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Abstract—Hashing technology has gained much attention in 

protecting the biometric template lately. For instance, 

Index-of-Max (IoM), a recently reported hashing technique, is a 

ranking-based locality sensitive hashing technique, which 

illustrates the feasibility to protect the ordered and fixed-length 

biometric template. However, biometric templates are not always 

in the form of ordered and fixed-length. Rather, it may be an 

unordered and variable size point set, e.g., fingerprint minutiae, 

which restricts the usage of the traditional hashing technology. In 

this paper, we propose a generalized version of IoM hashing, 

namely gIoM, to enable the utilization of unordered and variable 

size biometric template. We demonstrate a realization by using a 

well-known variable size feature vector - fingerprint Minutia 

Cylinder-Code (MCC). The gIoM transforms MCC into index 

domain to form indexing-based feature representation. 

Consequently, the inversion of MCC from the transformed 

representation is computational infeasible, thus achieving 

non-invertibility while the performance is preserved. Public 

fingerprint databases FVC2002 and FVC2004 are employed for 

experiments. Furthermore, the security and privacy analysis 

suggest that gIoM meets the criteria of template protection, 

namely, non-invertibility, revocability, and non-linkability. 

I. INTRODUCTION 

Biometric Template Protection (BTP) is one of the crucial 

features in security and privacy protection for various 

biometric authentication and identification systems. Unlike 

password or tokens, biometric data strongly links with identity. 

When the biometric data is compromised, the leakage of the 

original biometric data is inevitable, which leads to privacy 

invasion. Therefore, biometric-based recognition systems with 

template protection are highly desirable. The idea of biometric 

template protection is to transform an unprotected template 

into a protected template so that attackers cannot recover the 

raw biometric data from the protected template. In the event of 

template compromise, a new template can be re-generated 

from the identical biometric source to replace the compromised 

one. To address this problem, many techniques have been 

reported. Generally, those techniques can be classified into two 

groups: feature transformation (or cancellable biometrics) 

and biometric cryptosystem [1]. Based on the characteristics of 

the transformation function used in feature transformation, this 

scheme can be further sub-categorized as salting and 

non-invertible transforms. Salting scheme refers that it 

concatenates a random key r with a secret key k, then stores the 

hash H(r+k) in the database, where H(·) is a hashing function. 

In biometric salting, a user-specific and independent key such 

as password or random numbers is integrated with biometric 

data to generate a warped biometric template. On the other 

hand, one-way function is employed in non-invertible 

transformation schemes, thus it is computationally infeasible to 

retrieve original data even if any parameter of the 

transformation is revealed. In biometric cryptosystem scheme, 

there are mainly two approaches, namely, (a) generating a key 

from the biometric feature data (key generation), or (b) 

securing a key using biometric feature (key binding).  

Among biometric traits, fingerprint is one of the most 

widely used and studied traits due to its long history of 

development, convenience in use and life-long sustainable 

patterns [2]. Although many fingerprint template protection 

schemes based on feature transformation have been proposed, 

it is still unsatisfactory to achieve a balance between 

performance and security. To design a good template 

protection scheme, the following criteria should be met: 

• Non-invertibility or Irreversibility: It should be infeasible 

to retrieve the original biometric data, such as fingerprint 

minutiae points, from one single biometric template or 

multiple biometric templates. When the biometric template is 

compromised or stolen, the attacker cannot reconstruct the 

original feature based on the leaked template. 

• Revocability or Renewability: It should be easy to issue a 

new protected template to replace the compromised one, and 

this also means it should be feasible to generate a very large 

number of protected templates from one original biometric 

template. 

• Non-linkability or Unlinkability: It should be impossible to 

infer any information by matching two protected templates 

from two different applications. When multiple biometric 

databases are compromised, it should be infeasible for 

attackers to do the cross-match between different databases 

and retrieve the links between same individual. 

• Performance preservation. The employing of template 

protection techniques should preserve the matching accuracy 

performance when compared to that of before-transformed 

counterparts.  

The rest of the paper is organized as follows. First, literature 

review is carried out in Section II. In Section III, the 

motivations and contributions of the paper are highlighted. In 

Section IV, the relevant background knowledge is presented. 

Our proposed gIoM hashing scheme is described in Section V. 

Next, the experimental results are given in Section VI, 

supported by the performance analysis. In Section VII, security, 



privacy and revocability analysis are conducted. Finally, 

Section VIII concludes this paper. 

II. LITERATURE REVIEW 

Over the last two decades, different template protection 

schemes have been proposed, and some review and survey 

papers already cover a comprehensive overview on this topic 

[1], [3], [4]. In this paper we focus on non-invertible feature 

transformation. A classification in the category of 

non-invertible feature transformation is proposed, namely 

Generic Hashing (GH) and Modality-Dependent hashing 

(MDH) according to the biometric modality to which the 

transformation can apply. GH is an independent biometric 

modality which can be apply to all biometric traits, including 

fingerprint, iris and face. On the other hand, MDH is 

dependent on the biometric modality, which can only be 

applied to certain biometric traits. 

A. Generic Hashing 

Random Projection (RP) is a well-known generic 

transformation [5], [6]. RP is a process of projecting feature 

vector from n dimension to m ( 𝑛 ≫ 𝑚 ) dimension in 

Euclidean space by random matrices. The theory of distance 

preservation for RP is proven by Johnson-Lindenstrauss 

lemma (J-L lemma) [7].  

J-L lemma: Given any positive integer p, a positive number 

𝑘 >  4 ln(𝑝) /(
ɛ2

2
−

ɛ3

3
) for 0 < ɛ < 1, and a set X of p points 

in ℝ𝑑, there is a linear map ƒ ∶  ℝ𝑑  → ℝ𝑘, for all vector 

𝒖, 𝒗 ∈ 𝑿, such that 

(1 − ɛ)‖ 𝒖 − 𝒗‖2 ≤ ‖ ƒ(𝒖) −  ƒ(𝒗)‖2

≤ (1 + ɛ)‖ 𝒖 − 𝒗‖2 
(1) 

J-L lemma proves that points from high-dimensional can be 

embed into low-dimensional Euclidean space in a way that 

relative distances among the points are approximately 

preserved. One of the proved projection ƒ  is orthogonal 

projection matrix proposed in [8], [9]. Firstly, a 𝑛 × 𝑚 

random matrix is generated, and then Gram-Schmidt 

orthogonalization is performed to generate a Matrix 𝑹 ∈
ℝ𝑛×𝑚 . Finally, a feature vector 𝒙 ∈ ℝ𝑛  is projected onto 

𝒚 ∈ ℝ𝑚 as follows: 

𝒚 = √
𝑛

𝑚
𝑹𝑇𝒙 (2) 

RP is an effective dimension reduction method when 𝑚 < 𝑛. 

In the process of Gram-Schmidt orthogonalization, the input 

vector needs to be linearly independent, but the generated 

randomly matrix does not meet this requirement. In [10], [11], 

the authors suggested that the RP matrix can be generated 

from Gaussian distributed sequences, and also proved that the 

generated matrix R with Gaussian distribution has the 

characteristic of orthogonality.  

One typical application of RP is for iris [6], in this scheme, 

Gabor features are generated from iris image. Random 

projections are then applied to sectored iris feature vector, and 

the projected outcomes are concatenated to form a cancelable 

template. Even if the transformed template and the key are 

compromised, the original iris data cannot be retrieved thanks 

to the dimensionality reduction caused by Random Projection.  

BioHashing [12], [13], a well-known scheme of salting 

based generic cancelable biometrics scheme, can be seen as an 

extension of random projections. In BioHashing, biometric 

feature 𝒙 ∈ ℝ𝑁 is extracted from the raw biometric data by a 

feature extraction method such as wavelet transform. Then n 

orthogonal pseudo-random vectors 𝒃𝑖 ∈ ℝ𝑁, 𝑖 = 1, … , 𝑛 (𝑛 ≤
𝑁)  are generated with user-specific tokenized random 

number (TRN). The inner products are calculated between 

user specific pseudo-random vectors and the biometric feature 

vector. At last, the n bit BioHash code 𝒄 is computed as: 

𝒄 = Sgn (∑ 𝒙𝒃𝑖 − 𝜏) (3) 

where Sgn(∙)  is a signum function and 𝜏  is a threshold 

determined empirically. The similarity between BioHash 

codes is calculated by Hamming distance. When a template is 

compromised, a new template can be generated by the same 

biometric feature vector and newly generated pseudo-random 

numbers. BioHashing can be applied on fingerprint [12], [14], 

iris [15], and face [13]. However, BioHashing and its variants 

operate under the assumption that the pseudo-random numbers 

would never be lost, stolen, shared or duplicated, which cannot 

be guaranteed in general. The performance of BioHashing will 

degrade dramatically under key-stolen scenario [16]. 

Another generic transformation based on Bloom filters is 

reported recently. This scheme has been applied to different 

popular biometric modalities including iris, face, and 

fingerprint [17]–[21]. The chief idea of this scheme is 

mapping biometric features to a bit array called Bloom filter, 

with several independent hashing functions. Normally a 

Bloom filter b is a bit-array 𝑏 ∈ [0,1]𝑛, all set to 0 initially. 

To embed a data set S in a Bloom filter, k (k ≪  n) 

pre-defined independent hash functions (denoted by 

ℎ1, ℎ2, … , ℎ𝑘 ) are applied to each element of S, where k 

indices will be derived from each element. Then, all k indices 

of bit-array b are set to unity. In the case that a hash function 

ℎ(. ) maps to index of 𝑏 that its value has already been set to 

unity, it simply ignores and proceed. Given a query element 

𝑦, if all position ℎ𝑖(𝑦) in b are set as 1, 𝑦 can be decided to 

be an element of 𝑺, otherwise 𝑦 is not a member of 𝑺. One 

application of Bloom filter on iris is proposed in [21], where 

the binary iriscode is divided into nBlcoks blocks with 

𝑛𝐵𝑖𝑡𝑠 × 𝑛𝑊𝑜𝑟𝑑𝑠 bits. A 2𝑛𝐵𝑖𝑡𝑠 -length Bloom filter b is 

computed for each such block. Finally, the protected template 

is composed of nBlcoks of Bloom filters. In [20], a fingerprint 

template protection scheme based on Bloom filter is reported. 

To generate a protected template, the fingerprint original 

template is firstly aligned by searching a reference point,  

then a N×M-bit binary matrix representation is generated 

according [22]. Finally a set of Bloom filter is built as in [21]. 

However, the security and privacy issue of the Bloom filter 

remains unresolved. For instance, a simple yet effective attack 

scheme that matches two template generated from the same 

IrisCode by different secret bit vectors, is proposed in [23] to 

break the criteria of non-linkability with a probability of 

≥96%. In addition, a security analysis on generating false 



positives or recovering the key is presented: the attack 

complexity is 225 for generating false positives for the smaller 

versions of the scheme, and a complexity between 22 and 28 

for recovering the secret key. It is possible to fix the above 

issues by using non-linear and non-invertible hashing 

functions instead of linear mapping function, but this will 

degrade the efficiency of the scheme undesirably. 

Index-of-Max (IoM), a newly proposed hashing method, is 

a ranking-based locality sensitive hashing inspired two-factor 

template protection technique [24]. In IoM scheme, Gaussian 

random matrices 𝑾 is firstly generated, then the product of 

matrices 𝑾 and feature vector 𝒙 is computed as 𝒙, and 

finally the index of the max value in 𝒙 is recorded as the 

hashed code. Thus, IoM transforms features from real value 

domain into index domain, and it strongly conceals the 

original biometric data. Based on the IoM concept, the 

authors in [24] proposed Gaussian random projection-based 

and uniformly random permutation-based hashing schemes, 

which exhibited superior performance on public benchmarks. 

However, IoM can only take fixed-length feature vector as 

input, which limits its application to variable size feature 

vector such as fingerprint minutiae point set.  

B. Modality-Dependent Hashing 

Since we implement our scheme and analyze fingerprint in 

this paper, we will only focus on fingerprint, which is also 

one of the most popular biometric modalities of all time. 

Cappelli et al. proposed a state-of-art representation called 

Minutia Cylinder-Code (MCC) for fingerprint [25]. MCC is 

based on a 3D data structure called cylinder, which is created 

around each minutia point of the fingerprint. The cylinder is 

discretized into small cells and the contribution value of each 

minutia towards the cell is calculated by its position and 

orientation distance from the center of the cell. Since each 

cylinder is built based on fixed-radius cycle, it tolerates 

missing and spurious minutiae effectively. The use of smooth 

function enables it to tolerate the local distortion and small 

feature extraction errors. However, Ferrara et al. proposed a 

reconstruction strategy for MCC, and their work shows that 

the original MCC feature is invertible [26]. To strengthen the 

non-invertible property of MCC, a non-invertible MCC 

(P-MCC) based on dimensionality reduction and binarization 

is proposed in [26]. However, the revocability is not 

addressed in P-MCC scheme. An revocable version of 

P-MCC based on two-factor protection scheme, namely 

2P-MCC, is proposed by Ferrara et al. [27]. In this scheme, a 

subset of the original bits is selected and scrambled according 

to a secret key, thus generating a new two-factor protected 

template. However, MCC is designed based on fingerprint 

point sets, therefore it is limited to fingerprint application, 

while other biometrics such as iris, face are infeasible to 

employ this technique. 

 The spectral minutiae representation proposed by Xu et al. 

is a fixed-length representation for fingerprint [28]–[30]. 

Based on the shift, scale and rotation properties of the 

two-dimensional continuous Fourier transform, the spectral 

minutiae representation is designed to be robust against 

translation, and rotation-scaling. In the spectral minutiae 

representation scheme, the fingerprint minutiae are 

represented as a magnitude spectrum, and it is transformed 

into a fixed-length feature vector, which is registration-free. 

However, despite the nice fixed-length characteristic, spectral 

minutiae representation is limited to point set based feature 

representation (e.g. minutiae data), and the accuracy is 

inferior in comparison to the state-of-art.  

III. MOTIVATIONS AND CONTRIBUTIONS  

As discussed above, biometric hashing techniques have 

some limitations, including: 

⚫ Some hashing techniques are vulnerable to certain attacks, 

for example, under genuine-token and stolen-token 

scenarios, the accuracy performance of BioHashing will 

deteriorate dramatically. 

⚫ Some hashing techniques are limited to certain biometric 

modalities.  The state-of-art fingerprint minutiae protection 

schemes (e.g. P-MCC, 2P-MCC) are limited to point set 

feature data. 

⚫ The newly proposed IoM hashing scheme is limited to 

fixed-length feature vector, which cannot be applied to 

variable size feature vector. 

With aforementioned discussions, we propose a generalized 

IoM based cancelable biometric scheme, namely gIoM which 

is inspired by IoM and random maxout features in machine 

learning study. This generalized IoM hashing transforms 

real-valued vector into index representation and strongly 

protects the original biometric data. Simultaneously, it can 

apply to different biometric modalities such as fingerprint, iris, 

and face features. In this paper, we demonstrate gIoM in 

fingerprint feature vector generated by a state-of-art MCC 

technique. 

The main contributions of this paper are as follows: 

1) A generalized hashing technique based on IoM is 

proposed and a realization on fingerprint MCC 

representation is implemented. 

2) A full analysis of the security and privacy of gIoM 

hashing are presented. 

IV.  PRELIMINARIES 

In this section we briefly introduce the random maxout 

features (RMF) [31] and then followed by a brief introduction 

of IoM, from which the proposed gIoM is extended. 

A. Random Maxout Features 

In random maxout features scheme [31], Gaussian element 

vectors are first generated randomly, then the input data is 

projected to vectors of Gaussian elements, and the maximum 

value of each projected sets is collected. 

Let 𝒘𝑗
𝑖 , 𝑖 = 1 … 𝑚, 𝑗 = 1 … 𝑞 , be independent random 

Gaussian vectors, drawn from ℕ(0, 𝐼𝑑), and denote 𝑾𝑖 =

(𝒘1
𝑖 … 𝒘𝑞

𝑖 ). For 𝒙 ∈ ℝ𝑑 , denoted 𝜑𝑖(𝒙)  as one maxout 

random unit:  

𝜑𝑖(𝐱) = max
𝑗=1…𝑞

< 𝒘𝑗
𝑖 , 𝒙 > , 𝑖 = 1 … 𝑚. (4) 

Finally, RMF vector is generated by collecting all maxout  



random units: 

B. Index of Max Hashing 

There are two realizations of IoM in [24], namely, Gaussian 

random based projection (GRP) and Uniform random based 

permutation (URP). Since our approach is mainly derived from 

GRP, we only introduce Gaussian random based IoM in this 

paper. In Gaussian random based approach, 𝑞  Gaussian 

random vectors are firstly generated 𝑚 times, {𝒘𝑗
𝑖 ∈ ℝ𝑑|𝑖 =

1, … , 𝑚, 𝑗 = 1, … , 𝑞}~ℕ(0, 𝐼𝑑) , and a random Gaussian 

projection matrix can be denoted as: 𝑊𝑖 = [𝒘1
𝑖 , … 𝒘𝑞

𝑖 ], 𝑖 =

1, … 𝑚. Given a feature vector 𝒙 ∈ ℝ𝑑 , record the m indices of 

the maximum value computed from (4) as ℎ𝑖 . Finally, the 

hashed code is a collection of ℎ𝑖, and denote it as 𝒉 = {ℎ𝑖|𝑖 =
1, … 𝑚}. 

V. METHODOLOGY 

We employ a well-known variable size feature vector, 

fingerprint Minutia Cylinder-Code (MCC) [25] as an input to 

demonstrate its realization. The detailed construction of MCC 

can be found in [25]. In this paper, MCC SDK2.0 is employed 

to generate the MCC templates. For each fingerprint MCC 

template, we extract each minutiae point’s cylinder code and 

denote it as 𝒄𝑘. Let 𝑪 =  {𝒄𝑘|𝑘 = 1, … 𝑁} be a set of cylinder 

vectors of one MCC template, and let N denotes the total 

number of minutiae points. Then the realization of gIoM is 

provided, followed by a matcher for the transformed vector. 

The process is depicted in Fig.1. 

A.  gIoM Hashing 

The proposed gIoM Hashing can be summarized into two 

steps as follows: 

1) Generate q number of Gaussian random projection vectors 

m times, denoted by {𝒘𝑗
𝑖 ∈ ℝ𝑑|𝑖 =  1 . . . , 𝑚, 𝑗 =

 1, . . . , 𝑞} ~ ℕ(0, 𝐼𝑑), and construct m number of Gaussian 

projection matrix 𝑾𝑖  =  [𝒘1
𝑖 , 𝒘2

𝑖 … 𝒘𝑞
𝑖 ]. 

2) For each cylinder vector 𝒄𝑘 in C, calculate the index of 

maximum value: 

�̂�𝑖(𝒄𝑘) = arg max
𝑗=1…𝑞

< 𝒘𝑗
𝑖 , 𝒄𝑘 > (6) 

Denote the index number �̂�𝑖(𝒄𝑘) as ℎ𝑘
𝑖 , and repeat this 

calculation m times. The gIoM hashed code of cylinder vector 

set C is recorded as 𝒉 = {ℎ𝑘
𝑖 ∈ [1, 𝑞]|𝑖 = 1, … 𝑚}.  

Despite gIoM is an extended version of IoM, the iterative 

process presented in Step 2 of Algorithm 1 and the matching 

strategy differ from the original IoM in two major aspects: 

1) Feature Input - gIoM accepts a variable-size feature 

matrix while IoM only processes the globally fixed-length 

feature vector. 

2) Matching - Local Greedy Similarity (LGS) approach 

employed in gIoM while rank correlation measurement is 

adopted in IoM. 

The pseudo-code of gIoM Hashing is given in Algorithm 1. 

 

Algorithm 1 gIoM Hashing 

Input:  

C: a set of MCC cylinder vectors of one individual 

𝑚: number of Gaussian random matrices 

𝑞: number of Gaussian random projection vector 

Do:  

Step.1: Generate q number of Gaussian random projection 

vectors m times 

Step.2: Perform gIoM Hashing 

% For each cylinder in one MCC cylinder feature vector set 

For k = 1: N   % N is the total number of minutiae points  

     Initialize ℎ𝑘
𝑖  hashed code with 0. 

     For 𝑖 = 1: 𝑚   % perform m times projection 

           % calculate the projected vector and  

               % find the max values’ index 

  �̂�𝑖(𝒄𝑘) = arg max
𝑗=1…𝑞

< 𝒘𝑗
𝑖 , 𝒄𝑘 >  

       ℎ𝑘
𝑖 = �̂�𝑖(𝒄𝑘) % k is kth point 

     End For 

End For 

Output:   

Hashed code 𝒉 = {ℎ𝑘
𝑖 ∈ [1, 𝑞]|𝑖 = 1, … 𝑚} 

 

B.  Matching of gIoM Hashed Codes 

The gIoM hashing can preserve the relative distance in the 

transformed domain by converting real-value vector into 

indexing-based vector. To compare the similarity of two 

protected templates, we employ the Local Greedy Similarity 

(LGS) approach [32] to measure the similarity between 

different templates. The main idea of LGS considering two 

hashed code ℎ𝐴 and ℎ𝐵 is to compute the similarity score 

by averaging the matching scores of the top 𝑛𝑝 pairs with the 

highest scores. Specifically, the hashed code of each point is 

compared with another one from different sample using 

Euclidean distance, thus resulting in a score metric. Then, this 

score metric is sorted in ascending order, and the average 

score is computed among the top 𝑛𝑝 of the score defined in 

[25]. Specifically, 𝑛𝑝 is computed below according to [25]: 

𝑛𝑝 = 𝑚𝑖𝑛𝑛𝑝
+ ⌈(𝑍(min{𝑛𝐴, 𝑛𝐵} , 𝜇𝑃 , 𝜏𝑃)) ∙ (𝑚𝑎𝑥𝑛𝑝

− 𝑚𝑖𝑛𝑛𝑝
)⌋ 

(7) 

where 𝑚𝑖𝑛𝑛𝑝
, 𝑚𝑎𝑥𝑛𝑝

, 𝜇𝑃 and 𝜏𝑃  are parameters, set as the 

default values as in [25]. 𝑛𝐴 and 𝑛𝐵 are the total number of 

Φ(𝒙) =
1

√𝑚
[𝜑1(𝒙) … 𝜑𝑚(𝒙)] ∈ ℝ𝑚 (5) 

 
Fig.1. The process flow of the proposed gIoM Hashing. 
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minutiae points of two MCC template, and Z is a sigmoid 

function: 𝑍(𝑣, 𝜇, 𝜏) =
1

1+𝑒−𝜏(𝑣−𝜇). 

VI. EXPERIMENTS AND DISCUSSIONS 

In this paper, MCC is adopted with the default parameters 

as in [25], thus the length of real value cylinder code vector is 

16 × 16 × 6 =  1536 . MCC template mainly consists of 

𝑥, 𝑦 coordinates (in pixels), the direction 𝜃 and cylinder cell 

values about each minutia. Although in the MCC scheme 

the 𝑥, 𝑦 coordinates and direction 𝜃 play important roles in 

the matching process, we only use the cylinder cell values 

since the main goal is to secure the biometric data. 

Two public fingerprint databases, namely FVC2002 (DB1, 

DB2, DB3) and FVC2004 (DB1, DB2, DB3), are used for 

evaluation. For FVC2002 and FVC2004, each dataset consists 

of 100 users with 8 samples per user. In this paper, the 

accuracy performance is measured by Equal Error Rate (EER) 

based on the FVC2004 testing protocol: 

⚫ Each sample in the subset A is matched against the 

remaining samples of the same finger to compute the False 

Non-Match Rate (FNMR). If template g is matched to h, 

the symmetric match (i.e., h against g) is not executed to 

avoid correlation in the scores, and the scores is collected 

as genuine match score. 

⚫ The first sample of each finger in the subset A is matched 

against the first sample of the remaining fingers in A to 

compute the False Match Rate (FMR). If template g is 

matched against h, the symmetric match (i.e., h against g) is 

not executed to avoid correlation in the scores, and the 

scores is collected as imposter match score.  

A. Parameters Optimization 

There are mainly two parameters in this scheme, i.e., 

𝑚 Gaussian random matrices, and 𝑞  dimension of the 

random vector. We investigate the effect of m and q with 

respect to EER. In this experiment, 𝑚 ∈
{5, 10, 50, 100, 150, 200, 250, 300, 500, 700}  and 𝑞 ∈
 {5, 10, 50, 100, 150, 200, 250, 300}  are considered. The 

average EER under different combination of q and m is 

recorded and showed in Fig. 3. Specifically, EER under 

different m when 𝑞 =  100 showed in Fig. 2.  

Fig. 3 suggests that the EER levels off when q changes 

from 50 to 300, and there is no significant difference for EER 

under different value of m. In other words, if we set m with a 

large number, q can be a small number without degrading the 

EER, which allows saving on storage and computation time.   

However, m is strongly correlated with EER. When 𝑞 =
 100, a better EER can be obtained when m increases, and EER 

stabilizes when m is sufficiently large. This is because a larger 

m can produce redundant hashed codes, while a small m may 

lead to discriminative information loss and the hash code will 

be dominated by random noise under this condition. 

B. Performance Evaluation 

Table I tabulates the EERs of the proposed method along 

with the existing methods. The EERs are calculated by taking 

the average of EERs repeated for three times with 𝑚 = 700, 

and 𝑞 = 100. We observe that 2P-MCC (a cancelable version 

of MCC) outperforms others in most cases. However, 2P-MCC 

is specifically designed for MCC representation and cannot be 

applied to different biometric feature representations. On the 

other hand, the proposed method can, in general, achieve 

comparable accuracy when compared to the existing methods. 

Furthermore, the generalized property allows the proposed 

method to be utilized in any forms of biometric representation. 

Moreover, our method exceeds Bloom filter-based approach 

thanks to the distance preservation property offered by the 

proposed method. It is noteworthy that both [14] and [22] 

report the results based on a fraction of the database (e.g., only 

2nd, 3rd and 6th samples in FVC2002 DB1&2 used in [14]) 

while the proposed method strictly follows the FVC protocol, 

where all 8 samples are utilized. Therefore, the accuracy 

performance can be justified based on the above observations. 
TABLE I. Performance Accuracy (EER) and Comparison 

 

Methods 

EER (%) for 

FVC2002 

EER (%) for 

FVC2004 

DB1 DB2 DB3 DB1 DB2 DB3 

2P-MCC64,64[27] 3.3 1.8 7.8 6.3 - - 

2P-MCC64,48[27] 4.6 2.5 9.9 8.4 - - 

Spectral Minutiae[28] - 3.2 - - - - 

Bloom Filter[20]1 8 4.8 - - - - 

Teoh et al. [12] 15 15 27 - - - 

gIoM Hashing 3.66 2.7 7.79 10.5 11.34 8.57 

VII. SECURITY AND PRIVACY ANALYSIS 

                                                           
1 Average EER from different finger samples, namely, avg(3,7,14) and 

avg(0.5,3,11) for DB1 and DB2, respectively. 

 
 

Fig. 2. The curves of EER vs m-Gaussian random matrices on FVC2002 

(DB1-3), FVC2004 (DB1-3) when q=100. 
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A.  Non-Invertibility 

As stated in Section I, it should be infeasible to compute and 

restore the original fingerprint MCC vector from gIoM hashed 

code, with or without the Gaussian random matrices. 

Intuitively, gIoM hashed code is a collection of discrete 

indices, hence there is no way for an attacker to restore the 

original feature vector. When the attacker knows the token 𝑾 

(Gaussian random matrix), he/she can try to retrieve the 

original input by solving multivariable linear inequalities. 

Following we provide two case studies to evaluate the 

non-invertibility of gIoM hashing. 

Case 1: 𝒎 equals to the dimension of feature vector 𝒙. 

Let feature vector 𝒙 = [0.8 0.1 0.7], 𝑚 = 3, 𝑞 = 2, random 

projection matrix W = [𝑾1 𝑾2 𝑾3 ], where 

𝑾1 = {
0.2 −0.4

−0.6 −0.1
0.4 0.9

}, 

𝑾2 = {
0.3 0.7
0.3 −0.3

−0.1 0.5
}, 

𝑾3 = {
0.1 −0.4
0.2 −0.6
0.7 0.1

} . 

The gIoM hashed code is generated as: 

𝒙 × 𝑾1 = [0.38       0.30],  ℎ1 = 1; 
𝒙 × 𝑾2 = [0.20       0.88],  ℎ2 = 2; 
𝒙 × 𝑾3 = [0.59 − 0.31],  ℎ3 = 1. 

(8) 

Thus, the hashed code is ℎ = [1 2 1]. To restore the original 

vector 𝒙 = [𝑥1 𝑥2 𝑥3] , assume the attacker knows 𝑾 , and 

he/she can formulate the following inequalities: 

0.2𝑥1 − 0.6𝑥2 + 0.4𝑥3 > −0.4𝑥1 − 0.1𝑥2 + 0.9𝑥3 

0.3𝑥1 + 0.3𝑥2 − 0.1𝑥3 < 0.7𝑥1 − 0.3𝑥2 + 0.5𝑥3 
0.1𝑥1 + 0.2𝑥2 + 0.7𝑥3 > −0.4𝑥1 − 0.6𝑥2 + 0.1𝑥3 

(9) 

which simplifies to the following: 

𝑥1 > 0, −
𝑥1

14
< 𝑥2 ≤

14𝑥1

15
, 

1

3
(3𝑥2 − 2𝑥1) < 𝑥3 <

1

5
(6𝑥1 − 5𝑥2) 

(10) 

With (10), although an attacker cannot determine the exact 

original vector, he/she can approximate the feature vector by 

randomly setting 𝑥1  with a value and calculate other 

variables according to (10). The forged vector can be hashed 

to the same hash code since its ordinal is identical to 𝒙. This 

suggests that if an attacker can get enough inequalities he/she 

can plausibly break the system under the situation of case 1. 

More specifically, if m is large enough (such as 𝑚 ≥ 𝑑 , 

where d is the dimension of 𝒙) it can be feasible to retrieve 

the ordinal information of the original vector. Thus, a vector 

which can be hashed to identical hash codes by gIoM, can be 

forged.  

Case 2: 𝒎 is smaller than the dimension of feature vector 

𝒙. Let the feature vector = [0.8 0.1 0.7 0.5], 𝑚 =  2, 𝑞 =  2, 

random projection matrix W = [𝑾1 𝑾2 ], 

𝑾1 = {

0.2 −0.4
−0.6 −0.1
0.4 0.9
0.9        0.5

}, 

𝑾2 = {

0.3 0.7
0.3 −0.3

−0.1 0.5
0.4        0.1

}. 

The gIoM hashed code is ℎ = [1 2]. Let 𝒙 = [𝑥1 𝑥2 𝑥3 𝑥4], 
and formulate the following inequalities: 

0.2𝑥1 − 0.6𝑥2 + 0.4𝑥3 + 0.9𝑥4 > 

−0.4𝑥1 − 0.1𝑥2 + 0.9𝑥3 + 0.5𝑥4 

0.3𝑥1 + 0.3𝑥2 − 0.1𝑥3 + 0.4𝑥4 < 

0.7𝑥1 − 0.3𝑥2 + 0.5𝑥3 + 0.1𝑥4 

(11) 

which simplifies to the following: 

𝑥2 <
9𝑥4 + 56𝑥1

60
, 

3𝑥4 − 4𝑥1 + 6𝑥2

6
< 𝑥3 <

4𝑥4 + 6𝑥1 − 5𝑥2

5
 

(12) 

 

Under this case, even the attacker can learn the relationship 

among 𝑥1 𝑥2 𝑥3 𝑥4 from (12), it is challenging to decide the 

direct relationship among each variable. Brute force attack is 

still needed to guess the original vector and the relationship. If 

attacker decides to guess the real-value directly, we assume the 

attacker knows well about the input vector. Note that the 

minimum and maximum values of the cylinder cell value are 

0.000 and 1.000, respectively according to the MCC algorithm. 

For one value of the feature vector, it has 104 possibilities, 

since the length of real value MCC cylinder code is of 1536 

dimensions. Consequently, the total possibilities to guess the 

entire original feature vector requires 104×1536 attempts. 

Therefore, even with (12), it is still infeasible to have a clue in 

guessing the original real number. Indeed, when 𝑚 ≪ 𝑑 , 

   
(a) (b) (c) 

Fig.3. The curves of EER (%) vs q on FVC2002 (DB1, DB2) and FVC2004 (DB3) 
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gIoM is an effective dimension reduction method. Therefore, 

it can strongly conceal the original biometric information. 

To sum up, the non-invertibility of gIoM can be ensured 

when m is largely smaller than the dimension of the original 

feature vector, leading to an unsolvable system of inequalities 

as illustrated above. Since the dimension of MCC vector is 

1536 while m is at most 700, the non-invertibility of gIoM is 

ensured. 

B. Non-Linkability 

To validate the requirement of non-linkability, we first 

introduce the Mated-Genuine scores and Non-Mated-Imposter 

scores in this section. The Mated-Genuine score is the 

matching score between two gIoM hashed codes generated 

from the same fingerprint by employing two different Gaussian 

random matrices, while the Non-Mated-Imposter score is 

generated by matching two gIoM hashed codes generated from 

two different fingerprints by employing two different Gaussian 

random matrices.  

In this context, we assume that the attacker: (a) knows well 

about gIoM scheme; (b) is in possession of two gIoM hashed 

codes from different databases or application, and; (c) can 

calculate the matching score between two gIoM hashed codes. 

Under this scenario, if the Non-Mated-Imposter and 

Mated-Genuine score distributions are different, then the 

attacker can easily decide whether two hashed codes are from 

same individual. To prove the non-linkability of gIoM hashing, 

FVC2002 (DB2) is used to test the score distributions. From 

Fig. 4(a), it is clear that Non-Mated-Imposter and 

Mated-Genuine score distributions are overlapped largely, 

which implies that even an attacker can get all matching scores, 

he/she is still unable to decide whether two hashed codes are 

the same individual, thus proving the criteria of non-linkability 

for gIoM hashing. 

C. Revocability  

Once the biometric template in the database is compromised, 

a new protected template should be generated. In the proposed 

gIoM hashing scheme, a new hashed code can be easily 

generated with a new Gaussian random matrix. In real life 

scenario, the Gaussian random matrices are usually 

user-specific for revocability. Therefore, when one user’s 

biometric template is stolen, only this user’s Gaussian random 

matrices needs to be regenerated. To demonstrate the security 

of renewed template, the distributions of Mated-Genuine, 

Genuine and Imposter scores have been evaluated on 

FVC2002 (DB2). To generate Mated-Genuine score, 50 sets 

of Gaussian random matrices are generated for each user’s 

first fingerprint image. Subsequently, 50 Mated-Genuine 

hashing codes are generated using the first fingerprint of each 

user with 50 different Gaussian random matrices. Those 50 

hashing codes are then matched against the original hashing 

codes of this fingerprint to produce 50 Mated-Genuine scores. 

Altogether 100×50=5000 Mated-Genuine scores are collected 

for all 100 users. As observed in Fig.4 (b), the distribution of 

Mated-Genuine is largely overlapped with the distribution of 

imposter scores, which means that there is no difference 

between templates generated by different random matrices on 

the same individual biometric or different individual biometric. 

VIII. CONCLUSIONS 

A generic gIoM hashing algorithm is proposed in this paper. 

We demonstrate a realization of gIoM hashing for fingerprint 

MCC vectors. The accuracy performance of gIoM hashing is 

shown to be preserved theoretically and empirically. gIoM 

hashing is also designed to meet the template protection 

criteria, i.e., non-linkability, revocability and non-invertibility, 

which have been analyzed in this paper.  

Our future work will focus on the output of hashed code, 

where a robust algorithm will be devised to yield fixed-length 

hashed output even the dimension of the input vector is 

variable. Secondly, as a cancelable biometric scheme, gIoM 

hashing can be applied to verification (1 to many) scenario, but 

the application to identification (many to many) still needs 

further investigations. 

REFERENCES 

[1] A. K. Jain, K. Nandakumar, and A. Nagar, “Biometric 

Template Security,” EURASIP J Adv Signal Process, vol. 

2008, pp. 113:1–113:17, Jan. 2008. 

[2] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, 

Handbook of Fingerprint Recognition, 2nd ed. London: 

Springer-Verlag, 2009. 

[3] K. Nandakumar and A. K. Jain, “Biometric Template 

Protection: Bridging the performance gap between 

theory and practice,” IEEE Signal Process. Mag., vol. 32, 

no. 5, pp. 88–100, Sep. 2015. 

[4] V. M. Patel, N. K. Ratha, and R. Chellappa, “Cancelable 

Biometrics: A review,” IEEE Signal Process. Mag., vol. 

32, no. 5, pp. 54–65, Sep. 2015. 

[5] J. K. Pillai, V. M. Patel, R. Chellappa, and N. K. Ratha, 

“Secure and Robust Iris Recognition Using Random 

Projections and Sparse Representations,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 33, no. 9, pp. 1877–

1893, Sep. 2011. 

[6] J. K. Pillai, V. M. Patel, R. Chellappa, and N. K. Ratha, 

“Sectored Random Projections for Cancelable Iris 

Biometrics,” in 2010 IEEE International Conference on 

  

(a) (b) 
Fig.4. (a) Distributions of Mated-Genuine and Non-Mated-Imposter for 

non-linkability analysis. It is infeasible to differentiate two hashed codes 
since the score distribution is overlapping. (b) Distributions of 

Non-Mated-Imposter, Genuine and Imposter for revocability analysis. It is 

infeasible to attack a renewed template with any revoked templates since 
distribution of Non-Mated-Imposter is far from Genuine scores. 

 



Acoustics, Speech and Signal Processing, 2010, pp. 

1838–1841. 

[7] W. B. Johnson and J. Lindenstrauss, “Extensions of 

Lipschitz mappings into a Hilbert space,” in 

Contemporary Mathematics, vol. 26, R. Beals, A. Beck, 

A. Bellow, and A. Hajian, Eds. Providence, Rhode 

Island: American Mathematical Society, 1984, pp. 189–

206. 

[8] S. D. A. Gupta, “An elementary proof of the 

Johnson-Lindenstrauss Lemma,” p. 6. 

[9] P. Frankl and H. Maehara, “The Johnson-Lindenstrauss 

lemma and the sphericity of some graphs,” J. Comb. 

Theory Ser. B, vol. 44, no. 3, pp. 355–362, Jun. 1988. 

[10] D. Achlioptas, “Database-friendly Random Projections,” 

in Proceedings of the Twentieth ACM 

SIGMOD-SIGACT-SIGART Symposium on Principles of 

Database Systems, New York, NY, USA, 2001, pp. 

274–281. 

[11] R. I. Arriaga and S. Vempala, “An algorithmic theory of 

learning: Robust concepts and random projection,” 

Mach. Learn., vol. 63, no. 2, pp. 161–182, May 2006. 

[12] A. T. B. Jin, D. N. C. Ling, and A. Goh, “Biohashing: 

two factor authentication featuring fingerprint data and 

tokenised random number,” Pattern Recognit., vol. 37, 

no. 11, pp. 2245–2255, Nov. 2004. 

[13] A. B. J. Teoh, A. Goh, and D. C. L. Ngo, “Random 

Multispace Quantization as an Analytic Mechanism for 

BioHashing of Biometric and Random Identity Inputs,” 

IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, 

pp. 1892–1901, Dec. 2006. 

[14] B. Yang, D. Hartung, K. Simoens, and C. Busch, 

“Dynamic random projection for biometric template 

protection,” in 2010 Fourth IEEE International 

Conference on Biometrics: Theory, Applications and 

Systems (BTAS), 2010, pp. 1–7. 

[15] C. Siew Chin, A. T. Beng Jin, and D. N. Chek Ling, 

“High security Iris verification system based on random 

secret integration,” Comput. Vis. Image Underst., vol. 

102, no. 2, pp. 169–177, May 2006. 

[16] A. Kong, K.-H. Cheung, D. Zhang, M. Kamel, and J. 

You, “An analysis of BioHashing and its variants,” 

Pattern Recognit., vol. 39, no. 7, pp. 1359–1368, Jul. 

2006. 

[17] C. Rathgeb, F. Breitinger, C. Busch, and H. Baier, “On 

application of bloom filters to iris biometrics,” IET 

Biom., vol. 3, no. 4, pp. 207–218, 2014. 

[18] C. Rathgeb and C. Busch, “Cancelable multi-biometrics: 

Mixing iris-codes based on adaptive bloom filters,” 

Comput. Secur., vol. 42, pp. 1–12, May 2014. 

[19] M. Gomez-Barrero, C. Rathgeb, J. Galbally, J. Fierrez, 

and C. Busch, “Protected Facial Biometric Templates 

Based on Local Gabor Patterns and Adaptive Bloom 

Filters,” in 2014 22nd International Conference on 

Pattern Recognition, 2014, pp. 4483–4488. 

[20] G. Li, B. Yang, C. Rathgeb, and C. Busch, “Towards 

generating protected fingerprint templates based on 

bloom filters,” in 3rd International Workshop on 

Biometrics and Forensics (IWBF 2015), 2015, pp. 1–6. 

[21] C. Rathgeb, F. Breitinger, and C. Busch, 

“Alignment-free cancelable iris biometric templates 

based on adaptive bloom filters,” in 2013 International 

Conference on Biometrics (ICB), 2013, pp. 1–8. 

[22] B. Yang, C. Busch, D. Gafurov, and P. Bours, 

“Renewable Minutiae Templates with Tunable Size and 

Security,” in 2010 20th International Conference on 

Pattern Recognition, 2010, pp. 878–881. 

[23] J. Hermans, B. Mennink, and R. Peeters, “When a 

Bloom filter is a Doom filter: Security assessment of a 

novel iris biometric template protection system,” in 2014 

International Conference of the Biometrics Special 

Interest Group (BIOSIG), 2014, pp. 1–6. 

[24] “Ranking-Based Locality Sensitive Hashing-Enabled 

Cancelable Biometrics: Index-of-Max Hashing - IEEE 

Journals & Magazine.” [Online]. Available: 

https://ieeexplore-ieee-org.ezproxy.lib.monash.edu.au/d

ocument/8038818/. [Accessed: 12-May-2018]. 

[25] R. Cappelli, M. Ferrara, and D. Maltoni, “Minutia 

Cylinder-Code: A New Representation and Matching 

Technique for Fingerprint Recognition,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 32, no. 12, pp. 2128–

2141, Dec. 2010. 

[26] M. Ferrara, D. Maltoni, and R. Cappelli, “Noninvertible 

Minutia Cylinder-Code Representation,” IEEE Trans. 

Inf. Forensics Secur., vol. 7, no. 6, pp. 1727–1737, Dec. 

2012. 

[27] M. Ferrara, D. Maltoni, and R. Cappelli, “A two-factor 

protection scheme for MCC fingerprint templates,” in 

2014 International Conference of the Biometrics Special 

Interest Group (BIOSIG), 2014, pp. 1–8. 

[28] H. Xu, R. N. J. Veldhuis, T. A. M. Kevenaar, A. H. M. 

Akkermans, and A. M. Bazen, “Spectral minutiae: A 

fixed-length representation of a minutiae set,” in 2008 

IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition Workshops, 2008, pp. 1–6. 

[29] H. Xu and R. N. J. Veldhuis, “Binary Representations of 

Fingerprint Spectral Minutiae Features,” in 2010 20th 

International Conference on Pattern Recognition, 2010, 

pp. 1212–1216. 

[30] H. Xu, R. N. J. Veldhuis, A. M. Bazen, T. A. M. 

Kevenaar, T. A. H. M. Akkermans, and B. Gokberk, 

“Fingerprint verification using spectral minutiae 

representations,” IEEE Trans Inf Forensics Secur 2009, 

pp. 397–409. 

[31] “[1506.03705] Random Maxout Features.” [Online]. 

Available: https://arxiv.org/abs/1506.03705. [Accessed: 

11-May-2018]. 

[32] R. Cappelli, M. Ferrara, D. Maltoni, and M. Tistarelli, 

“MCC: A baseline algorithm for fingerprint verification 

in FVC-onGoing,” in 2010 11th International 

Conference on Control Automation Robotics Vision, 

2010, pp. 19–23. 

 


