
This item is the archived peer-reviewed author-version of:

Software-defined multipath-TCP for smart mobile devices

Reference:
De Schepper Tom, Struye Jakob, Zeljkovic Ensar, Latré Steven, Famaey Jeroen.- Softw are-defined multipath-TCP for smart mobile devices
13th International Conference on Netw ork and Service Management (CNSM), 26-30 November, 2017, Tokyo, Japan - ISSN 2165-963X - IEEE, 2018, p. 1-6 
Full text (Publisher's DOI): https://doi.org/doi:10.23919/CNSM.2017.8256043

Institutional repository IRUA

http://anet.uantwerpen.be/irua


Software-Defined Multipath-TCP for
Smart Mobile Devices

Tom De Schepper, Jakob Struye, Ensar Zeljković, Steven Latré and Jeroen Famaey
University of Antwerp - imec, IDLab, Department of Mathematics and Computer Science, Belgium

firstname.lastname@uantwerpen.be

Abstract—Current mobile consumer devices are equipped
with the ability to connect to the Internet using a variety of
heterogeneous wireless network technologies (e.g., Wi-Fi and
LTE). These devices generally opt to statically connect using
a single technology, based on predefined priorities. This static
behavior does not allow the network to unlock its full potential,
which becomes increasingly more important as the requirements
of services, in terms of for example throughput and reliability,
grow. Multipath TCP (MPTCP) is a solution that allows the
simultaneous use of multiple network interfaces. However, it
does this uncoordinated for a single connection between two
endpoints. Therefore, this paper proposes a Software-Defined
Networking (SDN) architecture to enable coordinated multi-path
routing across the several networks for mobile devices. Moreover,
we propose a novel weighted MPTCP scheduler that allows
the transmission of certain controllable percentages of data per
network interface. The proposed idea is evaluated through a real-
life prototype implementation with a smartphone.

Index Terms—SDN, heterogeneous networks, Multipath TCP

I. INTRODUCTION

Today’s mobile consumer devices are equipped with the
ability to connect to the Internet using a variety of different
heterogeneous wireless network technologies (e.g., Wi-Fi,
LTE, and Bluetooth). Over the next few years, the diversity
among devices and technologies is expected to expand further
with, for instance, the rise of all kinds of (possibly mission
critical) Internet of Things (IoT) devices and multimedia
services, as well as the availability of new technologies such
as sub-1GHz Wi-Fi (i.e., IEEE 802.11ah), 60 GHz Wi-Fi (i.e.,
IEEE 802.11ad) and visible light communications (e.g., Light
Fidelity (Li-Fi)). These devices and applications will have
stringent and diverse quality requirements: for instance, high
throughput for high quality video or virtual reality appli-
cations, or the reliable delivery of sensor data for critical
infrastructure, such as energy supply, in buildings.

Current wireless and mobile devices are generally managed
in a static way. They select one of the available network
interfaces to connect to the Internet based on predefined
priorities (e.g., 5 GHz Wi-Fi if available, otherwise 2.4 GHz
Wi-Fi, otherwise LTE). In some cases, the user can manually
override these priorities, but this is not user friendly, as it is not
done in a transparent manner. The abstraction from network
connectivity is a key aspect in terms of user friendliness and
Quality of Service (QoS). Furthermore, devices select only one
interface, while the simultaneous use of multiple networks can
help to increase the available bandwidth and reliability.

In early 2013, the Multipath TCP (MPTCP) standard was
released as an extension to regular TCP [1]. This extension
enables the transmission and reception of data concurrently
on multiple network interfaces. Multiple regular TCP connec-
tions, denoted as subflows, are combined into a single MPTCP
connection, while each subflow can follow a different path.
The division of data among the different subflows is decided
by a scheduler. MPTCP is most often used in smartphones,
where it combines the Wi-Fi and cellular networks [2]. For
instance, Apple uses MPTCP in their digital assistant Siri.
While MPTCP aims to improve QoS and network resource
utilization, it only focuses on the alternative paths between
two hosts and not on a network-wide scale.

To this extent, this paper proposes a Software-Defined
Networking (SDN) framework that allows for coordinated
multipath routing across several managed networks. A cen-
tralized controller provides a specific configuration to each
MPTCP-enabled device under its control. On these devices
there is an interface that is capable of receiving the config-
uration and applying it. In more detail, the contributions of
this paper are fourfold. First, we present a novel Weighted
Round-Robin (WRR) scheduler for MPTCP that is capable of
dividing traffic across different network interfaces or MPTCP
subflows, based on weights per interface. It thus becomes
possible to perform per-device load balancing on a packet
level. Second, we propose an SDN-based architecture where a
centralized controller can dynamically adapt the parameters of
each WRR scheduler across all devices in the network. This
allows for a dynamic and coordinated way of multipath routing
for heterogeneous networks and offers increased throughput
and reliability, essential to modern applications. Third, we
describe a real-life prototype and use that to evaluate our
novel scheduler. Fourth, we provide the, to our knowledge,
first port of MPTCP to Android 6.0 (Marshmallow). This port
of MPTCP is publicly available on Github1.

The remainder of this paper is structured as follows. We
start by giving an overview of the current state of the art in
Section II. Next, we present our framework in Section III. Sec-
tion IV discusses the prototype, while that prototype is used to
evaluate the scheduler in Section V. Finally, conclusions are
provided in Section VI.

1https://github.com/imec-idlab/Multipath-TCP-Android6.0-Marshmallow



II. RELATED WORK

We propose an SDN-based framework for coordinated
MPTCP use in heterogeneous wireless networks and present
a novel MPTCP scheduler. In other words, this research is
situated on the intersection of two active research domains,
namely MPTCP and SDN (in wireless networks). We describe
the state-of-the-art in both domains.

A. Multipath-TCP scheduling

MPTCP is an extension to regular TCP aimed at multi-
homed devices such as smartphones (with Wi-Fi and mobile
interfaces) or servers (with multiple Ethernet interfaces) [1].
It maintains separate data paths on multiple interfaces, com-
bining these subflows into one logical connection. Application
data can be divided across these subflows to attain a higher
throughput, or duplicated for reliability. Additionally, one
subflow could be kept idle and only used when the main
subflow is broken. In this case the fallback subflow is already
established, meaning the handover can occur very quickly.
Moreover, higher layers still see the same MPTCP connection,
meaning the handover was fully transparent to those layers. As
MPTCP is fully backwards-compatible with regular TCP, an
MPTCP-aware host attempts to use MPTCP when establishing
a new connection, but falls back to regular TCP gracefully
when the other endpoint does not indicate it is MPTCP-aware.

A key component in the MPTCP implementation is the
scheduler that must decide upon which subflow(s) to send each
TCP segment. In the default MPTCP implementation there are
three schedulers present [3]. First, Lowest Round Trip Time
First (LowRTT) scheduler is the default option and selects
the subflow with the lowest RTT when a segment is to be
scheduled. Once a subflow is chosen, all following segments
are also sent using that subflow, until its congestion window is
filled. Second, Round-Robin (RR) is a fairly simple scheduler
rotating through all available subflows. This scheduler only
sends a fixed number of segments, denoted by a parameter
that is by default 1, on a subflow before continuing to the next
subflow. Third, the Redundant scheduler sends every segment
over every available subflow and offers increased reliability.

Due to its importance, quite some research has already been
done towards improving the scheduler. The modular scheduler
system was originally presented by Paasch et al. [3]. A
thorough evaluation of the default LowRTT and RR schedulers
shows that LowRTT vastly outperforms the RR scheduler [3,
4]. Specifically, in terms of throughput there is a difference
of up to 33 %, while in terms of delay-jitter the LowRTT
scheduler shows in 80 % of the conducted experiments a
delay-increase of under 100 %, compared to only 40 % for the
RR approach. Furthermore, it is shown that even a random
scheduler consistently outperforms the RR scheduler, in terms
of throughput, by up to 12.5 % [4].

Multiple alternative schedulers have been proposed as well.
Yang et al. propose an alternative scheduler that chooses
subflows based on an estimation of how much more traf-
fic they can handle before becoming congested [5]. The
scheduler, which requires some configuration, is shown to

attain a throughput of up to 14.5 % higher than the default
LowRTT scheduler. Furthermore, an alternative scheduling
strategy aimed at optimizing latency for short-lived connec-
tions is presented [6]. When one subflow’s RTT is a lot higher
than another subflow’s, the scheduler will not use the slower
subflow at all when a connection was just established. This
allows for a transmission of a flow (of 384 KB) that is almost
twice as fast as the default LowRTT scheduler. Finally, the
BLocking ESTimation (BLEST) scheduler is proposed that
aims to reduce Head-of-line (Hol) blocking due to packet
reordering [7]. This is the phenomenon where segments sent
over a low-delay subflow cannot be processed at the receiver
until preceding segments sent over a high-delay subflow are
received. The BLEST scheduler estimates the risk of HoL-
blocking before sending segments over a considered subflow,
and skips the subflow if the risk is deemed too high.

To conclude our discussion of MPTCP, we note that
recently different evaluations of the impact of MPTCP in
real-life scenarios, especially with smartphones, have been
conducted [8, 9]. Improvements in throughput and reliability
are shown but at the cost of an increased energy consumption.

B. Software-defined wireless networks

Recently some proposals has been made to move SDN
techniques into the wireless domain, in particular wireless
home networks [10, 11]. In these architectures a centralized
controller is used to cope with the large differences among
(smart) devices and user requirements in the home network.
This supports functionalities such as home automation based
on the user’s location, configurable lifestyle management and
condition monitoring [10]. Furthermore, it would be possible
for a controller to dynamically and directly program network-
ing devices and configure their MAC policies [11].

The most concrete approaches rely often on an OpenFlow
(OF) controller (e.g. Ryu) that uses the OF communication
protocol to configure virtualized switches (e.g., Open vSwitch
(OVS)) [12, 13]. The virtualized switch reports in real-time
monitored flow information (e.g., counter for the number of
packets and bytes) to the controller by making use of OF stats
request and reply messages. This monitoring information can
be used at the control-side to perform network optimizations.
An example of such a optimization is the performance of
inter-technology handovers en load balancing [13]. Another
solution worth mentioning, is the 5G-EmPOWER framework
that focuses on virtualized network functions in wireless net-
works [14]. In line with the thought of Network Function Vir-
tualization (NFV), it moves intelligence from an access point
(AP) to a controller. Currently they focus on the following
control aspects: wireless clients state management, resource
allocation, network monitoring, and network reconfiguration.

To summarize, our presented work combines two interesting
research areas: namely MPTCP and SDN in local area net-
works (LANs). Most work in the domain of MPTCP has been
done towards the evaluation of the default schedulers and the
development of additional schedulers. While MPTCP enables
increases in throughput and reliability, it only focuses on the



alternative paths between two hosts and not on a network-wide
scale. Furthermore, we can report that SDN techniques are
being introduced in wireless environments. Mostly OF-based
solutions are applied to interact with virtualized switches. This
contrasts our solution, where a centralized controller interacts
directly with an MPTCP scheduler on consumer devices.

III. SDN-BASED COORDINATED MPTCP FRAMEWORK

In this section we describe the proposed framework to sup-
port coordinated MPTCP in heterogeneous wireless networks.
We first introduce a novel WRR scheduler for MPTCP that
enables the configurable load balancing of TCP segments
across multiple interfaces. Afterwards we describe the entire
architecture of the framework where a centralized controller
can dynamically reconfigure the settings of WRR schedulers
across different devices in the network.

A. Weighted Round-Robin scheduler

While many alternative MPTCP schedulers, optimizing dif-
ferent metrics, have been proposed and implemented, selection
of subflows is mostly based on lowest RTT or tries to cope
with different latencies across different subflows and paths
through the network. These schedulers operate in an uncoordi-
nated way and do not take other traffic streams into account.
For instance, it might be possible that a Wi-Fi network is
already being used by a large number of stations, but the
MPTCP scheduler will still opt to use this interface, which
might lead to packet loss. Therefore, we propose a novel WRR
scheduler that enables load balancing across different subflows
or interfaces based on configurable weights. The regular RR
scheduler, included in the standard MPTCP implementation,
already has a parameter num segments that controls how many
segments are sent per subflow before moving on to the next
in one round-robin iteration. In our WRR scheduler, which is
based on the original RR scheduler, this num segments param-
eter can be set separately for each subflow. Currently, subflows
are identified based on IP addresses. As a result, multiple
subflows sharing a source address also share a num segments
limit. This is desirable as MPTCP creates multiple subflows on
a certain interface and a separate num segments value should
not be set for each subflow, but per network interface.

Furthermore, another modification to the standard RR
scheduler was needed. While the RR scheduler starts a new
round if each available subflow has reached its num segments,
the WRR scheduler only starts a new round if all subflows,
including unavailable ones (like due to a full congestion
window), have reached the num segments limit. If all subflows
that have not yet hit the limit are unavailable, the scheduler will
not schedule any segments until one becomes available. While
this could have a negative effect on throughput when RTT
varies significantly from one subflow to another, it is necessary
to ensure the relative num segments sizes are respected across
the entire MPTCP session.

Finally, we would like to point out that while the con-
figuration of the num segments values per network interface
can be done by a centralized controller, it is also possible to

Internet

Interface MPTCP

Gateway
Controller

Interface MPTCP

Client
Legacy Client

Fig. 1: Schematic overview of the framework

do this individually on a device-level. This can, for instance,
be interesting for a scenario where a user wants to limit
the monetary cost of certain technologies, such as cellular
technologies (e.g., LTE). This can be done by setting the
weights appropriately.

B. Architectural overview

In the previous section we have explained the proposed
WRR scheduler for MPTCP but we envision a larger SDN-
based framework that applies this scheduler and MPTCP in
a coordinated fashion. Figure 1 shows the relevant com-
ponents of the architecture. The architecture consists of an
SDN controller, a gateway and a multitude of clients. In
an ideal scenario, we require the deployment of MPTCP on
the gateway and all clients, allowing for a fully coordinated
use of MPTCP in the network. All MPTCP-enabled devices
require a convenient manner to configure the weights for the
WRR scheduler. This is an interface that can communicate
with the controller to receive its device-specific configuration.
For instance, on an Android device, this interface can be a
new app or an extension of the required MPTCP app. The
controller broadcasts its address to all devices in the network,
to setup the communication. For the communication, the
publish-subscribe pattern is most suited, because of the needed
one-way communication from controller to all clients to update
their configuration. For the definition of the configuration we
propose the YANG data model language as it offers a simple
and standardized manner of accessing and updating the data.

Not all networks will only contain MPTCP-enabled devices.
Our presented architecture supports these different topologies
as well, but consequently only a limited level of control is
possible. If the gateway is not MPTCP-enabled, it is still
possible to configure client devices that do have the required
interface and MPTCP implementation. These devices can
communicate with services on the Internet that do support
MPTCP, so by configuring the weights on the client device,
upstream traffic can still be controlled. It is also possible that
a client device is MPTCP-enabled but does not contain the
required interface to communicate with our controller. In such



AP

Server
InternetGateway

Controller

LTE-path

Wi-Fi	path

Fig. 2: Overview of real-life prototype

a case, it is still possible to load balance the downstream traffic
by modifying the weights on the gateway. Furthermore, as
already mentioned in the previous section, it is possible to use
the scheduler in a stand-alone manner without a controller and
letting the device or user itself decide on the configuration.

Finally, we also like to point out that our described architec-
ture only contains the elements to configure and communicate
with MPTCP-enabled devices. On top of this framework, logic
needs to be implemented that decides on how to configure
all the devices in the network in order to improve, for
instance, network-wide throughput. The development of such
algorithms or intelligence is out of the scope of this paper.
Moreover, we acknowledge the fact that to be able to make
such decisions, the current network state needs to be known.
For the deployment and use of such a monitoring framework
we refer to existing work, discussed in Section II.

IV. IMPLEMENTATION AND PROTOTYPE DESCRIPTION

One of the most interesting use-cases of MPTCP is its
deployment in smartphones, because of, among others, the
absence of a dedicated network connection. We thus opt
for a prototype with Android smartphones as clients. Differ-
ent network interfaces and technologies are needed to use
MPTCP. Within the scope of smartphones, the two most
relevant options for technologies are Wi-Fi and LTE. To
support public LTE networks, the MPTCP server is placed
in the public Internet instead of on the home gateway. In
this setup it is possible for our controller to configure both
endpoints of the MPTCP stream, namely on the server and
client. For the communication between the controller and the
different devices, we make us of the ZeroMQ framework.
This framework allows for distributed, reliable and scalable
communication between different platforms. On all devices,
we implement the required interface for the communication
and capable of handling ZeroMQ sockets. This setup allows
us to evaluate our WRR scheduler in the next section. The
following hardware is used: as a smartphone we use the
Motorola Moto G 4G (’Peregrine’) with a port of MPTCP
to Android 6.0 (Marshmallow) (as the most recent Android
port of MPTCP, to the best of our knowledge, was based
on Android 4.4.4 (Kitkat)). Furthermore, a Netgear AC1900
wireless router with 802.11n is positioned in the same room
as the smartphone with line of sight. As a controller we
use an Intel NUC and the MPTCP server is running on a
virtual machine, roughly 160 km away. The following network
subscriptions are used: Telenet Business 200 for Wi-Fi (upload

of 25 Mpbs) and Mobile Vikings data-only SIM card for LTE
connection. The setup is illustrated by Figure 2.

V. EVALUATION AND DISCUSSION

We focus on the evaluation of the novel WRR MPTCP
scheduler as this is a key component of our framework.
The most important behavior that requires verification, is
how correctly the assigned weights are respected, as that is
key to be able to perform the correct load balancing across
different interfaces. Furthermore, we investigate the impact of
our scheduler with different weights in terms of throughput,
number of packets and RTT, and compare it to cases where
only one interface is used (i.e., regular TCP) and the default
LowRTT MPTCP scheduler. For this evaluation we make use
of the previously described prototype and set weights on the
smartphone by instructions from the controller and average
results across 15 runs for each configuration. Each separate test
consists of a 30 second iPerf TCP connection from the phone
to the server, in which the phone sends as many TCP segments
as possible. For the scheduler, we consider the weight for Wi-
Fi to be on 200, while we vary the number of segments of
LTE between 2, 10, 30, 60 and 140.

A. WRR scheduler validation

Figure 3a shows the median measured throughput and
packet counts for all experiments, and Figure 3b shows the
standard deviations of those measurements. With only Wi-Fi,
a median throughput of 23.3 Mbps is measured, close to the
theoretical 25 Mbps capacity, and 61667 Ethernet packets are
received at the server. For pure LTE a median throughput
of 16.6 Mbps was achieved at 48344 packets. The packets
to throughput ratio is higher than in the previous test, in-
dication of some retransmissions as the payload size was
equal across both tests. Additionally the standard deviations
for LTE are considerably higher than for Wi-Fi, indicating a
slightly less stable cellular network performance. With both
interfaces enabled, the default MPTCP scheduler reaches a
median throughput of 34.8 Mbps. While higher than either
network’s separate throughput, it is lower than the sum of the
two. A median of 41.4 % of packets was sent over the cellular
network. The percentage of traffic sent over the slower network
can vary significantly between repetitions, as it is based on the
measured RTTs, which explains the high standard deviation.

For all WRR tests, the Wi-Fi packet count is counter-
intuitively higher than in the Wi-Fi only test. Analysis of
the packet flows in Wireshark showed that packets in the
WRR tests consistently dropped from 1514 bytes to 1414 bytes
after 0.5 s. It is unclear why this happens, but this does not
effect the actual TCP throughput and is thus ignored. Next
we observe that there are no noticeable differences in Wi-Fi
packet count between the different WRR configurations. In
these experiments the throughput of the network subscriptions
is the bottleneck on the total TCP throughput. While the phone
is capable of sending more packets over the Wi-Fi interface,
it is being throttled by the network provider. With the WRR
scheduler, the cellular network can, in a sense, fill some of



��

������

������

������

������

�������

�
���
���
��
�

��
��
��
��

�
��
��
��

�
�
�
�

��
��
�

�
�
�
�

��
��
��

�
�
�
�

��
��
��

�
�
�
�

��
��
��

�
�
�
�

��
��
��
�

��

��

���

���

���

���

�
�
��
��
�
��
�
��
�
��
�
�
�
�
�
��
�
�
�
�
�

�
�
�

�
��
��
�
�
�
�
�
��
��
�
�
�
�

�����������
�������������

��������������

(a) Throughput and packet counts

��

�����

�����

�����

�����

������

�
���
���
��
�

��
��
��
��

�
��
��
��

�
�
�
�

��
��
�

�
�
�
�

��
��
��

�
�
�
�

��
��
��

�
�
�
�

��
��
��

�
�
�
�

��
��
��
�

��

����

����

����

����

��

�
�
��
��
�
��
�
��
�
��
�
�
�
�
�
��
�
�
�
�
��
��
��
�
�
�

�
�
�

�
��
��
�
�
�
�
�
��
��
��
�
�
��
�
�
�
�
�

�����������
�������������

��������������

(b) Standard deviations

Fig. 3: TCP throughput and received packet counts with
standard deviation for different experiments

the gap left by the bandwidth throttling. Note that, within one
cycle of round-robin, the WRR scheduler always prefers a
subflow that has sent at least one packet over a subflow that has
not sent anything yet. Assuming the Wi-Fi subflow is chosen
first, the scheduler will keep using that subflow until either
its weight is reached, or it becomes unavailable (e.g. due to
a full TCP window). In this second case, the kernel would
not be able to immediately send another packet in an MPTCP
connection with only one subflow. However, due to the WRR
scheduler, more packets can be sent over the LTE subflow at
this point. This scenario explains why the Wi-Fi packet count
is stable through all WRR tests.

Next we analyze how closely the set weights are respected.
The LTE weight is always chosen as a percentage of the
fixed Wi-Fi weight. With weights of 2 and 200, 0.99 % of
all packets should theoretically be sent over the LTE subflow.
Measurements show a median of 0.9 % of all packets on
the LTE subflow. With LTE weight 10, the theoretical share
increases to 4.8 %, with a measured median share of 4.7 %. For
weight 30, theoretical and measured shares are both 13.0 %.
while, for weight 60, these are 23.1 % and 22.8 % respectively.
For the final experiment the LTE connection has a theoretical
share of 41.2 % of all packets with a measured median share

��

����

����

����

����

��

�� ���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
��
���
�

�
�
��
�
�
�
���
��

�����������������������������

����������
��������

����������������
����������������

�����������������

Fig. 4: Smoothed round-trip time for different scenarios

of 38.9 % These results clearly show that the configured LTE
weights are approached closely and never exceeded. It makes
sense that the measured share is sometimes slightly smaller
than the theoretical one: the Wi-Fi subflow is established first,
giving that subflow a slight head start. Additionally we noticed
that the Wi-Fi subflow was always chosen first in each round-
robin cycle. This means it is likely that the final cycle ends
before the LTE subflow is used. The steady Wi-Fi packet count
along with the observation that the weights are adhered to well,
lead to the conclusion that when the LTE weight is set to x%
of the Wi-Fi weight, a throughput increase of (nearly) x%
can be achieved, assuming that the maximum throughput of
the wireless connection was the bottleneck.

Furthermore, for the final experiment with weights of 200
and 140, we notice a median throughput that is 7.8 % higher
than with the default MPTCP scheduler. Additionally standard
deviations are slightly lower for all metrics. This configu-
ration starts to approach the theoretical maximum MPTCP
throughput, as its throughput is only 6.0 % lower than the sum
of the Wi-Fi-only and LTE-only throughputs. Note that the
average throughput of the LTE-only experiment was 71.2 %
of the Wi-Fi-only throughput. This indicates that when the
LTE weight is over 71.2 % of the Wi-Fi weight and weights
are respected perfectly, the LTE interface would reach its
maximum throughput and slow down the Wi-Fi interface.
Overall, this shows that, when network speeds enforced by
providers are the limiting factor, our WRR scheduler is a
viable alternative to the default MPTCP scheduler and can
even outperform it.

B. Smoothed round-trip time analysis

We also analyze the smoothed round-trip time (SRTT)
as measured by the Linux kernel’s TCP implementation.
For every incoming non-retransmitted TCP acknowledgment
(ACK), the kernel calculates how much time has passed since
sending the now acknowledged segment. For the first ACK
in a stream, the SRTT is simply set to that interval m. For
all following ACKs, the SRTT is updated using the formula
srtt = 7

8 × srtt + m
8 .



Figure 4 shows the cumulative distribution functions of the
measured SRTT for the Wi-Fi only and LTE only test cases, as
well as for the LTE subflow for the different scenarios with our
WRR scheduler. Note that we omitted the runs with weights 2
and 30 for LTE from the figure for visibility. 90 % of all Wi-
Fi SRTT samples lie between 80 ms and 155 ms, with none
exceeding 255 ms. The LTE SRTT measurements are a lot
worse, with all samples being fairly evenly distributed between
50 ms and 800 ms. With lower throughput on the cellular
interface, the SRTT improves vastly. With LTE weights 10
and 30 for our WRR scheduler, 95 % of all SRTT samples are
below 100 ms and 109 ms respectively. With LTE weight 2, this
95th percentile is 120 ms. For all three of these experiments,
maximum SRTT was 220 ms. The SRTT measurements start
to increase considerably with LTE weight 60. While the 85th

percentile is only 121 ms, this increases to 184 ms for the 95th

percentile. The maximum measured SRTT is 520 ms. Finally,
the weight 140 experiment shows a fairly linear CDF up to
303 ms for the 93th percentile. Only 50 % of all samples are
below 147 ms, and 95 % are below 344 ms. In this case the
maximum SRTT is 699 ms. These measurements show that
the mobile interface exhibits round-trip times comparable to
and even lower than the Wi-Fi as long as the mobile share
is kept low enough. As the round-trip time seems to increase
along with the throughput for the mobile interface, the share
should be kept relatively low to ensure a low RTT for the
MPTCP connection. In our tests, a LTE weight 30 % of the
Wi-Fi weight had no negative effect on overall RTT.

VI. CONCLUSION

This paper proposes an SDN-based framework for coordi-
nated multi-path routing in heterogeneous wireless networks.
This framework is located on the intersection of two active
research domains: namely MPTCP and SDN. The key com-
ponent is a novel MPTCP scheduler, named WRR scheduler,
that is capable of dividing the segments of a TCP traffic flow
across different subflows, and thus network interfaces, based
on weights. These weights can be configured dynamically by
a centralized controller and thus adapted depending on the
current state of the network, based on real-time monitoring
information. Furthermore, we present a prototype implemen-
tation of the framework with android smartphones using a Wi-
Fi and LTE connection. In our evaluation we show that the
traffic indeed respects the weights set by the WRR scheduler
and that it is possible to achieve a higher throughput compared
to the default LowRTT MPTCP scheduler, depending on the
configuration of the weights. The deviation between the set
LTE weight and its actual throughput share was at most 2.3 %.

REFERENCES

[1] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure,
“TCP extensions for multipath operation with multiple
addresses,” Internet Requests for Comments, January
2013. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc6824.txt

[2] O. Bonaventure and S. Seo, “Multipath TCP Deploy-
ments,” IETF Journal, vol. 12, no. 2, pp. 24–27, 2016.

[3] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure,
“Experimental evaluation of multipath tcp schedulers,”
in Proceedings of the 2014 ACM SIGCOMM workshop
on Capacity sharing workshop. ACM, 2014, pp. 27–32.

[4] B. Arzani, A. Gurney, S. Cheng, R. Guerin, and B. T.
Loo, “Impact of path characteristics and scheduling poli-
cies on mptcp performance,” in Advanced Information
Networking and Applications Workshops (WAINA), 2014
28th International Conference on. IEEE, 2014, pp. 743–
748.

[5] F. Yang, P. Amer, and N. Ekiz, “A scheduler for multipath
tcp,” in Computer Communications and Networks (IC-
CCN), 2013 22nd International Conference on. IEEE,
2013, pp. 1–7.

[6] J. Hwang and J. Yoo, “Packet scheduling for multipath
tcp,” in Ubiquitous and Future Networks (ICUFN), 2015
Seventh International Conference on. IEEE, 2015, pp.
177–179.

[7] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “Blest:
Blocking estimation-based mptcp scheduler for heteroge-
neous networks,” in IFIP Networking Conference (IFIP
Networking) and Workshops, 2016. IEEE, 2016, pp.
431–439.

[8] Q. De Coninck, M. Baerts, B. Hesmans, and O. Bonaven-
ture, “A first analysis of multipath tcp on smartphones,”
in International Conference on Passive and Active Net-
work Measurement. Springer, 2016, pp. 57–69.

[9] A. Nikravesh, Y. Guo, F. Qian, Z. M. Mao, and S. Sen,
“An in-depth understanding of multipath tcp on mobile
devices: Measurement and system design,” in Proceed-
ings of the 22nd Annual International Conference on
Mobile Computing and Networking. ACM, 2016, pp.
189–201.

[10] K. Xu, X. Wang, W. Wei, H. Song, and B. Mao, “Toward
software defined smart home,” IEEE Communications
Magazine, vol. 54, no. 5, pp. 116–122, 2016.

[11] P. Gallo, K. Kosek-Szott, S. Szott, and I. Tinnirello,
“SDN@home: A method for controlling future wire-
less home networks,” IEEE Communications Magazine,
vol. 54, no. 5, pp. 123–131, 2016.

[12] N. Soetens, J. Famaey, M. Verstappen, and S. Latré,
“SDN-based management of heterogeneous home net-
works,” in 11th International Conference on Network and
Service Management (CNSM), 2015, pp. 402–405.

[13] T. De Schepper, P. Bosch, E. Zeljkovic, K. De Schepper,
C. Hawinkel, S. Latré, and J. Famaey, “SDN-based
transparent flow scheduling for heterogeneous wireless
LANs,” in International Symposium on Integrated Net-
work Management (IM), 2017.

[14] R. Riggio, M. K. Marina, J. Schulz-Zander, S. Kuklinski,
and T. Rasheed, “Programming abstractions for software-
defined wireless networks,” IEEE Transactions on Net-
work and Service Management, vol. 12, no. 2, pp. 146–
162, 2015.


