
Performance Evaluation of Selective Flow

Monitoring in the ONOS Controller

Anh Nguyen-Ngoc∗, Stanislav Lange∗, Thomas Zinner∗,

Michael Seufert∗, Phuoc Tran-Gia∗, Nieke Aerts§, David Hock§

∗Institute of Computer Science, University of Würzburg, Germany.

{anh.nguyen, stanislav.lange, zinner, seufert, trangia}@informatik.uni-wuerzburg.de
§Infosim GmbH & Co. KG, Würzburg, Germany.

{aerts, hock}@infosim.net

Abstract—One of the benefits when network operators adopt
the Software Defined Networking (SDN) paradigm is the ability to
monitor the traffic in the network without an additional network
management system. Usually, SDN controllers utilize OpenFlow
statistics messages in order to regularly gather information about
all flows in the network. However, using the same polling interval
for all flows does not take into account the heterogeneity of
real world traffic and thus results in an imbalance between
monitoring accuracy and control plane overhead. In particular,
frequent querying results in a high resource consumption at the
controller. This work proposes a Selective Flow Monitoring (SFM)
mechanism that allows administrators to classify flows according
to their individual requirements in terms of monitoring frequency,
e.g., less frequent polling of elephant flows and frequent polling
of QoS sensitive VoIP connections.

We compare the performance of the SFM mechanism with
the default monitoring scheme in a testbed featuring the Open
Network Operating System (ONOS) controller. In this context, the
CPU utilization of the controller is used as performance indicator.
After identifying relevant influence factors like the number of flows
and switches in the network, we investigate the viability of the
approaches in different scenarios. Finally, we provide guidelines
regarding their choice.

I. INTRODUCTION

Nowadays, the Software Defined Networking (SDN) archi-

tecture is getting more and more attention due to its benefits

in terms of flexible configuration, programmability, and cost-

efficiency [1]. In addition to separating the control plane from

the data plane and centralizing the former in the controller,

SDN-based networks also provide open interfaces that allow

simple monitoring and management. One key element that

enables this advantage is the OpenFlow protocol [2]. Further-

more, OpenFlow provides flow-level monitoring functionality,

i.e., information exchange schemes and counters for ports,

tables, and queues. Per-flow statistics are regularly requested

according to a predefined polling interval. Doing that ensures

reliable and timely monitoring information that is relevant

for management and configuration of SDN-based networks.

However, it is unfeasible to perform regular polling at a high

frequency for all devices and flows in large scale networks due

to overhead.

In order to minimize the overhead at the controller during

monitoring, several monitoring mechanisms are proposed in

literature. Adaptive monitoring [3] is based on flow charac-

teristics like the lifetime, i.e., long-lived flows are queried less

frequently than short-lived ones. The selective approach, which

is the focus of this paper, is based on the classification of flows

defined by the network operator. In this context, a particular

flow can be monitored with a predefined polling interval that

matches its needs. In addition, this work compares the selective

method with regular polling based on the CPU utilization at

the controller via measurements in a testbed. Furthermore, key

influence factors that have an impact on the controller’s CPU

load are identified. These include network conditions like the

composition of flows in the network and the number of switches

as well as the hardware specifications of the controller.

This work is structured as follows. In Section II, related work

is discussed. Section III provides an overview of the testbed

setup and experiment parameters, as well as the proposed se-

lective flow monitoring mechanism. While Section IV presents

the results of experiments, Section V concludes the paper and

gives a perspective on future work.

II. BACKGROUND AND RELATED WORK

Firstly, this section provides a brief overview of the in-

formation exchange scheme that is defined in the OpenFlow

standard. Secondly, related work regarding flow monitoring in

SDN-based networks is presented alongside the flow monitoring

mechanisms that are available in the ONOS controller.

The statistics information of all flows in an SDN-based net-

work is sent from OpenFlow switches to the controller by using

a request-reply scheme. The controller regularly queries the

devices in the network about the status of several elements such

as ports, tables, queues, groups, or meters. Since OpenFlow

version 1.3 [4], information regarding flow and table statistics

is aggregated into multipart messages in order to reduce the

amount of packets that is exchanged. OpenFlow provides per-

flow monitoring with a diversity of gathered data, including

byte and packet counters, details regarding matched fields, and

the lifetime of each flow.

PayLess [5] introduces a network monitoring framework for

SDN-based networks. In an effort to balance the accuracy

of statistics and the overhead at the controller and switches,

the authors propose an approach that dynamically adapts the

frequency of the flow statistics collection for all flows.

OpenNetMon [6] implements a POX Controller module

that monitors not only the throughput but also per-flow QoS

metrics like path delays on the network and application layer.

Furthermore, a timer is used to increase the polling interval for

new flows and flows with high fluctuations w.r.t. their statistics

while stable flows are queried less frequently.

Similarly, OPEN-TAM [3] aims at reducing the overhead

by introducing “Adaptive Flow Monitoring” in the ONOS

controller. In this context, flows are classified according to

their lifetime and the polling intervals are adapted accordingly,

resulting in a high polling frequency for short flows and a

low polling frequency for long flows. However, this approach

can lead to an increase in control plane traffic since the

controller queries flows from each category individually rather

than requesting statistics of all flow entries in a switch. The

intensity of this effect is proportional to the number of flows

in the network, which in turn is proportional to the number of

FlowStatsReply messages that are processed by the controller.

Unfortunately, both works did not measure the resource

consumption at the controller. Instead, this work provides

insights into the trade-offs regarding this aspect of adaptive flow

monitoring by analyzing the CPU utilization at the controller.

The study conducted in [7] features a monitoring scheme

that minimizes the communication overhead by aggregating the

request and reply messages. The proposed approach is based on

the assumption that querying only a small number of switches

is sufficient to obtain statistics of the majority of flows in the

network.

While OpenTM [8] chooses the switches based on the routing

information to periodically poll flow statistics, ProgME [9]

collects flow information based on the proposed flowset, an

arbitrary set of flows that depends on the requirements of an

application or a particular traffic condition.

III. METHODOLOGY

In this section, the operation of Selective Flow Monitor-

ing (SFM) as well as the differences from Standard Flow

Monitoring (STD) are described. In addition, the experimental

scenarios are provided alongside the notation for adjustable

parameter values as well as details regarding the hardware and

software used in the measurement setup.

A. Measurement Setup

In order to investigate the performance of the SFM approach,

a testbed as shown in Figure 1 is set up. The Ibis release1 of the

ONOS controller is installed on a PC2 which uses the Ubuntu

16.04 operating system. Another PC with the same specification

runs Mininet3 and is used to create a network of OpenFlow

switches.

At the beginning of the measurement, after the controller

is started, a predefined number of flows is installed in the

1http://onosproject.org/, version 1.8.0
2Intel(R) Core(TM) i7-4770 CPU @3.40GHz / 16GB RAM
3http://mininet.org/, version 2.2.1

Fig. 1: Logical Testbed Setup.

switches via the REST API by using cURL4. The term flow

is resprented a flow entry in OpenFlow Table in the switch.

Each flow has a timeout of 5,000 seconds to ensure that it

lasts the whole 5 minutes of the experiment. Depending on

the scenario, up to 408,000 flows are installed. Since this work

focuses on the performance of the controller when dealing with

control plane information, there is no data plane traffic on the

network. Each run is repeated 5 times in order to obtain 95%

confidence intervals. Pidstat5 is used for monitoring the ONOS

process and details regarding the average CPU consumption are

exported regularly during its runtime.

In the first scenario, one OpenVswitch6 is created in Mininet,

and the flows in the network are partitioned into three groups,

i.e., all flows in a group have the same destination IP address

(IP DST) but different source IP addresses. All IP addresses are

declared with the network mask 255.255.225.255, which makes

all flows unique and avoids the aggregation of rules in the

flow table of the OpenFlow switch. When SFM is enabled, the

flows are queried for their statistics according to three polling

intervals: SHORT (5 s), MIDDLE (10 s), and LONG (15 s). At

every polling time, the controller asks the switch for informa-

tion of the flows that have the same combination of output port

and destination IP, i.e., (OUTPUT; IP DST). The switch replies

with a StatsRequest by sending StatsReply messages only for

the flows that match this condition and aggregates them in a

MultipartReplyMessage. When using the standard method, the

ONOS controller inquires statistics of all flows every 5 seconds

and does not require any match condition. The portions of

the number of flows from each group are varied in order to

investigate the impact of these factors on the controller’s CPU

utilization.

In the second set of experiments, we evaluate the perfor-

mance impact of scenarios where more than one statistics

message is required to fetch information about each class of

flows. In the following, we refer to this number of messages

as the number of sub-groups since each class of flows is

partitioned based on a set of flow rules. In the i-th group, the

tuple for matching its statistics becomes (OUTPUT; IP DSTi).

Additionally, testbeds with multiple switches based on a tree

topology are considered.

B. Standard Flow Monitoring in ONOS Controller

As mentioned above, the ONOS controller regularly sends

FlowStatsRequest messages every 5 seconds to get the infor-

4https://curl.haxx.se/
5http://sebastien.godard.pagesperso-orange.fr/man pidstat.html
6http://openvswitch.org/

mation of all flows in the network. After receiving a FlowStat-

sReply message, the controller processes it and gets the details

of all flows.

The number of messages which ONOS needs to handle at

every polling point in case of standard flow monitoring (STD)

is denoted as NSTD
p and can be calculated as follows:

NSTD
p = NSTD

(sent) +NSTD
(recd)

In this equation, NSTD
(sent) and NSTD

(recd) represent the amount

of messages that are generated and sent as well as received

and processed by the controller, respectively. The network

consists of NSW switches and the total number of flows is

NF . In case of STD, the controller only generates one single

FlowStatsRequest message corresponding to a switch. Thus,

the equation above becomes:

NSTD
p = NSW +NF

Considering an experiment duration of Texp with regular

polling interval tpoll:

NSTD =
Texp

tpoll
·NSTD

p =
Texp

tpoll
· (NSW +NF) (1)

C. Selective Flow Monitoring

The SFM approach allows administrators to increase the

monitoring accuracy for particular flows that are of special

interest, e.g., those with strict application-specific QoS demands

or SLAs. Furthermore, SFM introduces several configurable

types of polling intervals, which can be set by the operator

actively, depending on how often the flows are to be monitored.

Fig. 2: Influence factors on CPU utilization of the SDN con-

troller when monitoring flow statistics.

Figure 2 illustrates several components that affect the CPU

utilization of an SDN controller which are investigated in this

work. First, the hardware configuration of the controller such

as its RAM capacity and the particular CPU model affects

message processing time as well as the amount of flow rules

that can be managed. Second, network conditions like the

number of connected switches or the composition of traffic

flows dictate the amount and the rate of messages that are

exchanged between the switches and the controller. Finally, the

used flow monitoring mechanism, i.e., SFM or STD, has an

effect on the message rate, too.

Figure 2 also gives an example of how SFM works. The

controller classifies flows into three different groups based on

a specified condition and each group’s statistics are queried

with the respective polling interval. At the beginning, all flows

are polled. After that, every 5 seconds the controller asks

the state of the flows that are marked as SHORT which is

indicated by the light brown arrows. Then, every 10 seconds,

the dark brown arrow shows that flows in the MIDDLE group

are queried, and every 15 seconds, FlowStatReply messages of

flows in the LONG group are sent to the controller. Finally,

an ENTIRE polling happens each 30 seconds to ensure that

all flows are updated. It is worth noting that when an ENTIRE

polling is performed, no other polling takes place. In contrast to

this mechanism, the standard approach in the ONOS controller

frequently inquires information of all flows every 5 seconds.

The differences between SFM and STD are the variation of

the number of polling intervals as well as the classification of

flows into groups. Hence, only the flows of a particular group

are queried rather than all flows.

Assume that the amounts of flows that are requested with the

short, middle, and long polling intervals are Ns, Nm, and Nl,

respectively. Hence, in Equation 1, the total number of flows

corresponds to NF = Ns +Nm +Nl. When SFM is enabled,

four types of requests can happen when polling:

1) Only SHORT flows are queried:

NSFM
1 = NSFM

1(sent) +NSFM
1(recd) = NSW · ng

s +Ns

2) Flows that are either SHORT or MIDDLE are queried:

NSFM
2 = NSW · (ng

s + ng
m) + (Ns +Nm)

3) Flows that are either SHORT or LONG are queried:

NSFM
3 = NSW · (ng

s + n
g
l) + (Ns +Nl)

4) All flows are queried (ENTIRE-polling):

NSFM
4 = NSW +NF

In this context, n
g
∗ denotes the number of sub-groups within

each group and N∗ refers to the total number of flows within

each group.

During an experiment with duration Texp, ti is the polling

interval that corresponds to short, middle, long, and entire inter-

val. Hence, the total number of messages during an experiment

can be calculated as follows:

NSFM = Texp ·

4∑
i=1

1

ti
·NSFM

i (2)

Suppose that the polling intervals for the MIDDLE and

LONG groups, tm and tl, are multiples of the polling interval

for the SHORT group, ts, i.e., tm = α · ts, tl = β · ts. In

an analogous fashion, the numbers of flows in each group are

(a) Fraction of SHORT flows is constant. (b) Fraction of MIDDLE flows is constant. (c) Fraction of LONG flows is constant.

Fig. 3: Influence of relative group size on CPU utilization.

Nm = m ·Ns and Nl = n ·Ns. Hence, from Eq. 2, the number

of messages in case of SFM, NSFM , is calculated as follows:

Texp

ts
·

[
NSW ·

[
2ng

s +
2(ng

s + ng
m)

α
+

1 + 2 ∗ (ng
s + n

g
l)

β

]

+
(
2NSW +

2 + 2m

α
+

3 +m+ 3n

β

)
·Ns

]
(3)

Equations 1 and 3 present several influence factors which

impact the number of flow statistics messages, such as the

number of sub-groups (ng
s , ng

m, n
g
l), the relative size of each

group (ρ = Ns :Nm :Nl), the ratios between the corresponding

polling intervals (γ = ts : tm : tl), as well as the number of

switches in the network NSW . Details regarding the investiga-

tion of those parameters are presented in Section IV.

IV. EXPERIMENTAL EVALUATION

This section provides the results of the experiments that are

described in Section III. Firstly, a comparison between the STD

and SFM approaches in terms of the controller’s CPU utilization

is provided alongside the impact of the size ratios of flow

groups. Secondly, the impact of changing the number of sub-

groups and the number of switches in the network is presented.

Finally, we discuss how the amount of memory that is reserved

for the Java Virtual Machine (JVM) affects the efficiency of

the controller.

A. CPU Utilization in Case of a Single Switch

Figure 3 displays the impact of different portions of the

number of flows in each group. For a given total number of

flows in the network on the x-axis, the y-axis shows the corre-

sponding mean CPU usage during the controller’s run time. In

this experiment, the maximum memory that is assigned to the

JVM equals 512 MB which is the default setting of the ONOS

controller. As a result, there is a limitation of 54,000 flows

that the controller can handle without throwing an “overhead

limit exceed” exception. The whiskers show 95% confidence

intervals which are obtained after 5 experiment repetitions.

The blue curve represents the results in case of Standard

Flow Monitoring (STD), while the other colors indicate the

measurement data when enabling SFM with different ratios

of each flow type. The three subfigures highlight the CPU

utilization that results from setting the ratio of one flow class

to a constant while varying the ratios of the two other classes.

For all scenarios, with the same number of flows, STD

consumes more CPU resources than SFM. The gap between

the blue curve and the others becomes wider when increasing

the number of flows and achieves a maximum value of nearly

4%. In case of SFM, the ratio of the SHORT group has

the largest impact on the controller’s CPU usage, which is

displayed in Figure 3b and Figure 3c. When keeping the

portions of MIDDLE and LONG groups constant, the highest

CPU utilization is reached if the SHORT group has the highest

ratio (brown curves). A reasonable explanation is that the flows

in the SHORT group are queried most frequently among all

groups. Therefore, a higher number of flows in this group

results in more messages and tasks per second that the CPU

needs to carry out and leads to a high CPU load. Nevertheless,

in this worst case of SFM, the resource consumption at the

controller is still less than in the case of STD.

The portion of SHORT flows is defined as a main influence

factor on the CPU usage of the controller according to the

above discussion. In order to perform a deeper investigation,

measurements with different numbers of sub-groups in the

SHORT group are carried out and the results are presented

in Figure 4. There are six dashed lines in different shades

of brown that correspond to different numbers of sub-groups

within the SHORT group. These numbers directly affect the

number of destination IP addresses in the flow table, and range

from one to 50 groups. The number of flows in each group

(SHORT, MIDDLE, LONG) is unchanged and follows the ratio

ρ = 1 : 2 : 3. For example, at the first point on the x-axis, the

total number of flows equals 6,000, of which 3,000 flows are

classified as LONG, 2,000 flows as MIDDLE, and 1,000 flows

as SHORT. In these 1,000 flows, the number of destination IP

addresses changes from 1 to 50, which makes the controller

generate different numbers of FlowStatsRequest messages

every 5 seconds, coressponding to the number of IP addresses

(also known as the number of sub-groups). However, when the

controller request the statistic of all those SHORT flows, the

quantity of FlowStatsReply messages is constant and equals

1,000 - the number of SHORT flows are installed.

Fig. 4: Impact of the number of sub-groups in the SHORT

group.

The blue line represents the data that is obtained when STD

is enabled. A trade-off between using the two mechanisms is

illustrated visually. When the number of sub-groups is smaller

than 20, SFM shows a better result, i.e., less CPU usage.

At 20 sub-groups, there is no significant difference between

STD and SFM unless 54,000 flows are installed, as illustrated

by overlapping confidence intervals between those two cases.

However, if more sub-groups exist, more resources are required

to adapt to the large number of messages that arrive at the

controller. This observation implies that in some cases, SFM

results in a higher CPU usage than the standard method.

However, due to its ability to query the information of particular

flows, SFM provides significant resource savings when the

number of sub-groups is low.

B. CPU Utilization in Case of Multiple Switches

Equation 3 shows that the number of switches in the net-

work NSW is also a factor that impacts CPU utilization. In

order to highlight this effect, Figure 5 displays cumulative

distributions of the controller’s CPU usage in both cases, SFM

and STD with different values of NSW . In this context, the

total number of OpenVswitches varies between 1, 20, and

40 switches, represented by the line colors, respectively. The

resulting distributions in case of SFM are shown as solid lines,

and the dashed lines present measured data when using STD.

For this evaluation, we aggregate measurements from scenarios

that feature between 6,000 and 54,000 flows in increments of

6,000 flows. While the CPU load is displayed on the x-axis,

the y-axis indicates the fraction of measurements in which the

CPU utilization is below the corresponding threshold. Again,

the memory limit for the JVM equals 512 MB, and the value

ρ = 1 : 2 : 3 is considered for the portions of groups. Since the

Fig. 5: Distribution of the CPU utilization for different values

of NSW when using STD and SFM.

number of FlowStatsRequest messages is exactly equal to the

amount of OpenFlow devices in the network, more switches in

the network lead to more communication from the controller

at each polling event. Consequently, an extra amount of work

needs to be handled by the CPU and its load rises substantially

in comparison to the single switch case. Especially in case of

STD with a single switch, the CPU load never exceeds 9%.

In contrast, when using multiple switches, the CPU utilization

exceeds 10% in more than 30% of cases, as shown in Figure 5.

Additionally, the maximum observed CPU utilization when

using SFM is below 8%, which equals only half the value in

the context of the standard method. In both cases, increasing

NSW leads to higher CPU utilization. However, the growth

gradually converges when the network contains more than 20

switches, as exhibited by the overlapping lines that correspond

to NSW = 20 and NSW = 40. The largest gap between

those configurations and the one featuring a single switch is

significantly smaller in the case of SFM than when using STD,

with the largest difference being 2% compared to nearly 7%.

C. Impact of Java Virtual Machine Memory

Due to the fact that the ONOS controller runs as a Java

program, it is necessary to take into account the memory space

for the Java Virtual Machine (JVM) when investigating the

performance of the controller. The amount of memory that is

dedicated to the ONOS controller can be controlled by means

of an environment variable7.

Figure 6 displays the maximum number of flows that the

controller can handle before throwing exceptions regarding

memory issues. While the x-axis denotes the number of flows

which ranges between 24,000 and 408,000 in steps of 24,000,

the y-axis represents the mean CPU utilization. Differently

colored bars correspond to two configurations regarding the

maximum assigned memory for the JVM, i.e., 2 GB and 4 GB,

7To allocate minValue of heap memory at the start and up to a
maximum of maxValue, the following command can be used: export

JAVA_OPTS="-server -Xms[minValue] -Xmx[maxValue]"

respectively. The whiskers provide confidence intervals that are

obtained from 5 runs. The same combination of the flow class

ratio ρ and polling time ratio γ as in previous experiments is

used for the SFM scenario.

Fig. 6: Influence of JVM Memory.

The first observation is that doubling the memory for the

JVM does not mean that the controller is able to process

two times more flows. In case of using 2 GB, the maximum

number of flows in the network is 216,000. The value when

increasing the memory limit to 4 GB equals 408,000 flows and

is therefore 1.89 times higher. Additionally, when the controller

has more capability for storing processed information, the CPU

consumption decreases. While the reduction is not significant

in the context of less than 120,000 flows, it is equal to up

to 45% when 216,000 flows are involved. Since the controller

reserves the set amount of memory regardless of actual usage

and number of flows, it is important to determine a value

that balances the trade-off between potentially unused memory

resources and performance benefits. Otherwise, the memory

might become a performance bottleneck of the controller. This

is not only true for the ONOS controller but also for other

Java-based SDN controllers like OpenDaylight, Floodlight, and

Beacon. Given the network state in terms of the number of

active flows, an administrator can derive viable memory limits.

V. CONCLUSION

In this work, we compare two mechanisms for monitoring

flow statistics in the ONOS controller in terms of the CPU

usage at the controller. These mechanisms include the default

approach that is based on regular and flow-independent polling

as well as a selective approach in which flows are classified

based on their requirements w.r.t. the polling frequency. Fur-

thermore, we investigate the influence of several parameters

on the performance of both approaches. This is achieved by

first analyzing the total number of control plane messages that

are exchanged between the switches and the controller in each

case. We then use the resulting equations in order to identify

the main influence factors on the performance of the monitoring

approaches. Afterwards, experiments in a testbed featuring the

ONOS controller and a Mininet-based network are performed

in order to investigate the quantitative influence of parameters

like the number of flows and switches, as well as the size ratios

of flow classes.

The measurement results show that in most cases, SFM

performs significantly better in terms of CPU usage than the

standard method. However, polling more groups with the same

interval can result in higher CPU utilization due to the fact that

statistics are queried on a per-group basis rather than on a per-

switch basis in the context of SFM. Furthermore, investigations

regarding the amount of memory that is allocated to the Java

Virtual Machine indicate that not only the hardware in terms of

the CPU is relevant but that the RAM also needs to be taken into

account. Given the results presented in this work, an operator

can identify appropriate parameter combinations based on the

composition of the network and flow characteristics.

There are several directions for future work. On the one

hand, experiments can be extended by generating traffic in

the data plane in order to assess the accuracy of monitoring

mechanisms. On the other hand, the effects of the control

plane overhead on the network devices can be evaluated by

tracking the resource usage on the machine that hosts the

Mininet environment. Finally, an appropriate controller model

could provide additional insights into the trade-offs between

different monitoring approaches.

VI. ACKNOWLEDGMENTS

This work has been performed in the framework of the IuK

project SDN-PERF and is partly funded by the Bavarian Min-

istry of Economic Affairs and Media, Energy and Technology

(Project ID IUK-1507-0003). The authors alone are responsible

for the content of the paper.

REFERENCES

[1] M. Jarschel, T. Zinner, T. Hossfeld, P. Tran-Gia, and W. Kellerer, “Inter-
faces, Attributes, and Use Cases: A Compass for SDN,” Communications

Magazine, IEEE, 2014.
[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in
Campus Networks,” SIGCOMM CCR, 2008.

[3] “OPEN-TAM: Traffic Analysis and Monitoring,” ONOS. [Online].
Available: https://wiki.onosproject.org/display/ONOS/OPEN-TAM%3A+
Traffic+Analysis+and+Monitoring

[4] “OpenFlow Switch Specification version 1.3,” The
Open Networking Foundation. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.3.0.pdf

[5] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “PayLess: A Low
Cost Netowrk Monitoring Framework for Software Defined Networks,” in
14th IEEE/IFIP Network Operations and Management Symposium (NOMS

2014), 2014.
[6] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon: Net-

work Monitoring in OpenFLow Software-Defined Networks,” in Network

Operations and Management Symposium (NOMS), 2014.
[7] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “Flowcover: Low-cost flow

monitoring scheme in software defined networks,” in 2014 IEEE Global

Communications Conference, 2014.
[8] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: Traffic matrix

estimator for openflow networks,” in PAM, 2010.
[9] L. Yuan, C. N. Chuah, and P. Mohapatra, “Progme: Towards programmable

network measurement,” IEEE/ACM Transactions on Networking, vol. 19,
no. 1, pp. 115–128, Feb 2011.

