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Abstract—Wi-Fi network roaming is the act of moving a
wireless device from one Wi-Fi access point (AP) to another
Wi-Fi AP. In urban environments, where APs are densely
deployed, users would greatly benefit from roaming between
these APs. Standards for Wi-Fi-network roaming have been
developed (e.g. IEEE 802.11r), but are rarely implemented. The
absence of a widely used standard leads to device-dependent
roaming mechanisms, which brings numerous disadvantages.
5G-EmPOWER is an example of a framework that brings
the Software-Defined Networking (SDN) paradigm to wireless
networks. The framework solves the problem of network roaming
by allowing users to connect to their own unique virtual AP
and managing their connection to the WAN behind the scenes.
This allows the 5G-EmPOWER controller to seamlessly handover
users from one physical AP to another. Currently, a single
physical controller manages the 5G-EmPOWER control plane.
The use of a single system over a distributed system has
known disadvantages (e.g. greater cost, single point of failure).
In this paper, we present DiMob, which distributes the SDN
control plane among multiple controllers. We show that DiMob
maintains a seamless handover, while offering the advantages of
a distributed system. We demonstrate, for example, that adding
an additional node can save approximately 30 % in CPU usage
for each controller.

I. INTRODUCTION

Urban places have become filled with Wi-Fi APs [1].
Typically, these APs only have a range of a few meters. As
a result, users in motion are handed over from one Wi-Fi
network to another. When Wi-Fi was first introduced, a mobile
device could connect with an AP using only four messages.
However, as new features were added, the amount of messages
required for a device to connect with an AP greatly increased.
This increase in messages implied that connections could be
terminated for seconds before the users were reconnected
[2]. The standard IEEE 802.11r was introduced to seamlessly
handover devices from one AP to the other by reducing the
amount of messages that are required to connect with an AP.
However, the standard is barely implemented by vendors [3].
This causes devices to fall back to the legacy Wi-Fi handover
method, which waits for the current connection to drop and
then reconnects the device to the other network.

In a networking context, we can differentiate between two
planes: the control plane and the forwarding plane. The control
plane perceives the network situation and commands the
forwarding plane to perform certain actions (e.g. send packet
to a certain port, drop packet, . . . ). In traditional networks,
network devices contain both a control plane and a data plane.
This architecture has slowed down innovation of the computer

networking landscape for years [4]. For wired networks, the
implementation of SDN paradigm elevates the problems of this
inflexible architecture. SDN logically centralize the control
plane in a single controller that commands the switches.
OpenFlow is the established protocol to communicate between
controllers and switches.

5G-EmPOWER brings the SDN paradigm to the wire-
less networking environment and improves Wi-Fi network
roaming by introducing a seamless handover for clients. 5G-
EmPOWER is an SDN based framework for managing wire-
less networks (i.e. Wi-Fi, LTE). Currently, the implementation
of this framework uses a single physical controller to manage
its operations. Such an architecture, where a system relies on
a single computing node, has the disadvantage of having a
single point of failure. Furthermore, this type of architecture
is not scalable. As an increasing number of users and APs
join the network, the resources of the single controller will
eventually be exhausted and a maximum supported load will
thus be reached. Moreover, this increasing load also increases
the delay of the communication with the central controller,
resulting in a less responsive system. These problems can be
solved by distributing the responsibilities of the single con-
troller. Distributed computing has certain advantages compared
to traditional computing, such as: financial benefits, added
fault-tolerance and scalability [5].

We present DiMob, an API for distributing the 5G-
EmPOWER control plane. DiMob transforms 5G-EmPOWER
into a scalable solution: controllers can be added to the
network to support more users and APs at a lower CPU and
memory footprint per controller. At the same time, DiMob
maintains a seamless handover. We demonstrate the perfor-
mance of DiMob by implementing a distributed mobility use
case. To the best of our knowledge, DiMob is the first dis-
tributed SDN application that allows seamless Wi-Fi roaming.
Our experiments show that as more APs and clients become
active in the network, the addition of new controllers benefit
the load of each controller. Furthermore, the handover of a
mobile device between controllers has no significant impact
on the connection of this device. This shows that the handover
remains seamless in DiMob.

The remainder of this paper is organized as follows: Sec-
tion II elaborates on related work. In Section III we outline
the design and implementation of DiMob. Section IV discusses
the results of our experiments. Finally, Section V concludes.



II. RELATED WORK

In this section, we will elaborate on several projects related
to the distributed SDN mobility manager.

A. Wi-Fi handover

Murty et al. propose DenseAP to improve the capacity of
a wireless enterprise network [6]. In DenseAP, Wi-Fi APs are
installed densely in an office environment. This allows clients
to be load-balanced among the various APs, resulting in a
higher throughput. During load-balancing or when a client
changes location, it is possible that clients are handed off from
one AP to another. This handoff can take approximately 1.5
seconds [6]. In contrast, the handover in 5G-EmPOWER and
DiMob do not introduce a significant delay.

Dyson is a software architecture for building customized
WLANs [7]. The architecture was introduced by Murty et al..
Dyson provides APIs that allow wireless clients and APs to
communicate with a central controller. This central controller
is then able to build a complete overview of the network and
create policies to manipulate the behavior of the network.
Murty et al. demonstrate how Dyson manages to reduce
the handoff delay between APs to approximately 6 millisec-
onds [7]. However, Dyson requires heavy modifications of the
wireless client whereas DiMob requires no such modification.

B. SDN

Odin is a SDN based framework for wireless networks [8].
Whereas 5G-EmPOWER supports both Wi-Fi and LTE, Odin
focuses only on Wi-Fi. The framework also introduces a mo-
bility manager that supports a seamless handover between Wi-
Fi APs. However, the project is no longer actively maintained.

Onix is a distributed SDN control platform [9]. The key
element of Onix is the Network Information Base (NIB) [9].
This NIB is a graph that describes the network status. The
applications that run on Onix can modify the NIB and Onix
assures that the graph is properly distributed and replicated
among the various Onix nodes. The platform brings scalability
by balancing the work load among different nodes and making
the nodes transparent by exposing them as one node [9]. While
both Onix and DiMob distribute the SDN control platform,
DiMob focuses on a wireless network environment, whereas
Onix does not have this focus.

III. DIMOB

In this section, we will discuss the design of DiMob. We
first elaborate on 5G-EmPOWER, the framework of which we
distribute the control plane. We then describe concepts such as
virtual AP ownership, handovers, dummy APs and the details
on how the different controllers share their information.

A. 5G-EmPOWER

5G-EmPOWER is an SDN framework for managing wire-
less networks (e.g. LTE and Wi-Fi). The framework introduces
high-level programming abstractions to manipulate various
control aspects of a wireless network [10]. The framework
introduces a mobility manager application that actively hands

over devices from one AP to the other, based on which AP
offers the best connection. We build DiMob on top of 5G-
EmPOWER. This allows us to update the distribution logic
and the controller logic independently.

B. Ownership

In our design, every user is owned by one and only one
controller. The device can only make a connection to the
WAN through one of the APs of that controller. This will
prevent the client from receiving duplicate replies through
different controllers. When a wireless client joins the network,
the controllers should consent on the controller that takes the
initial ownership of the corresponding virtual AP. The most
common consensus algorithm is Paxos [11]. Paxos is known
to be an efficient and highly fault-tolerant consensus algo-
rithm [12]. However, the algorithm is also known to be highly
complex [11]. To this end, Ongaro and Ousterhout introduced
Raft [13]. Raft is based on Paxos, but has a fundamentally
different structure. The algorithm divides consensus into two
major components: leader election and log replication. As
we only need to select an owner (i.e. leader) for a certain
virtual AP, we can simply implement the leadership election
part, without needing to implement the log replication. The
structure of Raft makes the algorithm less complex than
Paxos while it maintains the same performance and fault-
tolerance [13]. In Raft, all nodes are initially followers.
The followers start an election timer that triggers after a
randomized time t ∈ [250, 400] ms. When the election timer
triggers, the corresponding follower becomes a candidate. The
candidate starts a new term, votes for itself, requests other
nodes to vote for him to become a leader and finally, starts a
new election timer for a randomized time t ∈ [250, 400] ms. A
follower that receives a vote request from a candidate and has
not voted yet this term, replies to the candidate with a vote.
If a candidate receives votes from the majority of the nodes
before its election timer expires, it becomes the leader. This
node then broadcasts to all other nodes that it has become the
leader.

C. Dummy AP

If a controller does not own a certain user, then it should
not send/receive network traffic to/from the client (e.g. send
a web page in response to an HTTP request.). However, this
controller still needs to monitor and store signal information
of this user and therefore cannot simply ignore him. For
this reason, we introduce the concept of a dummy AP that
disconnects the connected users from the WAN. When a user
joins the network, every controller that detects this client
(i.e. gets a signal for the corresponding device on one of its
APs), schedules the user on the dummy AP. The controllers
then vote for ownership of the user using the Raft method
which was described in Section III-B. The controller that
becomes the leader of the client, schedules the client on a
physical AP. All other controllers keep the wireless client
scheduled on their dummy APs. We note that this dummy AP



is also needed because 5G-EmPOWER requires programmers
to always schedule users on a valid AP.

D. Information sharing

The controllers communicate with each other using the Ze-
roMQ1 library. This library is a high-performance messaging
library created to build distributed applications [14]. They can
either broadcast a message to all other controllers or they can
unicast a message to a specific controller. To enable controllers
to broadcast messages, we implemented a publish-subscribe
environment where every controller is a publisher and sub-
scriber to every other controller. This means that controllers
can publish a message and every other controller will receive
this published message. However, using this environment, the
network administrator would have to configure every controller
with the addresses of all other controllers. This implies a
certain amount of effort of the administrator. We therefore used
the XPUB-XSUB pattern from ZeroMQ. This pattern allows
both subscribers and publishers to connect to a central node,
the hub. The hub will then forward the published messages
from the connected publishers to the connected subscribers.
Now, the administrator is only required to configure each
controller with the location of this central hub. The effort
for the administrator has thus been decreased significantly.
We implement the hub by defining a master controller. A
master controller is a DiMob controller that also serves as
a hub. To avoid a single point of failure, we can introduce
several master controllers and configure each controller with
the IP addresses of these master controllers. As soon as one
master controller fails, the controllers will use the next master
controller. Subscribers listen to all master controllers and will
therefore not be affected by the crash of a master controller.

Controllers can also send other controllers messages di-
rectly. The IP address of the sender is included in the messages
so that the receiver can reply to the message.

Controllers share their signal information every 500ms, by
default. This signal information is a list of tuples with a tuple
for each client. The tuple consists of the MAC address of
the user, the maximum of every signal that the APs get for
that user and a flag that indicates whether the publishing
controllers owns the user. With these broadcasts, controllers
update their internal signal table. This signal table stores
the Received Signal Strength Indicator (RSSI) value of the
connection between users and controllers.

E. Handover

A controller can handover one of its user between its
APs. We refer to this handover as the local handover. It is
also possible for the controller to send a request to another
controller to take ownership of one of its users. We call this
type of handover a foreign handover.

The flow to perform a foreign handover for a user is
illustrated in Figure 1. The owning controller C1 first disowns
the user, then sends a handover message to the destination

1http://zeromq.org/

C1 C2

disown user

HO [IP C, MAC user]

Handover message

1) own user
2) connect to AP
3) await AP confirmation

HOC [MAC user]

Handover confirmation

assign
user to

dummy AP

Fig. 1. The message flow for a foreign handover of a user.

controller. The receiving controller C2 claims the user as his
and performs a local handover to schedule the client on one
of the APs of C2. When the reply of an AP confirms that the
user is indeed connected to this AP, the controller confirms the
foreign handover to C1 by sending a handover confirmation
message. Finally, the controller C1 schedules the user on
the dummy AP. Note that this flow is not fault-tolerant. If
a controller crashes while the flow has not been completed,
unexpected behavior may occur. We consider the creation of a
fault-tolerant flow for a foreign handover part of future work.

IV. EVALUATION

In this section we will discuss the performance of the
mobility use case of DiMob. In our application, the controller
periodically hands over each of its users to the AP that
offers them the best possible signal. If no AP offers a decent
signal for a certain user, the controller will perform a foreign
handover for this user. These handovers are also performed
when an AP notifies its controller that the signal of one of
its connected clients falls beneath a configured threshold. We
refer to the non-distributed version of the 5G-EmPOWER
mobility manager application as Vanilla. We will compare the
throughput and packet loss of the Vanilla and DiMob network.
Furthermore, we will perform load tests where a high number
of users that connect to DiMob are simulated. During these
tests, we will measure the CPU, memory and network usage.



We then analyze how the amount of users, amount of APs and
amount of controllers influence these statistics.

In our test environment three computers with Intel Core 2
Quad CPUs (3,00GHz x 4) serve as the controllers. The APs
are two Alix boards that support wireless connections and have
a wired backbone connection.

A. Throughput and loss

In this section we will compare the throughput and packet
loss between a DiMob network with two controllers and
a Vanilla network with one controller. We verify that we
succeeded in extending the seamless handover between APs
in Vanilla to a seamless handover between controllers (and
implicitly between APs of different controllers) in DiMob.

The setup for testing for Vanilla and DiMob is illustrated in
Figure 2. The controllers (or controller, in case of Vanilla) and
both APs are connected to a switch, which in turn is connected
to a router. The router connects the LAN to the WAN. The
setup is illustrated in Figure 2.

We configure the test server to be an iPerf server and the
test subject to be the iPerf client. The iPerf client sends test
packets to the server, who will report the received packets
every .1 seconds. These test packets are sent by either using
TCP or UDP. We did run our test for 30 seconds. During this
time span, the test subject is handed over twice: once after
10 seconds and another time after 20 seconds. The tests were
executed five times for each configuration.

Figure 3a and Figure 3b show the throughput over time of
the test performed where the client sends traffic to the server
in a single TCP or UDP flow. We see that the bandwidth
over time is similar for Vanilla and DiMob. The results
show no connection losses (i.e. a bandwidth of 0 Mbit/s)
or, more general, no noticeable drops of bandwidth during
any particular moment in time. The deviation between test
runs was negligible. We note that the UDP flow in DiMob
has a slightly lower bandwidth than in Vanilla, however this
can be explained with our test environment, which was an
office space. Multiple other devices were present and caused
interference which we were not able to negate. We did not do
an interference analysis though, as this was not in the scope
of the paper. The difference in bandwidth should therefore be
nonessential for our conclusion.

Figure 3c shows the datagram loss experienced during the
UDP iPerf test. Again, we see that both graphs are similar and
that the loss of DiMob is slightly higher than that of Vanilla.
This higher loss is due to the presence of interference and is
nonessential for our conclusion.

We conclude that a foreign handover (DiMob) does perform
the same as a local handover (Vanilla) and that the handover
mechanism is seamless in both cases.

B. Load

In this section, we will discuss the effect on system re-
sources when dividing the responsibilities of a single DiMob
controller to multiple controllers. More specifically, we shall
evaluate how CPU, memory and network usage are affected by

ControllerAAP1 AP2ControllerB(Master)

Switch

Test server

Router

WAN

Mobile device

(a) DiMob test environment. The two nodes serve as the controllers.

ControllerAP1 AP2

Switch

Test server
Router

WAN

Mobile device

(b) Vanilla test environment. One node serves as the single con-
troller.

Fig. 2. DiMob and Vanilla test environments. Two Alix boards act as the
APs. These devices are connected to a switch, which is connected to a router.
The router is connected to the WAN. One wireless device attempts to connect
to the test network.

distributing APs among more controllers while an increasing
number of clients join the network. To properly test the
controllers under high load, we implemented the emulation of
users and APs in DiMob. Each emulated user connects to an
emulated AP. This AP emulates a real signal for its connected
users. The controllers will then treat the emulated users as any
other user and make the appropriate decisions. Note that the
computation time and memory usage of the simulation itself
is included in the results. However, the computation needed
for the emulation is limited and our results are still valid. We
execute the test for the total AP amounts of 48, 96 and 192
and five times for each configuration. These APs are equally
divided among the DiMob controllers. The first test runs with
an amount of 0 users. This allows us to capture the minimum
load of DiMob. We then increase the amount of users by 250
for each test until a maximum of 2000 users. The results of the
CPU usage, memory usage and the network usage during the
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(b) UDP throughput.
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Fig. 3. Throughput and loss over time for UDP and TCP. Handovers (local for Vanilla and foreign for DiMob) at timestamps 10 s and 20 s are completely
smooth.
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Fig. 4. CPU usage for an increasing amount of stations shows the benefit of multiple controllers in reducing load.
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Fig. 5. Memory usage for an increasing amount of stations shows the benefit of multiple controllers in reducing memory.

experiment are illustrated in Figure 4, Figure 5 and Figure 6
respectively.

We see that the CPU usage increases as the number of
users and APs increase. We observe that the average CPU
and memory usage of 1 controller is greater than that of 2
controllers and that the average CPU and memory usage of 2
controllers is always greater than that of 3 controllers. Again,
the deviation between runs was too small to be mentioned.
We can thus conclude that we succeeded in reducing the
load of each controller by adding additional controllers to the
environment. Furthermore, we note that the difference in load
between all three scenarios slowly increases as the number of

APs and users increase, e.g.: the percentage of CPU usage
saved in the scenario of 2 controllers versus 1 controller is
approximately 7 % for 250 users and 48 APs and increases to
approximately 30 % for 2000 users and 192 APs. We conclude
that, as more APs and users are added to the system, the benefit
of our solution increases. Finally, we note that the average
memory usage of DiMob, for all scenarios, is very low.

We see that the amount of network traffic scales approx-
imately linear with the amount of controllers. It is up to
the network administrator to consider whether the additional
traffic that a controller introduces is tolerable on the network.
Furthermore, we see that an increase of users also increases
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the amount of network traffic. This can be explained the fact
that if more users are added, the list of signal tuples that the
controllers broadcast increases in size, which in turn increases
the network traffic rate. We note that the network usage, for
all scenarios, is very low, below 2.5 Mbit/s, and that only a
small amount of network traffic is added when an additional
controller is introduced to the network.

V. CONCLUSION

In this paper, we demonstrated DiMob, a solution to easily
distribute and scale wireless SDN. In particular, we focused
on reducing the CPU and memory usage of each controller
by distributing the APs and clients among all controllers.
DiMob introduces an API to distribute the control plane among
multiple controllers and each DiMob controller manages a
subset of the APs and clients. In the mobility use case
of DiMob, the controllers make sure that their clients are
continuously connected to the AP that provides them with the
best possible connection to the network.

DiMob maintains a seamless handover mechanism while
introducing scalability. The CPU and memory usage can
be reduced by up to 30 %, while introducing only a small
amount of network overhead. For systems that should support
a large amount of users, network administrators can now easily
introduce several nodes to scale their wireless network instead
of one immensely powerful one, resulting in a financial benefit.
Furthermore, the presence of multiple nodes prevent a node
from becoming a single point of failure, making the network
more robust.

DiMob can be further extended with features such as smart
load-balancing between the various controllers and a fault-
recovery mechanism for controllers.
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