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Abstract

We present our entry to the 2021 PhysioNet/CinC chal-
lenge — a waveform transformer model to detect cardiac
abnormalities from ECG recordings. We compare the per-
formance of the waveform transformer model on differ-
ent ECG-lead subsets using approximately 88,000 ECG
recordings from six datasets. In the official rankings, team
prna ranked between 9 and 15 on 12, 6, 4, 3 and 2-lead sets
respectively. Our waveform transformer model achieved
an average challenge metric of 0.47 on the held-out test set
across all ECG-lead subsets. Our combined performance
across all leads placed us at rank 11 out of 39 officially
ranking teams.

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of
death globally with an estimated 32% of deaths worldwide
in 2019 [[1]. It is important to detect cardiovascular dis-
eases early so treatments can be provided to mitigate com-
plications. The standard 12-lead ECG has been a popular
choice in the diagnosis of various cardiac abnormalities,
but, more recently subsets of ECG leads have been used
due to their size, cost, performance and ease of use. In
this challenge, we utilize ECG recordings from subsets of
standard 12-lead ECG to evaluate the efficacy of detecting
cardiac abnormalities. The subsets of ECG leads include
12, 6, 4, 3, or 2 leads respectively. The challenge provides
~88K ECG recordings from five training data sources as-
signed to belong to one or more of the 30 cardiac abnor-
malities. More details about this challenge can be found in
[23]].

Prior work has shown deep neural networks to be suc-
cessful in detecting cardiac abnormalities from 12-lead
ECG signals [4]. In this work, we experiment with a wave-
form transformer model which differentially weights dif-
ferent parts of the inputs using an attention mechanism.
This feature is a natural fit to this problem since cardiac
abnormalities tend to be transient in ECG recordings. Our
waveform transformer model is similar to our entry in the
2020 PhysioNet challenge [4]] with some modifications:

1. We remove the embedding network that applied a se-
ries of convolution operations to the input ECG recording
and instead rely on a convolution-free approach where the
input signal is split into smaller segments and fed directly
to a transformer model.

2. We seed the network with pretrained vision trans-
former network weights that have been trained on two-
dimensional still images. We tailor our architecture to al-
low single-dimensional waveform inputs to make use of
these pretrained weights.

We continue to train wide and deep networks that in-
clude 22 static ECG and demographic features, which are
concatenated to the learned deep features of the network.
These 22 features are similar to the ones listed in Table 1
in [4].

2. Methods

2.1. Pre-processing

Recordings from all databases provided by the challenge
organizers [2,|3]], including CPSC [6], INCART [7], PTB
[8], PTB-XL [9], Chapman-Shaoxing [10] and Ningbo
[11]], were used for model training. We first split the data
into 10 folds utilizing multi-label stratification [12]. Each
recording was standardized to a sampling rate of S00Hz.
We apply a finite impulse response bandpass filter with
bandwidth between 3 - 45 Hz. Each recording is also nor-
malized so that each channels’ signal lies within the range
of -1 to +1. We extract random fixed width windows from
each recording across the subset of leads. We set the fixed
width to be 7680 samples (1" = 15.36 seconds), which al-
lows the signal to be split into divisible segments sizes. We
apply zero-padding to the recordings at the end when the
sequence length is less than 7" seconds.

2.2. Waveform Transformer

An overview of the waveform transformer architecture
is shown in Figure[l] Input to the network is a multi-lead
ECG recording (e.g. 12, 6, 4, 3, or 2 leads). The input
ECG recording is first broken up into smaller contiguous
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Figure 1.

Architecture diagram illustrating the Waveform Transformer (Waveformer) for multi-lead, multi-label ECG

classification. Linear projection is used to allow matching of pretrained weights. Wide (static) features can be directly fed

as input to the MLP head. Based upon an original image in [5]).

Hyper-Parameter | Value
Global
ECG window size (secs), T' 15.36
Sampling frequency (Hz) 500
Batch size (train) 128
Batch size (validation) 64
Wide feature size, dqige 22
Deep feature size, dgeep 64
Number of classes, djqss 26
Waveform Transformer
ECG patch size, dpatch 64
Number of encoding layers 12
Embedding size, dodei 768
Number of heads 12
Dimension of feed forward layer | 768
Dropout 0.1
Fully connected layers
FC 1 size 64
FC 2 size 26
Dropout 0.2

Table 1. A listing of hyper-parameters selected to train the
wide and deep neural network model for classification of
cardiac abnormalities.

segments. Each segment undergoes a linear projection to
embed it into a one dimensional vector that captures infor-
mation for that time point in the overall recording. Linear

projection of segments can be handled via a multi-layer
perceptron (MLP) or convolutiorﬂ A sequence of em-
bedded segments are then fed to the transformer encoder.
Positional embedding is used to retain sequence order in-
formation. In addition, an extra learnable class token is
fed to the transformer network that attends to all other to-
kens. The transformer model consists of 12 layers, using
12 attention heads and an embedding dimension of 768.
We rely on pretrained weights of a vision transformer [5]
trained on still image data, and as such, need to ensure the
dimensions of the network match. We chose a base vision
transformer model trained on 16x16 image patches with an
embedding dimension of 768. To make a final prediction,
the learnable class embedding is sent as input into an MLP
head consisting of two linear layers. Static (wide) features
are concatenated to the final linear layer of the network
and a sigmoid operation is applied to make binary predic-
tions about 26 classesﬂ Tableprovides details on model
architecture, settings and hyper-parameters used in our ex-
periments. All models were trained using PyTorch using
base models and pretrained weights from PyTorch Image

Models

1 Making the approach almost convolution-free.
2Equivalent classes are combined, reducing 30 classes to 26.



| Leads | Training Set | Validation Set | Test Set | Official Ranking |

12 0.675 £+ 0.023 0.58
6 0.658 + 0.026 0.55
4 0.669 £ 0.024 0.55
3 0.663 £+ 0.026 0.54
2 0.661 +=0.019 0.53
All leads - 0.55

0.49 9
0.49 9
0.46 14
0.47 11
0.44 15
0.47 11

Table 2. Challenge scores for our final selected entry using 10-fold cross validation on the public training set, repeated
scoring on the hidden validation set, and one-time scoring on the hidden test set as well as the official ranking on the hidden

test set.

3. Results and Conclusions

In this section, we present results from our waveform
transformer model. Our setup is a standard 10-fold nested
cross validation. In each fold, we utilize data from the vali-
dation fold to learn probability thresholds and other hyper-
parameters. In Table 2] we list the challenge metric on
the test folds as well as on the official test set for differ-
ent ECG-lead subsets. We observe that overall there is a
monotonic improvement in the scores from the 2-lead to
the 12-lead on both the test folds and the official held-out
test set. Our scores on the official held-out test set for the
12, 6, 4, 3 and 2 leads are 0.49, 0.49, 0.46, 0.47, 0.44 re-
spectively, which shows a 0.05 units improvement in the
challenge metric between 2 and 12 leads. We also observe
that there is a significant gap in performance (~ 0.2) be-
tween model performance on the publicly available train
dataset and the held-out dataset which hints at potential
over fitting to the train dataset.

We examined the AUROC: for each cardiac abnormal-
ity computed using the probabilities as output by the trans-
former model on a single test fold. We observed similar
trends in AUROC scores across different subsets of ECG
leads. Our waveform transformer model achieved an AU-
ROC of 0.85 and 0.77 on detecting low grs voltage in 12-
lead and 2-lead models respectively. We hypothesize that
low grs amplitude ECG recordings are very similar to nor-
mal sinus rhythms but with low amplitudes which makes
detecting them challenging. We hypothesize that this poor
performance on these cardiac abnormalities is that they of-
ten co-occur with other abnormalities that can be detected
with high confidence. This low AUROC was followed
by detection of T wave abnormal, Q wave abnormal and
T wave inversion with AUROC’s in the range of 0.88 to
0.90 respectively. All ECG lead subsets did exceptionally
well in detecting pacing rhythm, left/right bundle block
branch, tachycardia and bradycardia with AUROC’s in the
0.98 to 0.99 range. This superior performance can be at-
tributed to the unique physiological signatures embedded
in ECG recordings and our inclusion of wide features such
are heart rate. The AUROC for normal sinus rhythm is

~ 0.97 across all ECG lead subsets.

Lastly, we present the attention maps from the wave-
form transformer model in Figure 2] These attention maps
illustrate which parts of the inputs are critical to making a
final prediction much like a clinical expert manually scan-
ning through ECG recordings. For each sample patient
we show the ECG recording, attention maps along with
ground truth (GT) and predicted (Pred.) labels. Both the
x and y axis in the heatmaps represent time. Each cell
represents a block of 64 samples (in time). Each sample
(time point) can attend to all other time points. The high
intensities (bright colors) along vertical time slices indi-
cate that there are common time points that all time points
are attending to. A potential shortcoming is highlighted
for the bottom right patient which incorrectly predicts si-
nus rhythm, here the attention of all time points is on the
length of the ECG recording which is non-informative.
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Figure 2. Six randomly selected attention maps that show where attention is being paid in the corresponding ECG record-
ings (shown below). Recordings consist of 7680 samples that are encoded via a waveform transformer network into
N = 120 sequential embeddings. Attention heat maps are shown for lead II in the 12-lead setup. Also shown are the
ground truth (GT) and predicted (Pred.) class labels.
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