Placement, Auto-Scaling, and Anomaly Detection.
Among them, the Service Function Chaining (SFC) task

ar
X

iv
:2

00
9.

05
24

0v
1

 [
cs

.N
I]

 1
1

Se
p

20
20

generates a network traffic path from the source server to
the destination server. At the same time, connecting and
processing all of the VNFs that are requested from users in
a pre-defined order. To guarantee Quality of Service (QoS)
for the SFC, there are a few requirements such as low end-
to-end delay, enough bandwidth to operation, reliability, and
availability. In this study, the QoS is evaluated by total delay
costs of traversing traffic between nodes. Even with a single
QoS measurement, SFC is still challenging since the network
should satisfy the good quality of QoS even in complicated
situations like dynamic locations of VNF instances, various
request types from different users, and a structure-level change
of the network topology.

To formulate the task, we can consider network topology as
graph data. Then, physical servers are represented by nodes
in the graph, and paths to traverse network traffic between
physical servers are represented by edges. Fig. 1 shows a
simple example of network topology and an SFC task. The
request list is updated whenever new requests are received or
existing requests expire. In the figure, a new request Reqt is
received at time t and the first request Req1 has expired. The
SFC model generates a path for each of the active requests in
the list. To make the task simpler, requests are processed one
by one, not simultaneously. Suppose that the active request
Reqt is selected for processing as shown in Fig. 1, then given
the pre-defined order of requested VNFs, the model generates
a path from the source node (node 0) to the destination node
(node 10) processing all the requested VNFs (VNF1, VNF2,
and VNF3). Depending on the QoS of the resulting path, it
could be an optimal or sub-optimal, or even a failure path.
The resulting path is classified as a failure when the path does
not process all the requested VNFs.

Threshold methods for SFC are limited regarding their capa-
bility of handling complicated network situations [4]. Recently,
deep learning-based models have been applied to SFC, since
deep learning has received much attention over the last decade
because of its success in various domains like image recog-
nition, speech recognition, and machine translation [5]. Also,
some researches have attempted to apply deep learning to SFC.
[6] designed a pre-trained Deep Belief Network (DBN) model
that estimates the probabilities of neighborhood nodes after
fine-tuning. Iterative steps of forwarding DBN model generate
a path. This research shows that the deep learning-based model
can learn a representation of the network topology. However,
its representation does not reflect the relationships of the nodes
in the network topology, since those relationships cannot be
reflected by DBN.

In this paper, we propose a new neural network architec-
ture for SFC based on graph neural networks (GNNs) [7]
followed by deep neural networks (DNNs) or recurrent neural
networks (RNNs). GNN is advantageous for graph-structured
data because of its effective representation of the relationship
between graph nodes. Moreover, GNN can be applied without
re-designing even when the structure of network topology
is changed. We designed an SFC model using the encoder-
decoder architecture, where the encoder represents the network

topology, and the decoder estimates the probabilities of neigh-
borhood nodes for traversing. At the same time, the decoder
estimates the probabilities of processing the deployed VNF.
In the experiments, our proposed GNN based architecture
outperforms the DNN based model which is used as a baseline.
Furthermore, experiment results show that the GNN based
model can be applied to a new network topology without re-
designing.

II. BACKGROUND

A. Service Function Chaining

In this paper, for the definition of the SFC task, we follow
[6] which is also used as a baseline model in our experiments.
Also, we take several notations from [7], [8], and they have
different meanings with the same notations. Thus, for consis-
tency of notations in our task with GNN equations, we use
our own notations. First of all, the graph G consists of a node
set N and an edge set E. An instance of the node set and
the edge set are denoted by u and uv, respectively, where uv
represents the connection between the two nodes u and v. The
set of VNFs is denoted by M whose instance is denoted by
m. Basically, the network topology in SFC is considered to be
an undirected graph, but each step of the resulting path can be
understood as a directed graph. In the directed graph, a node
and an edge are denoted by ū and ūv̄, respectively. Lastly, the
active request list at time t is denoted by Rt.

The objective of SFC for a request i ∈ Rt is defined by

min
∑
uv∈E

∑
ūv̄∈Ei

duvy
ūv̄
i,uv +

∑
m∈M

∑
ū∈Ni

dmx
ū
i,m,

where duv is the traversing delay on the edge uv and dm is the
processing delay on the VNF instance m. Given a generated
path of the request i, Ni and Ei are the set of nodes and
the set of directed edges of the generated path. ū and ūv̄ are
instances of such sets. yūv̄i,uv is a variable indicating whether
the directed edge ūv̄ traverses the undirected edge uv. xūi,m
indicates whether the node ū processes the VNF instance m in
the path. The first term of this equation is the sum of traversing
delays on edges, and the other one is the sum of processing
delays on the VNF deployed nodes. Also, each VNF instance
and link in which between nodes have their own bandwidth
capacities which should be considered when generating the
path. See [6] for more details of notations and constraints.

B. Graph Neural Networks (GNNs)

GNNs were proposed to handle graph-structured data [7]
in neural networks. The traditional purpose of the graph
processing model is to learn a function that maps a node u
in a graph G into a vector representation of real numbers,
τ(G, u) ∈ RD where D is the dimension of the vector. Before
GNNs, most neural networks were not effective in utilizing
graph topology information. Vector representation about re-
lations between a node and its neighborhood is necessary
to handle graph-structured data in neural networks. GNNs
have a state transition stage producing a state representation
that reflects the information of relations. Additionally, GNNs

(a) Internet2 Topology and Settings

(b) VNF Types (Left) and SFC Request Types (Right)

Fig. 2. Data collecting network topology, types of VNF, and user request.

reflect features that are referred to as label information of
nodes or edges in the state transition stage. In the SFC task,
we set the label of a node and edge as the type of deployed
VNFs and inverse delay cost of that edge.

Let ne[u] be the neighbors of node u, and co[u] the edge set
that connects the node u to any ne[u]. Nodes and edges have
their own label, expressed in the vector format like lu ∈ RlN ,
luv ∈ RlE , where lN and lE are dimensions of the node and
edge labels, respectively. For an SFC task, we assume that the
graph topology is an undirected and non-positional graph. The
GNN model is divided into two main stages. The first stage
is the state transition as mentioned before, which produces
a state representation reflecting the information of relations.
This stage is expressed as follows.

hu =
∑

v∈ne[u]

fw(lu, luv, hv, lv), (1)

where fw with a parameter set w is a transition function and
hu is the state representation of the node u. It reflects the
individual information of relations computed between u and
one of its neighbors ne[u]. The GNN model repeats this state
transition Eq. (1), until the output of the function converges.
The Banach fixed-point theorem guarantees the function to
find the unique solution independently to the initial parameter
set under the condition that the function is a contraction map.
To satisfy this condition, a regularizer can be adopted as in
[9].

The second stage is output function which produces the
final output vector representation of a node given the state
representation from the first stage, and this output is given by

ou = gw(hu, lu), (2)

where ou is the final output vector representation of the node
u, and gw is the output function with a parameter set w.

C. Gated Graph Neural Network (GG-NN)

Variants of GNN have been proposed with different neural
network architectures, such as Convolutional Neural Networks
[10] and Recurrent Neural Networks (RNNs) [8]. Especially in
[8], they implemented GNN with RNNs based on the idea that
the forwarding of the state transition stage is the same process
as the forwarding of RNN models with masking between a
hidden state and the next hidden state. GG-NN applied Gated
Recurrent Unit (GRU) [11] to GNN.

In GG-NN, the state transition stage is implemented as
the matrix multiplication of the hidden state matrix and
the adjacency matrix. The initial hidden state matrix is the
annotation matrix that is a set of node label vectors, and the
adjacency matrix is a set of edge label vectors. The operations
of this state transition stage are summarized as follows.

h(0)
u = [l>u , 0]>, (3)

a(t)
u = A>u [h

(t−1)>
1 . . . h

(t−1)>
|N |]>, (4)

ztu = σ(W za(t)
u + Uzh(t−1)

u), (5)

rtu = σ(W ra(t)
u + Urh(t−1)

u), (6)

h̃(t)
u = tanh (Wa(t)

u + U(rtu � h(t−1)
u)), (7)

h(t)
u = (1− ztu)� h(t−1)

u + ztu � h̃(t)
u , (8)

where Au is the vector of the node u in the adjacency matrix.
h

(0)
u is the vector of the node u in the annotation matrix

with zero paddings. a(t)
u is multiplication of the adjacency

matrix and annotation matrix. ztu, r
t
u, h̃

(t)
u and h

(t)
u are usual

recursive state transition operations in GRU. � is the element-
wise multiplication operation. Restricting the model to be a
contraction map might lose the expressive power of the model.
Therefore, GG-NN repeats the recursive state transition stage
with fixed times [8] without the restriction of contraction. In
this paper, we adopt the GG-NN to build our neural network
architecture for the SFC task.

III. GNN-BASED SERVICE FUNCTION CHAINING

The network topology we used in the experiment is Inter-
net2 as illustrated in Fig. 2(a). There are traversing delays
for each edge as presented in red tilted. Fig. 2(b) shows 5
VNF types and specific orders of SFC request types. With
this network topology, we propose a GNN-based SFC model,
which consists of two submodels: an encoder and a decoder.
Detailed descriptions of these submodels are below.

A. Encoder

The annotation matrix is a set of label vectors with the
features of a node, including a special type of that node, such
as a source node, destination node, or VNF deployed node. For
example, Fig. 3(a) is one of the network topology setting of
Fig. 2(a), and the annotation matrix is illustrated in Fig. 3(b)
(Left). The matrix size (12×7) is determined by 12 nodes and
7 features that include 5 types of VNF, source, and destination.
If a node has a specific VNF type, then the dimension of the
vector is set to one, otherwise zero. For example, the node
5 has ‘I’, ‘N’ and ‘W’ types, so the 6th row has 0011010.

(a) Network topology setting (b) Annotation matrix (Left), and adjacency matrix (Right)

Fig. 3. An example of the annotation matrix and adjacency matrix given the network topology with 12 nodes and 5 VNF types.

Since the annotation matrix elements are symbolic, we need
embedding process. The embedding process is similar to word
embedding in language models [12], which finds a distributed
representation vector that may represent many independent
factors [13].

The adjacency matrix is a set of label vectors indicating
features of edges as shown in Fig. 3(b) (Right). The matrix
elements can be obtained by the inverse of traversing delay
cost of the edges, which is Auv = 1/duv . Then, each column
is normalized with its mean and standard deviation values,
then the softmax function is applied to each column so that
the total amount of information emitting from a node can be
one. If an edge is not connected, the corresponding element
become zero after softmax.

The encoder plays the same role as the GNN state transition
stage as shown in Eq. (1). The encoder produces a state rep-
resentation that reflects the information of relations between
nodes. Based on the GG-NN architecture, the encoder can be
summarized as

h(t)
u = fencw (au, h

(t−1)
u), (9)

where fencw is a summary of the GG-NN processes from
Eq. (5) to Eq. (8). The encoder repeats these processes for
fixed T times. Fig. 4(a) illustrates the entire encoder model.
After recursive state transitions for T times, the information
of relations is presented in the final state representation h(T).

B. Decoder

To generate a path for a request considering the final
representations of the encoder, the decoder finds one node at a
time until it completes a path. To complete the path, it decides
whether to process the VNF on the selected node or not. This
decoding process is similar to the language model or neural
machine translation processes [12]. At each decoding step, to
select the next node and VNF process, the decoder estimates
the probabilities of the neighbor nodes and their probabilities
to process the VNF.

As shown in Fig. 4(b) since the selection needs to reflect
the current context of the path in the network topology,
three additional inputs from the network topology are given.
Eq. (9): (1) the whole list of requested VNF types Vall,
(2) the next VNF type that the SFC model should process

(a) Encoder Model

(b) Decoder Model

Fig. 4. Encoder and Decoder models for SFC. In the encoder, strength of
adjacency matrix elements is presented in dark color.

currently Vnow, and (3) the current node that the model
is located currently nt−1. The VNF type vectors Vall and
Vnow have five dimensions as the number of VNF types, and
then they are processed with embedding. The location vector
nt−1 is computed by positional encoding (PE) via sine and
cosine functions with different frequencies. PE is the same
technique as in Transformer [14] where PE is used to identify
location information of words in neural machine translation.
By applying VNF vector embedding and node encoding, the
three additional input vectors (Vall, Vnow, and nt−1) are
transformed and have new dimensions DV NF , DV NF , and
Dnode, respectively.

The decoder estimates two types of probabilities for the

neighbor nodes: one for selecting the next node and the other
for processing the VNF on the node. The output vector ou has
three dimensions. For all u ∈ ne[nt−1], the probability p(u)
and p(proc|u) is obtained by

ou = fdecw (h(T)
u , Vall, Vnow, nt−1), (10)

p(u) =
eo

node
u∑

v∈ne[nt−1] e
onode
v

, , (11)

p(proc|u) =
eo

proc
u

eo
proc
u + eo

not
u
. (12)

Note that the probabilities are computed only for the neighbor
nodes of the previous node, ne[nt−1].

Fig. 4(b) describes the decoder model architecture. The
additional inputs that are followed by embedding and encoding
are concatenated with the encoded representation matrix from
the encoder. This concatenated input is fed to the decoding
neural network fdecw , and the neural network estimates the
probabilities of the neighbor nodes and their probabilities to
whether processing the VNF or not. Then, masked softmax and
argmax operator select the target node nt for the next step. The
scores of processing VNF on the selected node nt is computed
with softmax function for binary classification. Then, for the
next step, the generated node nt and the decision of processing
VNF update the additional input vectors Vall, Vnow and nt−1.
In training, instead of the generated node nt, the true labels
of both node and processing VNF are used as the next step
input which is teacher forcing manner [15].

C. Integrated Model

Our proposed model integrates the encoder-decoder archi-
tecture and it is end-to-end trainable by backpropagation. The
objective function consists of two cross-entropy (CE) terms:
one for the target node classification, and the other for the
binary classification indicating whether processing the VNF
on the selected node or not. The encoder is implemented as
GG-NN and the encoded representation forms a vector set
whose size is the number of nodes |N | × the dimension of
the hidden states. The trained model can be applied to new
network topologies without re-designing or re-training even
when the number of nodes changes. The encoder based on GG-
NN can handle changing the number of nodes in the topology,
and the decoder treats the changing number of nodes as if it is
changing batch size. If the encoder is implemented as a DNN
rather than GNN, it should be re-designed when the number of
input dimensions is changed. This is an important advantage
of our proposed model about to dynamic network topologies.

IV. EXPERIMENTS AND RESULTS

A. Data Description

Following the data format in [16], we created a dataset
from the Internet2 topology and dynamic SFC requests. For
each request, we used an ILP-based placement algorithm to
determine the optimal number and location of VNF instances
to generate paths for the set of active requests of that time. We
used this ILP-based result as the label to train the proposed

neural network model. We have a total of 14735 lists for
the active requests, and each list contains 26.08 requests on
average. We split the dataset into 13135, 100, and 1500 for
training, validation, and testing, respectively. See [16] for more
details about data generations and structures.

B. Models and Hyperparameters

We designed a baseline model based on multi-layered DNN
which is a modified version of the pre-trained DBN model [6].
We changed the hyperbolic tangent activation function to the
ReLU function. In addition, we added several optimization
techniques such as dropout, learning rate decay, and early
stopping [17]. Also, we increased the model complexity of the
baseline model for a fair comparison with our proposed model.
The total number of layers is 4 and each layer has 256 hidden
states. This baseline model receives every piece of information
about the network topology, the annotation status of each node,
and their relationships (traversing delay costs). Also, the three
additional information which is the same as additional inputs
of our proposed decoder model is given to the baseline model.
Then, the baseline model estimates same output probabilities
with our proposed model in every generating step.

The encoder in the proposed model is based on GG-NN and
the encoding step T is fixed to 5. The hidden state size Dstate

and the embedded annotation vector dimension are set to 128.
The decoder in the proposed model has a neural network as
illustrated in Fig. 4(b), which is based on either DNN or GRU,
leading to GG-DNN or GG-RNN respectively. For the DNN
based decoding model, the neural network has 4 hidden layers
with the ReLU activation function and dropout regularizer. For
the GRU based decoding, the neural network has 256 hidden
state dimensions. For the additional information, embedded
VNF input vectors DV NF , and positional encoding vector
Dnode are represented in 32 and 4 dimensions, respectively.
The maximum length of the path is limited to 50, so if the
decoder generates a longer path, then it is considered as failure.
We optimized the model with RMSprop optimizer with an
initial learning rate of 0.0001. The total number of parameters
is 626K, 579K, and 530K for the DNN baseline, GG-DNN,
and GG-RNN, respectively.

C. Evaluation metric

To evaluate the performance for validation and testing, we
could not use the accuracy metric, since the lengths of the
target path and the generated path are different. Instead, we
calculated the average cost ratio between the generated path p̂
and the true path p, 1

|P |
∑

p∈P
cost(p̂)
cost(p) , where P is the set of

true paths, and cost(p) is the total delay cost of the path. We
evaluated the mean and variance of the ratio.

Also, we checked the number of failures over the total path
generations, ‘Fail Ratio’. Specific cases that the model cannot
generate a path to process all the requested VNFs, when the
remaining resource was insufficient, or when the resource was
sufficient but the model could not find an available path are
considered as failures. Lastly, we also checked the rate of
unsuccessful cases ‘Overmax’ in which the total delay cost of

the generated path was higher than the pre-defined maximum
delay for the request.

TABLE I
TEST RESULTS WITH 3 MODELS FOR SFC

Model Avg. Cost Ratio (Var.) Fail Ratio Overmax
DNN (baseline) 1.209 (0.729) 0.063 0.243
GG-DNN 1.008 (0.542) 0.038 0.152
GG-RNN 0.995 (0.504) 0.012 0.159

D. Results

Table I summarizes the results showing that both GG-DNN
and GG-RNN outperform the baseline in terms of the mean
of the cost ratio. Also, the ‘Fail Ratio’ of GG-RNN is 1.2%
which is significantly better than the baseline and GG-DNN.
In addition, our proposed model performed better (0.159) then
the ILP-based solution (0.236, not shown in the table) for
the ‘Overmax’ evaluation metric. This means that our model
was able to find more effective solutions than the target label
in certain cases. Although further investigation is needed to
understand the reason why the proposed model showed a
lower ratio for the ‘Overmax’ than the ILP-based solution.
We believe it is related to the fact that our model generates
paths for requests in a list one by one while the target labels
were found all at once. Because the one by one method
consumed resources of VNF instances without consideration
of later requests, the proposed model could generate shorter
paths while increasing the ‘Fail Ratio’.

TABLE II
TEST RESULTS ON CHANGED TOPOLOGY

Model Avg. Cost Ratio (Var.) Fail Ratio Overmax
DNN (baseline) Not applicable
GG-DNN 1.148 (0.698) 0.664 0.069
GG-RNN 1.078 (0.535) 0.128 0.188

To prove that the proposed models can work even when
the internet topology changes, we tested the models after
changing the topology setting by adding nodes that connect
distant nodes with low delay costs. Two nodes were added
newly for connecting nodes 0 and 9, also nodes 8 and 10
respectively. As shown in Table II, the results of GG-RNN on
the changed topology show that the model can be applied to
the changed topology without retraining while the DNN model
could not be applied. Although the proposed model for the
changed topology was not able to as effective as the original
topology, the GG-RNN model could find paths for 87% of
whole requests and the generated paths almost as good as the
true paths (mean of the ratio is 1.078). We believe that the
lower performance (especially in Fail Ratio) on the changed
topology is due to overfitting, that is, the training samples
were drawn only from a single topology and the model was
optimized excessively for that topology. If the model is trained
on various topologies, then we expect that the model works
effectively on new topologies without overfitting.

V. CONCLUSION

To find an SFC path on internet networks automatically,
we proposed new neural network architectures based on the
graph neural network via encoder-decoder architecture. The
encoder found representations of the network topology, and
the decoder estimated probabilities of the neighbor nodes
and the probabilities of decisions of processing VNF, then
the decoder makes the best choices given that probabilities.
In the experiments, the proposed models had not only a
higher level of performance than the baseline model but
also demonstrated flexibility in structural changes of topology
without re-designing. For future work, we can train the model
on various topologies to avoid the overfitting issue.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[2] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 236–262, 2016.

[3] A. Datta, A. Rastogi, O. Barman, R. DMello, and O. Abuzaghleh,
“An approach for implementation of artificial intelligence in automatic
network management and analysis,” Lecture Notes in Networks and
Systems, pp. 901–909, Jan 2018.

[4] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” J. Netw. Comput. Appl., vol. 75, no. C, p. 138155,
Nov. 2016.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[6] J. Pei, P. Hong, and D. Li, “Virtual network function selection and
chaining based on deep learning in sdn and nfv-enabled networks,”
in 2018 IEEE International Conference on Communications Workshops
(ICC Workshops), 2018, pp. 1–6.

[7] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[8] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv, 2015.

[9] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,
“A connectionist approach to dynamic resource management for virtu-
alised network functions,” in CNSM, 2016, pp. 1–9.

[10] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv, 2016.

[11] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” arXiv, 2014.

[12] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural prob-
abilistic language model,” J. Mach. Learn. Res., vol. 3, p. 11371155,
Mar. 2003.

[13] T. Mikolov, G. Corrado, K. Chen, and J. Dean, “Efficient estimation of
word representations in vector space,” in ICLR 2013, 01 2013, pp. 1–12.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv, 2017.

[15] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in 28th In-
ternational Conference on Neural Information Processing Systems, ser.
NIPS15, 2015, p. 11711179.

[16] S. Lange, H. Kim, S. Jeong, H. Choi, J. Yoo, and J. W. Hong, “Pre-
dicting vnf deployment decisions under dynamically changing network
conditions,” in 15th International Conference on Network and Service
Management (CNSM), 2019, pp. 1–9.

[17] S. Hahn and H. Choi, “Understanding dropout as an optimization trick,”
Neurocomputing, vol. 398, pp. 64–70, Jul. 2020.

	I Introduction
	II Background
	II-A Service Function Chaining
	II-B Graph Neural Networks (GNNs)
	II-C Gated Graph Neural Network (GG-NN)

	III GNN-Based Service Function Chaining
	III-A Encoder
	III-B Decoder
	III-C Integrated Model

	IV Experiments and Results
	IV-A Data Description
	IV-B Models and Hyperparameters
	IV-C Evaluation metric
	IV-D Results

	V Conclusion
	References

