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Abstract 

Background: Electrocardiographic imaging (ECGI) has 

potential to guide physicians to plan treatment strategies. 

Previously, Bayesian maximum a posteriori (MAP) estimation 

has been successfully applied to solve this inverse problem for 

paced data. In this study, we evaluate its effectiveness using 

experimental data in reconstructing sinus rhythm. Methods: 
Four datasets from Langendorff-perfused pig hearts, 

suspended in a human-shaped torso-tank, were used. Each 

experiment included 3-5 simultaneous electrogram (EGM) 

and body surface potential (BSP) recordings of 10 beats, in 

baseline and under dofetilide and pinacidil perfusion. 

Bayesian MAP estimation and Tikhonov regularization were 

used to solve the inverse problem. Prior models in MAP were 

generated using beats from the same recording but excluding 

the test beat. Pearson’s correlation was used to evaluate EGM 

reconstructions, activation time (AT) maps, and gradient of 

ATs. Results: In almost all quantitative evaluations and 

qualitative comparisons of AT maps and epicardial 

breakthrough sites, MAP outperformed substantially 

better than Tikhonov regularization. Conclusion: These 

preliminary results showed that with a “good” prior 

model, MAP improves over Tikhonov regularization in 

terms of preventing misdiagnosis of conduction 

abnormalities associated with arrhythmogenic substrates 

and identifying epicardial breakthrough sites. 

 

 

1. Introduction 

Noninvasive electrocardiographic imaging (ECGI) is a 

novel tool that aims to reconstruct cardiac electrical 

sources using body-surface potential (BSP) measurements 

and a patient-specific mathematical model relating the 

sources to the measurements [1]. This inverse problem is 

ill-posed due to attenuation and smoothing of the potentials 

within the thorax. Methods such as Tikhonov 

regularization [2] are applied to stabilize the solutions and 

obtain accurate reconstructions.  

ECGI has great potential as a clinical tool for guiding 

ablation therapy of cardiac arrhythmias, and revealing the 

mechanisms underlying various cardiac electrical 

disorders [3]. However, variability in the spatio-temporal 

behavior of the electrograms (EGM) shortcomings of 

traditional regularization methods for capturing these 

details limit the accuracy of identifying arrhythmogenic 

substrates in sinus rhythm with these widely applied ECGI 

methods [4]. Current ECGI methods (Tikhonov 

regularization included) have been found to incorrectly 

identify abnormalities in conduction associated with 

arrhythmogenic substrates, such as artefactual conduction 

slowing and block [5]. Furthermore, these methods have 

also been found to reduce the number of epicardial 

breakthrough sites and poorly localize them, falsely 

suggesting that abnormalities in the Purkinje system exist 

that could trigger arrhythmia in these patients. 

Improvement of ECGI methods for the accurate 

reconstruction of epicardial exit sites and conduction 

slowing is imperative if ECGI is to be used to identify the 

mechanisms underlying major electrical diseases, and for 

subsequent arrhythmia risk stratification. 

Previously, Bayesian maximum a posteriori (MAP) 

estimation has been successfully applied to ECGI for 

localizing pacing sites for paced data [6]. In this study, we 

evaluated its effectiveness in reconstructing sinus rhythm 

from experimental data. Sinus rhythm is known to result in 

artifacts using standard ECGI methods [5]. We applied 

MAP estimation, assuming jointly Gaussian EGM and 

BSPs. Measurement noise was assumed to be Gaussian, 

independent, and identically distributed (iid). Tikhonov 

regularization was also used for comparison.  

 

2. Experimental Data 

The experimental protocol for the acquisition of the data 

used in this study has previously been described [7] and is 

summarized below. All experimental procedures were 

approved by the Directive 2010/63/EU of the European 

Parliament on the protection of animals used for scientific 

purposes and the local ethical committee.  

Four hearts from Langendorff-perfused ex-vivo pig 

hearts were suspended in a human-shaped torso-tank with 
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256 embedded electrodes. EGMs were recorded via 108-

lead sock electrodes simultaneously with the 

corresponding BSPs (BioSemi, the Netherlands) at 2 kHz 

during sinus rhythm. Each experiment included 3-5 

recordings of 10 beats, in baseline and under dofetilide and 

pinacidil perfusion (drugs that alter action potential 

duration). 3D rotational fluoroscopy (Artis, Siemens) was 

used to obtain the position of the epicardium and electrodes 

with respect to the torso tank after the completion of the 

experiments. 

 

3. Methods 

The relationship between the EGMs and BSPs are 

expressed as: 

𝐲 = 𝐀𝐱 + 𝐧   (1) 

 

at each time instant, where 𝐲 ∈ 𝐑𝑀, 𝐱 ∈ 𝐑𝑁, 𝐧 ∈ 𝐑𝑀 and 

𝐀 ∈ 𝐑𝑀×𝑁 are the BSPs, EGMs, measurement noise and 

the forward matrix, respectively. 

The boundary element method was used to solve the 

forward problem employing a homogeneous conductivity 

between the epicardial mesh (1088 nodes, 2172 triangles) 

and a refined tank surface mesh (4002 nodes, 8000 

triangles) [8]. The rows of the resulting forward matrix 

corresponding to the 256 torso electrode locations were 

then subsampled to define 𝐀.  

Bayesian MAP estimation is a statistical approach, in 

which the epicardial potentials and the noise are treated as 

random [6]. The posterior probability density function 

(pdf) of the EGM is defined based on the likelihood 

function of the measurements, 𝑝(𝐲\𝐱), and an a priori pdf, 

𝑝(𝐱), modelling available prior information on the EGMs 

as: 

𝑝(𝐱\𝐲) =
𝑝(𝐲\𝐱)𝑝(𝐱)

∫ 𝑝(𝐲\𝐱)𝑝(𝐱)𝑑𝐱
                    (2) 

 

 The MAP solution maximizes this posterior pdf. A 

detailed explanation of the method can be found in [6]. We 

assumed that the EGMs and BSPs are jointly Gaussian; 

𝐱~𝑁(𝐱̅, 𝐂𝐱), 𝐧~𝑁(𝟎, 𝜎𝑛
2𝐈), and 𝐧 is uncorrelated with 𝐱. 

The mean 𝐱̅ and the covariance matrix 𝐂𝐱 were 

estimated for each beat using a leave-one-beat-out 

protocol; for each experiment and intervention, one beat is 

used as the test beat and the remaining 9 beats constitute 

the training data.  

Tikhonov zero-order regularization was also applied for 

comparison with the Bayesian MAP estimation results. 

The L-curve method was used to define the regularization 

parameter [9]. 

For each test beat, ECGI reconstructions were compared 

quantitatively with the sock recordings at the 

corresponding 108 nodes in terms of Pearson’s correlation 

coefficient (EGM-CC). Activation times (AT) were 

calculated for the recorded and reconstructed EGMs using 

the maximum negative derivative method, and the spatio-

temporal method proposed in [10], respectively. We also 

computed the gradient of the ATs (gradAT) as the 

difference in AT of each edge of the mesh, divided by the 

length of the edge. This was used to reveal when line of 

block (LOB) may be occurring in the ground truth EGMs 

and ECGI reconstructions. Pearson’s correlation was used 

to compare ATs and spatial gradients of ATs. The higher 

gradAT-CC, the less likely ECGI has accidently created a 

LOB artefact where it does not exist (i.e., there is no LOB 

in the ground truth ATs). We also investigated the number 

and localization error of the epicardial breakthroughs as 

additional evaluation criteria. 

 

4. Results 

Table 1 summarizes the median and interquartile range 

(IQR) values for EGM-CC, AT-CC, and gradAT-CC for 

all datasets and interventions.  

Table 1. Summary of all quantitative metrics. 

 
Exp 

No 

Intervention EGM-CC 

Median(IQR) 

AT-CC 

Median(IQR) 

gradAT-CC 

Median(IQR) 

MAP Tikhonov MAP Tikhonov MAP Tikhonov 

1 Baseline 0.74(0.02) 0.60(0.02) 0.98(0.00) 0.92(0.01) 0.53(0.04) 0.20(0.01) 

Drug 0.80(0.00) 0.63(0.01) 0.99(0.00) 0.93(0.00) 0.60(0.01) 0.17(0.03) 

All 0.77(0.06) 0.61(0.03) 0.99(0.00) 0.93(0.00) 0.57(0.06) 0.19(0.03) 

2 Baseline 0.76(0.06) 0.70(0.03) 0.75(0.25) 0.87(0.04) 0.29(0.16) 0.22(0.03) 

Drug 0.75(0.02) 0.67(0.08) 0.90(0.01) 0.88(0.02) 0.29(0.06) 0.21(0.13) 

All 0.74(0.03) 0.69(0.06) 0.88(0.09) 0.88(0.03) 0.29(0.12) 0.21(0.03) 

3 Baseline 0.65(0.09) 0.51(0.08) 0.85(0.03) 0.68(0.04) 0.31(0.01) 0.08(0.04) 

Drug 0.61(0.00) 0.53(0.04) 0.85(0.00) 0.67(0.01) 0.35(0.00) 0.05(0.00) 

All 0.61(0.09) 0.53(0.07) 0.85(0.03) 0.67(0.03) 0.32(0.03) 0.06(0.05) 

4 Baseline 0.68(0.07) 0.59(0.05) 0.77(0.14) 0.46(0.04) 0.32(0.20) 0.05(0.02) 

Drug 0.70(0.01) 0.57(0.00) 0.82(0.01) 0.72(0.01) 0.19(0.01) 0.11(0.01) 

All 0.70(0.07) 0.57(0.05) 0.82(0.13) 0.49(0.26) 0.22(0.21) 0.07(0.06) 
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In all metrics, MAP had substantially better 

performance than Tikhonov. There was 8% (from 0.70 to 

0.76) - 27% (from 0.63 to 0.80 and from 0.51 to 0.65) 

increase in median EGM-CC, and 2% (from 0.88 to 0.90) 

- 67% (from 0.46 to 0.77) increase in median AT-CC in the 

MAP results compared to Tikhonov. In one case only (exp 

2, baseline), median AT-CC of MAP dropped by 14% 

(from 0.87 to 0.75).  

MAP had gradAT-CC values that were substantially 

higher than (exp 1, 3 and 4) or similar to (exp 2) Tikhonov 

regularization, suggesting that when a “good” prior is 

chosen we can reduce the appearance of conduction 

abnormalities in the reconstruction.  

Example AT maps are presented in Figures 1-4, along 

with the estimated epicardial breakthrough locations 

(white circles) for the last three examples. In these figures, 

the sock electrodes, which are wrapped around the 

ventricles of the heart, are shown unwrapped for a 

complete view of the heart surface. Left and right sides 

correspond to the apex and base, and the lower and upper 

regions are the left (LV) and the right (RV) ventricles. 

The example in Figure 1 demonstrates a ground truth 

AT map with a complicated activation wavefront. There 

were slow conduction regions as seen by closely 

neighboring early and late activated areas. These details 

were completely missed by the Tikhonov regularization. 

MAP showed a far better performance in capturing the 

details of these true AT maps. 

In Figure 2, the AT map obtained by MAP had better 

fidelity to the ground truth than the Tikhonov 

regularization; the latter over-smoothed the AT maps. As a 

result, the epicardial breakthrough in the lower left corner 

(located at the LV apex) is missed by the Tikhonov AT 

reconstruction, but captured by MAP. This could result in 

the false diagnosis of left bundle branch block (LBBB) 

with the Tikhonov-based ECGI. 

In Figure 3, Tikhonov AT reconstructions are better 

than in the previous two examples; general distribution and 

the presence of epicardial breakthroughs on both LV and 

RV regions are in agreement with the ground truth AT and 

MAP AT reconstruction. Still, the AT map of Tikhonov is 

oversmoothed compared to MAP and the location of 

epicardial breakthroughs are inaccurate. 

The last example shown in Figure 4 is from experiment 

2, in which the AT-CC for MAP is worse than Tikhonov. 

Figure 1. Baseline AT map for Exp 4. 

Figure 2. Baseline AT map for Exp 1. 

Figure 3. Baseline AT map for Exp 3. 

Figure 4. Baseline AT map for Exp 2, along with the 

sock and reconstructed EGMs at two nodes from the 

MAP reconstructions with late AT. 

(1) (2) 
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MAP reconstructs late activated areas, which are not 

present in the ground truth. Sock and reconstructed EGMs 

were also shown for two leads from this area. In lead (1), 

although the MAP and Tikhonov reconstructions are 

similar early in the QRS, the AT is incorrectly estimated 

for MAP. In lead (2), reconstructed EGM with MAP has a 

smaller peak-to-peak amplitude compared to the sock and 

Tikhonov EGMs. The same over-smoothing by Tikhonov 

is still observed in this example; complicated activation 

wavefront in the lower region of the RV-LV boundary is 

better captured by MAP than Tikhonov. 

 

5. Discussion 

In almost all quantitative evaluations and qualitative AT 

map comparisons, MAP performed substantially better 

than Tikhonov regularization. The only exception was in 

one of the baseline recordings of exp 2 (Figure 4), in which 

the AT computation was incorrect for MAP even though 

the EGMs reconstructions were accurate. 

Examination of the epicardial breakthroughs revealed 

that Tikhonov tended to merge close breakthroughs into a 

single large early site (Figure 1), underestimate the number 

of breakthroughs (Figure 2), or shift their location (Figure 

3).  MAP for the most part captured all breakthroughs, 

though on occasion an extra breakthrough would appear 

close to existing breakthroughs (Figures 2 and 3). These 

breakthroughs demonstrated a similar or better localization 

error to those reconstructed with Tikhonov. Of particular 

interest, the number of outliers with large localization 

errors were substantially reduced with MAP (mean LE of 

14 mm versus 18 mm with Tikhonov over all datasets). 

Analysis was only performed in pig hearts with normal 

conduction; the drugs used in this study tend to alter action 

potential duration, but typically have no impact on 

conduction. Further analysis of the changes in 

repolarization using this data is underway, and assessment 

of reconstructions using data from pig hearts with 

conduction abnormalities is needed. 

In this study, we used a “good” prior model for MAP, 

where the statistical model parameters are estimated from 

the data coming from the same heart as the test data. Our 

work continues on incorporating simulated EGMs for the 

estimation of the prior model. 

 

5.  Conclusions 

These preliminary results showed that with a “good” 

prior model, MAP improves over Tikhonov regularization 

in terms of preventing misdiagnosis of conduction 

abnormalities associated with arrhythmogenic substrates 

and identifying epicardial breakthrough sites. 
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