
HAL Id: hal-04018740
https://hal.science/hal-04018740

Submitted on 8 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-Efficient VNF Deployment for Graph-Structured
SFC Based on Graph Neural Network and Constrained

Deep Reinforcement Learning
Siyu Qi, Shuopeng Li, Shaofu Lin, Mohand Yazid Saidi, Ken Chen

To cite this version:
Siyu Qi, Shuopeng Li, Shaofu Lin, Mohand Yazid Saidi, Ken Chen. Energy-Efficient VNF Deployment
for Graph-Structured SFC Based on Graph Neural Network and Constrained Deep Reinforcement
Learning. 2021 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS), Sep
2021, Tainan, France. pp.348-353, �10.23919/APNOMS52696.2021.9562610�. �hal-04018740�

https://hal.science/hal-04018740
https://hal.archives-ouvertes.fr

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Energy-Efficient VNF Deployment for Graph-

Structured SFC Based on Graph Neural Network

and Constrained Deep Reinforcement Learning

Siyu QI1, Shuopeng LI1,*, Shaofu LIN1, Mohand Yazid SAIDI2, Ken CHEN2
1Faculty of Information Technology, Beijing University of Technology, Beijing, China

2L2TI, Institut Galilee, University Sorbonne Paris Nord, Villetaneuse, France
*Corresponding author: lishuopeng@bjut.edu.cn

Abstract—Network Function Virtualization (NFV), which

decouples network functions from hardware and transforms

them into hardware-independent Virtual Network Functions

(VNF), is a crucial technology for many emerging networking

domains, such as 5G, edge computing and data-center network.

Service Function Chaining (SFC) is the ordered set of VNFs.

The VNF deployment problem is to find the optimal deployment

strategy VNFs in SFC while guaranteeing the Service-Level

Agreements (SLA). Existing VNF deployment researches

mainly focus on sequences of VNFs without energy

consideration. However, with the rapid development of user and

application requirement, the SFCs evolve from sequence to

dynamic graph and the service providers become more and

more sensitive to the energy consumption in NFV. Therefore, in

this paper, we identify the Energy-efficient Graph-structured

SFC problem (EG-SFC) and formulate it as a Combinatorial

Optimization Problem (COP). Benefiting from the recent

advances in machine learning for COP, we propose an end-to-

end Graph Neural Network (GNN) based on constrained Deep

Reinforcement Learning (DRL) method to solve EG-SFC. Our

method leverages the Graph Convolutional Network (GCN) to

represent the Q-network of Double Deep Q-Network (DDQN) in

DRL. The mask mechanism is proposed to deal with the

resources constraints in COP. The experimental results show

that the proposed method can deal with unseen SFC graphs and

achieves better performances than greedy algorithm and

traditional DDQN.

Keywords—Network Function Virtualization, Service

Function Chaining, Virtual Network Function, Graph Neural

Network, Deep Reinforcement Learning

I. INTRODUCTION

Network Function Virtualization (NFV) is a network
architecture proposed by European Telecommunications
Standards Institute (ETSI)[1]. NFV decouples network
functions from hardware and transforms them into Virtual
Network Functions (VNF) that do not rely on dedicated
hardware. VNF can be deployed on general-purpose hardware.
When providing network services to users , network flows will
pass through multiple VNFs in a specific order. An ordered
set of VNFs that can describe the logical connection between
each other is defined as Service Function Chaining (SFC).
Compared to the traditional dedicated equipments, NFV
facilitates business expansion and reduces the investment cost
of operators.

The deployment of VNF requires the allocation of some
resources which should be efficiently chosen. Actually, the
VNF deployment problem is a network resource optimization
problem that aims to allocate limited CPU, memory,
bandwidth, etc., for different users or task to verify the
requirements. The VNF deployment problem can be thus

modeled as a Combined Optimization Problem (COP) which
is a kind of optimization problem that looks for an optimum
solution in a discrete domain. With the continuous expansion
of the scale of the problems in practical applications and the
increasing requirement for real-time solution, the traditional
operation researches optimization algorithms cannot realize
the online solution of COP. Pointer Network [2] is the first
neural Network that can effectively solve COP. Various
Pointer Network based methods, showing the powerful effects
in solving COP, were then proposed. At the same time, Deep
Reinforcement Learning (DRL) is often used to train models
due to the lack of labeled data for COP in most cases [3].

DRL has also been applied to solve the VNF deployment
problem. These researches generally only focus on the
traditional chained SFC, although with the development of
network services, SFC will present complex graph structure in
many cases. At present, there have been researches focusing
on graph-structured SFC. Traditional Machine Learning have
poor performance when processing graph structure data. In
response to this problem, we propose in this paper to use
Graph Neural Network (GNN) to solve the VNF deployment
problem. GNN can extract the topological information and
complex features from the graph structure quickly. Although
GNN has been applied to the deployment of VNF, the related
researches usually use it to deal with the physical network
topology, without considering the topological information of
SFC.

In this paper, we model the EG-SFC problem and propose
an end-to-end GNN based on constrained DRL method. Our
main contributions are as follows:

(1) the EG-SFC problem is modeled as a COP with
objective of joint energy and delay consideration; (2) Graph
Convolutional Network (GCN) is adopted to extract the
graph-structured data of SFC input and to represent the Q
network in Double Deep Q-Network (DDQN); (3) the mask
mechanism is used in GCN-based DDQN to satisfy the
resources constraints while selecting output nodes.

To validate our proposal, the experiments compare the
accepted ratio, end-to-end delay and energy consumptions of
random SFC graph requests obtained by our method against
traditional DDQN and greedy methods. The numerical results
show that our GCN-based method learn better strategy than
DNN-DDQN for SFC graphs that have never seen before. Our
method also performs better than the greedy method.

II. RELATED WORK

The VNF deployment problem allocates resources such as
CPU, memory and bandwidth, so it can be regarded as COP.

Since the first Machine Learning model Pointer Network that
can effectively solve COP was proposed, a large number of
related methods have been proposed, and these methods are
usually trained by Reinforcement Learning (RL). Bello et al.[4]
used RL algorithm REINFORCE to train the Pointer Network,
and introduced the Critic network as the baseline to reduce the
training variance. Its effect exceeds the Pointer Network that
used supervised learning. Deudon et al.[5] used the
Transformer to improve the Pointer Network. The model still
used REINFORCE to update, but its encoder used the Multi-
head Attention to calculate the feature vector of the node; its
decoder linearly mapped the most recent three-step decision
to obtain the reference vector. In the VNF deployment
problem, Li et al.[6] modeled the VNF deployment problem
as a mixed integer programming problem, and trained the
model with RL algorithm Deep Q-Network (DQN) to realize
the online deployment of the VNF. Solozabal et al[7]
formalized the VNF deployment problem as a constrained
COP. Considering the state of the NFV infrastructure, they
used the Seq2Seq and DRL to generate the deployment
strategy of SFC with the minimum total power consumption
in the physical network.

GNN can extract node features, and it is also used to solve
COP. Dai et al.[8] first used GNN to solve COP. Ma et al.[9]
used GNN to calculate graph embedding, and then used the
Attention mechanism to construct the solution, the model
achieved good optimization performance in Traveling
Salesman Problem (TSP) and other problems. GNN can
provide solutions to VNF deployment problem. Kim et al.[10]
used the Edge-conditioned Filtered Graph Convolutional
Neural Network to generate the state embedding of nodes. The
state embedding was connected with the service list to
generate the approximate optimal solution of VNF policy
classes (add, remove, none). Habibi et al.[11] proposed a
method for Variational Graph Autoencoder to accelerate
virtual network embedding. The model used the adjacency
matrix and the resources feature matrix of physical network to
cluster physical nodes, and embedded virtual network by
selecting servers in each cluster. Heo et al.[12] built an
Encoder-Decoder structure combined with RL to generate the
path connecting VNF instances. The encoder produced a
vector representation of nodes with the Gated Graph Neural
Network (GG-NN). Sun et al.[13] used Graph Network (GN)
to extract the nodes and links resources of the network
topology, and updated the model with RL to find the VNF
deployment strategy with the lowest deployment cost. Rkhami
et al.[14] used GCN to encode the graph structure representing
the physical network and SFC respectively, and transformed
the vector representation of physical network and SFC into
state-level coding with Neural Tensor Networks (NTN). The
model outputed the prediction corresponding to the strategy
and value function.

Regardless of the method adopted, most of the current
researches are geared towards the deployment of traditional
chained SFC, and they focus more on to network topology
rather than SFC. For this situation, we use GNN and DRL to
carry out research on the deployment of graph-structured SFC.

III. EG-SFC PROBLEM FORMULATION

A. Physical Network

We represent the physical network as an undirected graph
Gp=(Np, Lp), where Np represents a set of physical nodes (i.e.
servers) and Lp represents a set of physical links. Server nNp

has available computing resources rn
p

 and its delay for
processing a VNF instance is dn

p
. Each server can be deployed

with multiple VNF instances. φ
n
 is a binary variable, φ

n
=1

means that server n is working, and φ
n
=0 means that server n

is off. The bandwidth of the physical link nm, which connects
adjacent servers n and m is bnm

p
. The transmission delay of

service request on nm is dnm
p

.

B. Service Function Chaining

An SFC is represented by a directed graph Gv=(Nv, Lv),
where Nv represents a set of VNF and Lv represents a set of
virtual links. The i-th VNF on SFC is denoted as Ni

v, and its
required computing resources is ri

v . When the i-th VNF is
deployed to server n, the binary variable θi

n
=1, otherwise θi

n
=0.

When the virtual link connecting VNF i and j is mapped to the
physical link nm, the binary variable λij

nm
=1, otherwise λij

nm
=0.

The bandwidth required by SFC sGv is bs
v
.

C. Virtual Network Function Deployment

When the SFC request arrives on the network, the

required VNF modules need to be instantiated on the

specified servers. The resources of the physical network,

which include CPU, bandwidth, etc., are limited. When the

amount of resources demanded by a request exceeds the

amount of available resources on servers and links, the

Service-Level Agreements (SAL) cannot be guaranteed.

Therefore, the VNF deployment should meet the constraints

of resources. The objective of VNF deployment problem is to

find the optimal VNF deployment strategy to reduce network

Operating Expenditure (OPEX) while guaranteeing service

requirements. Fig. 1 is an example of the VNF deployment of

a graph-structured SFC. The black numbers in Fig. 1

represent the computing resources of the server or the

bandwidth of the physical link, and the red numbers represent

the processing delay of the server or the transmission delay

of the physical link. When the SFC request arrives, the VNFs

of the SFC should be deployed. Combined with resources

constraints and service requirements, VNF1, VNF2 and

VNF3 are mapped to Server2, VNF4 and VNF5 are mapped

to Server5. The virtual links are also mapped.

VNF1
10

VNF2
10

VNF4
15

VNF3
20

VNF5
20

(a)

Server1
30 40

Server2
50 20

VNF1 VNF2

VNF3

VNF4

VNF5

Server3
30 30

Server4
40 50

Server5
40 30

Server6
60 50

40 20

50 15

60 25

40 15

30 10

60 20

(b)

Fig. 1. VNF deployment. (a) is a SFC; (b) is the result of VNF

deployment.

D. Optimization Problem

The objective of this paper is to minimize the energy
consumption and end-to-end delay of SFC request while
guaranteeing the success of VNFs deployment. We define this
optimization problem as EG-SFC.

For simplicity, we assumed that the energy consumption
of SFC is determined by the number of working servers in the
physical network. Hence, at timestep t, we define the energy
consumption of SFC as follows:

 c(t)= ∑
nNp

φ
n
(t) (1)

The end-to-end delay of SFC mainly consists of
processing delay and transmission delay. At timestep t, the
processing delay and transmission delay of SFC are defined
as:

 dp(t)= ∑
iNv

∑
nNp

θi
n
(t)dn

p
 (2)

 dt(t)= ∑
i,jNv

∑
n,mNp

λij
mn

(t)dnm
p

 (3)

where dn
p

 and dnm
p

 are normalized for a uniform order of
magnitude. According to the energy consumption and end-to-
end delay of SFC, we define the optimization objective O(t)
as:

 O(t)=e1∙
c(t)

num(Np)
+e2∙(

dp(t)

num(Nv)
+

dt(t)

num(Lv)
) (4)

Our objective objective consider jointly the energy
consumption and delay. e1 and e2 are tradeoff parameters, and
e1+e2=1. We also normalized the energy consumption.

We take the computing resources of physical nodes and
the bandwidth of physical links as constraints. Combined with
the optimization objective, the optimization problem is
defined as:

 min O(t) (5)

 ∑
nNp

θi
n(t)=1, ∀ iNv (6)

 ∑
iNv

θi
n(t)ri

v≤rn
p
, ∀ nNp (7)

 ∑
iNv

(λij
nm(t)+λij

mn(t))b
ij

v
≤bnm

p
, ∀ nmLp (8)

∑
iNv

λij
nm(t)- ∑

iNv
λij

mn(t)=θi
n(t)-θj

m(t),∀ n, mNp,∀ nmLp(9)

 θi
n(t)={0, 1}, ∀ iNv, ∀ nNp (10)

 λij
nm(t)={0, 1}, ∀ i, jNv, ∀ n,mNp (11)

 φ
n
(t)={0, 1}, ∀ nNp (12)

Equation(6)-Equation(12) guarantee the effectiveness of
the optimization objective. Equation(6) is used to guarantee
that the VNF on the SFC can only select one server for
deployment. Equation(7) is used to guarantee that the sum of
resource required by the VNF deployed on a given sever does
not exceed the total computing resource of that server.
Equation(8) guarantees that the sum of bandwidth
requirements of all virtual links mapped to a physical link does
not exceed the total bandwidth of that physical link.
Equation(9) indicates that when two adjacent VNFs in the
SFC are deployed to servers n and server m, there must be a
continuous path between the physical links nm. Equation(10)-
Equation(12) represent binary variable constraints for VNFs

deployment, virtual links mapping and servers state
respectively.

IV. SYSTEM MODELLING

EG-SFC is a COP. It is NP-hard since it aims to solve the
NP-hard problem consisting in the VNF deployment and the
virtual links mapping. Here, we focus on the VNF deployment.

A. Deep Reinforcement Learning Components

We model the VNF deployment problem as a Markov
Decision Process (MDP). The state, action and reward of
MDP are described below.

1) State: The state is represented by SFC graph

sGv=(Nv, Lv). The features of the i-th VNF 𝑁𝑖
𝑣 include: (1)

required computing resources ri
v; (2) the flag indicating the

deployment status of the VNF in servers, θi
n
, ∀ nNp; (3) the

percentage of available computing resources on the server

which the VNF is deployed, p
i
m, ∃ mNp ; (4) bandwidth

required for the SFC bs
v
; (5) the flag indicating whether the

VNF has been deployed μ
i
v; (6) the flag εi

v indicating whether

the VNF 𝑁𝑖
𝑣 is currently deployed or not. In the initial state

s(0), θi
n
 and μ

i
v of all nodes are all intialized to 0. ε1

v = 1, and

this flag of other VNFs are all 0.

2) Action: The action is the index of server which deploy

the currently processing VNF. At the timestep t, the agent

only selects one server to instantiate the VNF. And a server

can host multiple VNF instances.

3) Reward: We define a binary variable ηa to indicate

whether the current action starts a new server:

 η
a
(t)= {

0, φ
a
(t-1)=φ

a
(t)

1, φ
a
(t-1)≠φ

a
(t)

 (13)

If the environment violates the constraints after the action
is executed, the deployment of the current VNF is considered
as failing. The environment will feedback a larger negative
value to the agent as a penalty. Otherwise, the environment
will generate a reward based on the changes in the number of
working servers and delay. We define the reward function as:

 r(t)= {
50, failed

C (e1η
a
(t)+e2(d(t)-d(t-1))) , otherwise

 (14)

where d(t)=dp(t)+dt(t); C is a fixed constant.

We use DDQN to train the model. DDQN uses target-Q
network and ReplayBuffer to improve performance. TargetQ
is calculated using the following formula:

 amax(s', θ)= arg maxa'Q(s', a'; θ) (15)

 TargetQ=r+γQ(s', amax(s', θ); θ-
) (16)

where θ is the parameter of the Q network; θ
-
 is the parameter

of the target-Q network; s', a', r are state, action and reward
drawn from the ReplayBuffer.

The VNF deployment and the virtual links mapping need
to meet resources constraints. In order to accelerate the
training, in addition to returning a penalty in the reward
function for the action that violates the constraints, we
introduce the mask mechanism. When the required computing
resources of VNF being deployed is greater than the remaining
resources of the server, we set the Q value of the server to a
large negative value to make it impossible to be selected:

 κ= {

0, rn
p
- ∑
iNv

θi
n(t)ri

v≥rc
v,∀ iNv

1, rn
p
- ∑
iNv

θi
n(t)ri

v<rc
v, ∀ iNv (17)

 Q
n
(s, a)=Q

n
(s, a)-κB, ∀nNp (18)

where Q
n
(s, a) is the Q value of the action representing

deploying the current VNF on server n; B is a sufficiently large
positive number; rc

v is the computing resources required by the
VNF currently being deployed.

B. Graph Neural Network

We use GCN as the Q network and the target-Q network
in DDQN. Compared with ordinary GNN, GCN introduces
the convolution operation. The structure of GNN is composed
of the stacked form of the local transfer function and the local
output function which applied to all nodes. The local transition
function generates the state representation of the node, which
contains the neighborhood features of the node and indicates
the dependence of each node's state on neighbors. It is shared
among all nodes and updates the state of the node according
to the neighborhood. Its expression is:

 hv =f
w

(xv, xvu
e , hu, xu) (19)

where xv is the features of node v; xvu
e is the features of link

connecting node u and v; hu is the state representation of the
neighbor nodes of node v; xu is the features of the neighbor
nodes of node v.

The local output function generates the final output vector
representation of the node, which is expressed as:

 ov=g
w

(hv, xv) (20)

GCN introduces the convolution operation into the graph
structure. The convolution layer formula is defined as:

 h
(l)

=σ(D̅
-
1

2A̅D̅
-
1

2h
(l-1)

W(l-1)) (21)

where σ(∙) is the nonlinear activation function; A̅ is the

adjacency matrix; D̅ is the diagonal matrix of A̅; W(l-1) is the
weight matrix of the (l-1)th layer.

The applications of GNN mainly include node
classification, edge classification, link prediction and graph
classification. Instead of using node classification to represent
the deployment of the VNF, we use the graph classification to
generate the deployment strategy of processing VNF based on
the topological information of current SFC graph, and the
resources requirements and deployment situation of all VNFs.
When GNN is used for graph classification, it is necessary to
obtain the representation of the graph based on the features of
each node. This operation requires aggregating as much
information as possible in the graph and is called readout. We
use a simple method to aggregate and readout the features of
all nodes to obtain the representation of the graph. The
formula is as follows:

 hg=
1

|N|
∑

vN

hv (22)

where hg is the representation of graph g; N is the set of nodes

of g.

C. Learning Process

The learning process of the method is shown in Fig. 2. We
use DDQN to train the model, and use GCN as Q network and
target-Q network of DDQN. In each episode, we deploy VNFs

of an SFC. The SFC graph that contains the resources
requirements and deployment status is the input state of DRL.
In GCN, each convolutional layer will calculate the graph
convolution according to the topological information and
nodes features. The graph convolution is passed to the next
convolutional layer after the ReLu activation function.
Through multiple convolution layers and the output layer,
GCN generates the node representation. We readout the
representations of all nodes as the Q value to generate the
action of DRL, that is, the server that the current VNF will
deploy. After a VNF is deployed, we use the shortest path
algorithm to map the virtual links related to this VNF to
physical links. The method deploy one VNF at each step. The
episode ends when all VNFs of the SFC are deployed.

V. EVALUATION

We conduct three experiments to evaluate our method.
Our method deploys one VNF at each step, and the topological
relationship between VNFs in the graph-structured SFC is
complicated, so we first study the impact of the deployment
order of VNFs. On the basis of the first experiment, we study
the effectiveness of GCN for SFC with different numbers of
VNFs. Finally, we study the rationality and effectiveness of
our optimization objective.

A. Data Description

1) Physical network: We use Internet2[10] network

topology as the physical network topology. The topology

consists of 12 nodes and 15 edges. The available computing

resources of servers are randomly selected in [30, 40, 50, 60],

and the processing delay is randomly selected in [20, 30, 40,

50]. The bandwidth of physicals links is randomly selected in

[50, 60, 70, 80], and the transmission delay is randomly

selected in [10, 15, 20, 25].

2) Service Function Chaining: In order to adapt the

model to various topologies, we used SFC with different

topologies to train the model. We randomly change the

topology of the SFC within a fixed number of VNFs. In the

process of changing the topology, it is necessary to ensure

that the topology is connected and directed acyclic. The

required bandwidth of SFC and the required computing

resources of VNFs are randomly selected in [10, 15, 20]. The

number of VNFs in SFC is adjusted according to the

experiment content. For different quantity ranges, we

randomly generated 100 SFCs and randomly selected one for

training at the beginning of each episode. We used the same

strategy to generate another 100 SFCs as test data.

Fig. 2. Learning process of GNN-based VNF deployment method

B. GCN and DRL Parameters

We set the number of GCN layers to 3, and we use ReLu
as the activation function. For DDQN, we use the Adam
optimizer and set the discount rate to 0.99. The capacity of the
ReplayBuffer is 600, and the batch size is 64. We use ϵ-greedy
sampling to explore, where ϵ decreases with the number of
steps and is finally fixed at 0.05. we set the maximum norm
for the gradient clipping to 0.5 to help stabilise training. We
synchronize the parameters of Q network and target-Q
network every 400 episodes. Each experiment is conducted
for 10,000 episodes, and the best model is saved.

C. Baseline model

1) Least Delay Greedy: Least Delay Greedy (LDG)

deploye the first VNF on the server with the least processing

delay. When the available computing resources that server

deployed are greater than the resources required by the

current VNF, continue to deploy the VNF on this server,

otherwise deploy the VNF on the server with the minimum

sum of the processing delay and the transmission delay

between the last server where VNF is deployed.

2) DNN-DDQN: DNN-DDQN use Fully Connected

Neural Network as Q network and target-Q network. The

number of neural network layers is 3, which converts the

connection of SFC features and adjacent information into the

vector as input. The other parameters of DNN-DDQN are the

same as the method we proposed. The mask mechanism is

also introduced in DNN-DDQN.

D. Evaluation

1) Impact of deployment order: In this part, we show the

impact of the deployment order of VNFs. We deploy VNFs

in topological sort order and random order respectively. We

set the number of VNFs in one SFC to 7-10. The tradeoff

parameters are set to e1=0.5,e2=0.5. The results are shown in

TABLE Ⅰ.
In the experiment, compared with the random order, the

number of working servers of the strategy generated by
topological sort order was 3.67% higher, and the end-to-end
delay was 24.78% lower. According to the results, the number
of working servers of two strategies are similar, but the
strategy generated according to the topological sort order has
significantly smaller end-to-end delay. Therefore, we deploy
VNFs in the topological sort order in following experiments.

2) Impact of the number of VNFs: In this part, we show

the impact of the amount of VNFs in SFC. We set the tradeoff

parameters to e1=0.5,e2=0.5 and deploy VNFs in topological

sort order. We increase the number of VNFs in SFC from 5-

8 to 11-14, rising the upper and lower bounds by 2 in each

step. The results is shown in Fig. 3.

TABLE I. TEST RESULTS OF VNF DEPLOYMENT ORDER

deployment order working servers end-to-end delay

random 3 517.78
topological sort order 3.11 389.45

(a)

(b)

(c)

Fig. 3. Test results of the number of VNFs

The results show that the accepted ratio of the strategy
generated by our method is the same as LDG when the number
of VNFs in SFC is 5-8, and 1% higher than DNN-DDQN.
When and the number of VNFs is 7-10, 9-12 and 11-14, the
accepted ratio of our deployment strategy is 6%, 18% and 32%
higher than LDG, and 3%, 23% and 22% higher than DNN-
DDQN. For the number of working servers, when the number
of VNFs in SFC is 5-8, 7-10, 9-12 and 11-14, our strategy is
4.31%, 14.56%, 13.45% and 21.39% lower than LDG, and
14.98%, 16.84%, 7.21% and 5.34% lower than DNN-DDQN.
For the end-to-end delay, our strategy is 8.43% higher than
LDG and 25.56% lower than DNN-DDQN when the number
of VNFs in SFC is 5-8. When and the number of VNFs is 7-
10, 9-12 and 11-14, the end-to-end delay of our strategy is
11.75%, 11.14% and 4.50% lower than LDG, and 23.92%,
14.29%, 15.17% lower than DNN-DDQN.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5-8 7-10 9-12 11-14

ac
ce

p
te

d
 r

at
io

the number of VNFs

GNN-DDQN

DNN-DDQN

LDG

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

5-8 7-10 9-12 11-14

w
o
rk

in
g
 s

er
v
er

s

the number of VNFs

GNN-DDQN

DNN-DDQN

LDG

0

100

200

300

400

500

600

700

800

900

1000

5-8 7-10 9-12 11-14

en
d

-t
o
-e

n
d

 d
el

ay

the number of VNFs

GNN-DDQN

DNN-DDQN

LDG

Our method is better than the baseline models in terms of
accepted ratio, and the advantage becomes more pronounced
as the number of VNFs increases. The results show that the
number of working servers and end-to-end delay are
positively correlated with the number of VNFs in the SFC. As
the number of VNFs increases, the advantage of using our
method tends to decrease over DNN-DDQN in the number of
working servers and over LDG in end-to-end delay.
Compared with these two algorithms, the deployment strategy
derived from our method can minimize the energy
consumption while keeping the minimal end-to-end delay, so
our method is energy-efficient.

Combined with the accepted ratio, the number of working
servers and the end-to-end delay, the performance of our
method is superior to DNN-DDQN using traditional method
and LDG based on greedy algorithm. Experiments show that
GCN is effective for graph-structured SFC, and it can capture
the topological information, which is ignored by traditional
methods.

3) Impact of the tradeoff parameters: The tradeoff

parameters will affect the VNF deployment strategy

generated by our method. To make the influence of the

tradeoff parameters more obvious, we randomly select the

computing resources and processing delay of servers in [20,

30, 40]. And we set the large available computing resources

and processing delay for two of the servers. For the physical

links, the transmission delay is randomly selected in [5, 10,

15]. We use SFCs with 7-10 VNFs to test the impact of the

tradeoff parameters. We set two extreme tradeoff parameters,

e1=0.95, e2=0.05 and e1=0.05,e2=0.95. The results are shown

in TABLE Ⅱ.
Compared with e1=0.95 and e2=0.05, the number of

working servers is 86.7% higher when e1=0.05 and e2=0.95,
and the end-to-end delay is 59.03% lower. When e1> e2, the
method will generate a strategy with lower energy
consumption. Otherwise, the method will pay more attention
to the end-to-end delay. When the tradeoff parameter of one
indicator is significantly smaller than the other, the change of
this indicator has little impact on the optimization objective,
and the change of the other will significantly change the
optimization objective. The results show that our selected
optimization objective is effective. Since, our method can
balance the energy consumption and the end-to-end delay
according to the needs of different scenarios.

VI. CONCLUSION

In this paper, we define the SFC problem with objective of
joint energy consumption and delay as a COP. We propose a
VNF deployment method based on GNN and DRL. GCN is
adopted to extract the information of the graph-structured SFC
input and represent the Q network in DDQN. We introduce
the mask mechanism to deal with the resources constraints in
COP. The experimental results show that our proposal could
efficiently deal with unseen SFC graphs without redesigning
and training, and achieves better performances than greedy
method and traditional DDQN.

TABLE II. TEST RESULTS OF TRADEOFF PARAMETERS

tradeoff parameters working servers end-to-end delay

e1=0.05, e2=0.95 4.07 319.85
e1=0.95, e2=0.05 2.18 780.70

ACKNOWLEDGMENT

This research was supported by the National Key Research
and Development Program of China (2020YFF0305400) and
the International Research Cooperation Seed Fund of Beijing
University of Technology (No. 2021B02).

REFERENCES

[1] I. Alam et al., "A survey of network virtualization techniques for

internet of things using sdn and nfv," ACM Computing Surveys
(CSUR), vol. 53, no. 2, pp. 1-40, 2020.

[2] O. Vinyals, M. Fortunato, and N. Jaitly, "Pointer networks," arXiv
preprint arXiv:1506.03134, 2015.

[3] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev,
"Reinforcement learning for combinatorial optimization: A survey,"
Computers & Operations Research, p. 105400, 2021.

[4] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, "Neural
combinatorial optimization with reinforcement learning," arXiv
preprint arXiv:1611.09940, 2016.

[5] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M.
Rousseau, "Learning heuristics for the tsp by policy gradient," in
International conference on the integration of constraint programming,
artificial intelligence, and operations research, 2018: Springer, pp. 170-
181.

[6] J. Li, W. Shi, N. Zhang, and X. Shen, "Delay-aware VNF scheduling:
A reinforcement learning approach with variable action set," IEEE
Transactions on Cognitive Communications and Networking, 2020.

[7] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and F.
Liberal, "Virtual network function placement optimization with deep
reinforcement learning," IEEE Journal on Selected Areas in
Communications, vol. 38, no. 2, pp. 292-303, 2019.

[8] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, "Learning
combinatorial optimization algorithms over graphs," arXiv preprint
arXiv:1704.01665, 2017.

[9] Q. Ma, S. Ge, D. He, D. Thaker, and I. Drori, "Combinatorial
optimization by graph pointer networks and hierarchical reinforcement
learning," arXiv preprint arXiv:1911.04936, 2019.

[10] H.-G. Kim et al., "Graph neural network-based virtual network function
management," in 2020 21st Asia-Pacific Network Operations and
Management Symposium (APNOMS), 2020: IEEE, pp. 13-18.

[11] F. Habibi, M. Dolati, A. Khonsari, and M. Ghaderi, "Accelerating
Virtual Network Embedding with Graph Neural Networks," in 2020
16th International Conference on Network and Service Management
(CNSM), 2020: IEEE, pp. 1-9.

[12] D. Heo, D. Lee, H.-G. Kim, S. Park, and H. Choi, "Reinforcement
Learning of Graph Neural Networks for Service Function Chaining,"
arXiv preprint arXiv:2011.08406, 2020.

[13] P. Sun, J. Lan, J. Li, Z. Guo, and Y. Hu, "Combining Deep
Reinforcement Learning With Graph Neural Networks for Optimal
VNF Placement," IEEE Communications Letters, 2020.

[14] A. Rkhami, T. A. Q. Pham, Y. Hadjadj-Aoul, A. Outtagarts, and G.
Rubino, "On the Use of Graph Neural Networks for Virtual Network
Embedding," in 2020 International Symposium on Networks,
Computers and Communications (ISNCC), 2020: IEEE, pp. 1-6.

