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Abstract—Education Service Providers (ESPs) have a
paramount role in the digitization of education, providing reliable
devices for students and teachers and high quality Internet access
at schools. In this paper, a large-scale, passive, in-device Quality
of Experience (QoE) monitoring system is presented, which was
deployed into a nationwide network of education-purpose devices.
Four months’ worth of continuous measurements were conducted
by an ESP, covering more than 800 education centers and about
4000 devices, used both in schools and at home. When analyzing
the QoE of web sessions in school networks, we identify a
fundamental issue with the compatibility of web browsing and
video QoE models, which inhibits the successful application of
QoE-aware network management for multiple services.

                                                  
                                                   
                                           

I. INTRODUCTION

The omnipresence and paramount role of the Internet in

our daily lives have paved the way to a new paradigm in

formal school education. Nowadays, education-specific digital

contents are remotely accessed by the students, and teachers

rely on specific online platforms to transform the overall

learning experience. In this new Internet-supported educational

paradigm, the role of the Education Service Providers (ESPs)

is indispensable. ESPs are usually for-profit or non-profit

organizations which work with the national education systems

to help them implement comprehensive reforms towards dig-

itization. Although the role of ESPs is not the same in all

countries and regions, the different programs typically include

at least two key components: providing devices for students

and teachers (either laptops or tablets) and deploying Wi-Fi

infrastructure at schools for Internet access (through a local

ISP connection). Thus, it is of major importance for the ESPs

to guarantee high quality services, as performance degradation

would impact the quality of education.

In analogy to Internet Service Providers (ISPs), who rely

on Quality of Experience (QoE) monitoring to analyze their

networks performance, ESPs need similar systems to assure

a high QoE to support teachers and students during the

learning experience. In this respect, ESPs have the same

lack-of-visibility problems as ISPs, facing the challenge to

properly measure QoE from pure network traffic monitoring

and analysis. A main advantage of the ESPs is that, in many

cases, they also provide the end user devices. Thus, they

can easily deploy application-layer QoE monitoring systems

within these devices, providing an augmented degree of visi-

bility into the activity, behavior, and performance of different

applications. Depending on the users location, there are two

different situations that are relevant for ESPs. At schools, the

QoE would depend on two factors managed by the ESPs, the

device and the Wi-Fi Internet access. On the other hand, when

the users are at home, they may still use the devices provided

by the ESP, but in that case they rely on their own Internet

connection. Nowadays, the latter is usually also a Wi-Fi access,

but the backbone can be a fixed or mobile connection, from

the same or other ISPs as in schools.

In collaboration with Plan Ceibal [1], a major ESP which

leads a nationwide one-to-one computing program in Uruguay,

we implemented and deployed a passive web QoE monitoring

system directly within the end-devices. Through this monitor-

ing system, we collected four months of continuous, nation-

wide measurements covering more than 800 education centers

and about 4000 devices from teachers and students, who may

use them both in schools and at home, and both for education

and entertainment. Now in 2020, the situation has changed

dramatically due to COVID-19 pandemic, with an increased

relevance of home-schooling, where users rely on their own

home Internet connections. However, the study was conducted

prior to the COVID-19 outbreak, so the measurements were

conducted in a time of regular face-to-face school classes.

To the best of our knowledge, this is the first study focus-

ing on passive QoE monitoring in ESP networks. The key

performance indicators (KPIs) of web browsing and video

QoE were monitored, which allow to quantify the QoE of the

visited webpages and the played out videos. This rich data set

helped us to identify a mismatch between web and video QoE

models when trying to mix them both into a single session

QoE score, something that inhibits the successful application

of QoE-aware network management for multiple services.

Therefore, this work is structured as follows. Section II

describes related works on web and video QoE. Section III

outlines the implemented monitoring system and describes the

dataset. Section IV presents the QoE results for web sessions

and details the incompatibility between web and video QoE                          

                                                                                                                                              



models, before Section V concludes the work.

II. RELATED WORK

According to a widely accepted definition [2], Quality of

Experience (QoE) of a multimedia system is influenced by

context, user, system, and content level factors. With respect

to system factors of web browsing, response times were

identified as the most important QoE factor [3]. Thus, the

first web QoE models were based on page load time (PLT),

e.g., [4]. A refined approach is the “above-the-fold” (ATF)

time, i.e., the time until the visible portion of a web page has

been fully loaded, which could also be included in traditional

web QoE models [5]. Additionally, integral-based metrics

were proposed, such as Google’s SpeedIndex, which take into

account the whole visual progress of the page loading. As

SpeedIndex takes into account the rendered pixels, it can only

be measured on application-level. Thus, [6], [7] developed

approximations for the SpeedIndex, which can be measured

in the network.

For video QoE, most works on (adaptive) video streaming

agree that initial delay, stalling, and quality adaptation are the

most dominant QoE factors [8]. Stalling, i.e., playback inter-

ruptions due to buffer depletion, is considered the worst QoE

degradation [9], [10], and should be avoided. Furthermore,

video streams should be played out with high visual quality

[11]. In contrast, initial delay has only a small impact on the

QoE [4]. A huge variety of QoE models was proposed in liter-

ature, e.g., [8], which cumulated in the recent standardization

of the P.1203 model [12], [13], which will also be used in the

context of this work.

III. METHODOLOGY

The passive QoE monitoring system is based on a Chrome

browser plugin, as this is the most popular browser worldwide

- and in particular in Uruguay, with a share of more than 80%

according to [14]. The plugin is composed of two JavaScript

files, content and background, and a manifest file in JSON

format (for plugin permissions and links to both scripts). The

content script is injected into every webpage and retrieves

the browsing timestamp, the URL, and page load timing

information from the PerformanceNavigationTiming API [15].

If a video element is embedded into the webpage, the con-

tent script will periodically log the video streaming progress

every 250ms. Therefore, the video element is queried and

the relevant streaming state (e.g., current playtime, buffer,

player state, video resolution, video id, screen resolution,

advertisement clips) is extracted, and written to a verbose,

YoMoApp-style log [16]–[18], which allows to compute video

QoE metrics (e.g., initial delay, stalling events, resolution

changes) in a postprocessing step. Finally, the logged data are

sent to the background script either if a new webpage has to

be monitored, or if the webpage is closed.

The background script is running in the browser during

the whole browsing session, where it creates and stores an

anonymized user ID. Additionally, it listens if a new webpage

was browsed via pushState-based navigation [19] and sends a

message to the content script to start QoE monitoring. Note

that in case of pushState-based navigation, the performance

element is not updated as the page is not loaded in the classical

sense, but only its content is altered. Nevertheless, in this case,

the timestamp of the content update and the new URL are

recorded. Finally, the background script receives the monitored

information from the content script and stores it locally to a

log in the browser storage, which is then sent to a centralized

server. This centralized web server collects all the monitored

QoE information, storing the web browsing logs as well as

additional meta information, such as timestamps, user ID, IP

address, browsed URL, etc. Afterwards, browsing metrics are

merged with the meta information and inserted into a database.

Moreover, the background script analyzes the verbose,

YoMoApp-style video logs in order to compact the streaming

information and to extract video QoE metrics. This avoids

the need to store the full video logs, which considerably

reduces the storage consumption. Afterwards, browsing and

video metrics are each merged with the meta information and

inserted into separate tables. A small share (0.1%) of full video

logs is nevertheless stored in another table to also keep the

detailed insights into the video streaming and the resulting

QoE for some of the streamed videos.

The QoE monitoring system was deployed in a real-world

educational scenario, installing the described plugin in the

laptops provided by Plan Ceibal [1]. We shall recall that

devices are handed over to teachers and students, and they

are used both in schools and at homes. Concerning the ethical

dimension of this study, it is worth to mention that it was

approved by the Plan Ceibal ethical and data privacy commit-

tee. The users gave their consent to collect the anonymized

data from their devices, which was handled according to the

Uruguayan and European privacy protection legislation.

The QoE measurement campaign was carried out during the

last four months of 2019, which corresponds to the end of the

school year in Uruguay, and also the time of greatest network

usage at schools [20], [21]. The massive plugin deployment

was done through the devices software update system managed

by Plan Ceibal. The data collection process ended up in a

dataset with 5,641,034 records corresponding to 3,887 unique

devices. As updates of the PerformanceNavigationTiming API

are not always properly recorded by the browser when a new

page is browsed, a lot of pages report page load information of

previous pages. This may happen in particular when a subpage

with the same domain as the previous page is accessed. These

duplicate page load data had to be filtered, which resulted in

2,654,634 QoE measurements for web pages. Another dataset

for video content was collected, only for the cases when users

actually played out a video in their browsers. This dataset has

678,549 records from 3,258 unique devices, and as expected,

most of the users with web navigation data also have video

data (90%), given the current popularity of such content.

The data was collected from 84,772 different IP addresses,

of which only 818 (1%) correspond to schools, but they

account for almost 15% of the records in the dataset. All

schools have high-end Wi-Fi Internet access and the backbone

                                                                                                                                              



Fig. 1: Web and Video QoE distributions.

is an ISP broadband optical fiber connection. The dataset

collected for video playback QoE includes information from

65,531 different IP addresses, of which only 685 (1%) are from

schools. The total number of video QoE records corresponding

to Plan Ceibal sites is 153,935 (almost 7% of the total). We

shall recall that in all cases, for both web browsing and video,

the devices that collected the data were the laptops provided by

Plan Ceibal to students and teachers, so all the analysis carried

out in our study corresponds to the same type of device.

IV. QOE RESULTS FOR WEB SESSIONS

To investigate the QoE of web sessions, two standard

and/or state-of-the-art QoE models for web browsing and

video streaming are utilized. To evaluate the QoE of a single

page load, the WQL PLT model from [5] is used: QoE =
−0.5368 · log(PLT ) + 7.9035. For videos, QoE scores were

computed using the standardized P.1203 model [12], [13]. As

only metadata could be monitored, mode 0 of P.1203 was

used, which considers bitrate, frame rate, and resolution. Both

models map to a QoE score on a continuous scale, where 1

indicates bad QoE and 5 indicates excellent QoE.

Figure 1 shows the CDF of the QoE for all monitored web-

sites in all networks (blue), as well as for websites accessed

from school networks (orange) and home networks (violet)

separately. For this, the QoE of websites is depicted with a

solid line, and the QoE of videos is depicted with a dashed

line. Overall, it can be seen that only 3.7% of the websites

had a score below 2.5, which indicates poor or worse QoE. On

the other hand, 49.4% of the websites could be browsed with

good or better QoE, i.e., a QoE score above 3.5. Nevertheless,

only 2.9% of the pages had an excellent QoE score above

4.5. As a consequence, 44% of the websites showed a QoE

between a 2.5 and 3.5. Since the orange solid CDF is right of

the violet solid CDF, a clear tendency can be observed that

browsing in school networks (orange) gives a better web QoE

than browsing in home networks (violet). A possible reason

to explain this difference is that the Wi-Fi access at schools

corresponds to a planned network with high-end equipment,

while at homes the Wi-Fi is usually of poorer quality and

without planning (e.g., consumer-grade WiFi routers with no

channel and Tx power management to reduce interference

between neighboring APs).

When it comes to video streaming, it can be seen that there

is almost no difference with respect to the network, since all

three dashed CDFs are very close to each other and even

Fig. 2: Session QoE distributions.

overlap. Overall, the plot shows that only 4.6% of the videos

had a poor or worse QoE (< 2.5), while 33.6% of the videos

had good or better QoE (> 3.5). 51.1% of the videos could

even be streamed with an excellent QoE score (> 4.5). Here, a

clear discrepancy between the QoE models for web browsing

and video streaming can be observed, as it is very unlikely

that, e.g., for the same school networks, videos reach a much

higher QoE compared to websites. This interesting finding will

be investigated in more detail below.

Next, the session QoE is investigated. For this, the single

page visits have to be mapped to sessions first. As proposed

in literature [22]–[24], a 30 minutes threshold as think-time

is used. This means that a web session ends if a user does

not request a new web page within 30 minutes after the

last web page request. This classification approach results in

209,020 different sessions by 3,887 users in total, i.e., every

user initiated around 53 sessions on average. For each session,

two simple session QoE scores are computed as the average

and the minimum of the QoE scores of all websites and

all videos within that session. However, a critical aspect in

session QoE modeling is the memory effect, which occurs

when previously experienced stimuli impact the perception of

the current stimuli. To account for the memory effect, the

Iterative Exponential Regression Model (IERMo) proposed

in [25] is also applied to the QoE scores within a session.

The original IERMo model was developed for page load

times only, thus, it was slightly adapted to be able to use QoE

scores directly. The adapted model takes a sequence of QoE

scores as input and estimates the mean opinion score (MOS)

for different user groups. In particular, the model considers

the short-term memory effect only, i.e., the computation of the

current MOS depends only on the previous MOS. The function

of the model is not time-dependent, but uses an exponential

regression to model a shrinking decay over consecutive stimuli

with similar intensity. When a stimulus with different intensity

occurs, the decay is reset to a high weight for the MOS

computation of the current stimulus. The required similarity

is computed by comparing the differences of the QoE scores

with a threshold ε = 0.3, which is an appropriate threshold for

noticeable differences. The final equation for the adaptation of

the QoE scores is shown in Equation 1, where w corresponds

to the sensitivity of the user and j indicates how often a user

perceived a similar stimulus in a row, with j = 1 if a new

stimulus has been perceived.

MOSi = MOSi − we−j · (MOSi−1 −MOSi) (1)

                                                                                                                                              



Fig. 3: Discrepancy between QoE models.

By using different values for w, the sensitivity of the user

can be modeled, where w = 0 represents no sensitivity, i.e., the

user does not care about the QoE score fluctuations, and higher

w represent higher sensitivity to fluctuations. As proposed in

the original paper [25], w = 0.254 will be used here. The

IERMo-updated QoE scores are then averaged to the overall

IERMo session QoE score.

The CDFs of the average session QoE scores (blue), the

minimum session QoE scores (orange), and the IERMo session

QoE scores (green) are depicted in Figure 2. Note that when

analyzing the temporal characteristics of the session QoE

scores, no strong variations over the course of the day could be

found in the observed data, such as effects of peak usage hours.

Thus, only CDFs are investigated here. It can be seen that, in

the context of school networks, the average QoE (blue dashed)

does not drop very low, since only 0.7% of the sessions have

a QoE score below 2.5. This means that there are very few

sessions which have a constantly low QoE for all of their

websites and videos. Also to the other extreme, there are only

0.8% of the sessions, which have a QoE score above 4.5, i.e.,

a constantly excellent QoE, which shows that there is still

some room for improvements by network management. Both

effects also benefit from using the average QoE as a simple

session QoE model, which will smooth extreme QoE scores.

In contrast, in home networks, the average QoE (blue solid) is

significantly shifted to the left, i.e., to lower QoE. As observed

in Figure 1, this effect is due to the lower QoE of webpages.

The CDFs of minimum session QoE (orange) are located

more to the left, showing a similar shape until the median

at around 2.9 for both school and home networks. Then, the

CDF of school networks shows slightly higher minimum QoE

scores, which is due to the generally higher QoE scores in

school networks. Finally, the more sophisticated IERMo model

for session QoE scores is depicted in green. It can be seen

that the IERMo CDFs start off similar to the CDFs of average

QoE scores (blue), but generally give slightly higher or slightly

lower QoE scores to sessions than the average QoE score. The

reason is that the memory effect of the IERMo model is both

beneficial and disadvantangeous for sessions, in which a video

was streamed. The typically high QoE score of a video, cf.

Figure 1, results in a positive or negative update of a potential

subsequent web QoE score, and thus potentially in slightly

higher or lower IERMo session QoE score compared to the

average session QoE score.

However, since video streaming has higher network require-

ments than browsing webpages, it seems implausible that,

within the same session, the video QoE should be significantly

higher than the web QoE, as it was observed in this monitoring

study. To take a closer look at this phenomenon, for each

session in school networks, the average QoE score of all

streamed videos and the average QoE score of all browsed

websites are compared. The CDF of the resulting differences

within the same session is visualized in Figure 3 in blue. It can

be seen that 94% of the sessions have a positive difference,

which means that video QoE was higher than web QoE in

these sessions. If network administrators wanted to balance

these differences, additional 0.2 Mbps would have to be

allocated for the web pages of each user, see the orange CDF.

The green CDF would actually be a more expected distribution

where web QoE should generally be higher than video QoE

due to lower network requirements of web browsing. However,

an additional capacity of 1 Mbps for web browsing would be

needed per user to reach this distribution. It is obvious that

these additional capacity requirements are highly unrealistic

and implausible.

Nevertheless, this analysis showed that there is a huge

discrepancy between the used web QoE model and the video

QoE model, although both models can be considered standard

and/or state-of-the-art models. It could be observed that these

QoE models are incompatible, and thus, cannot be reliably

used for network management to quantify and improve the

QoE of sessions with both web browsing and video streaming.

Thus, there is a need to research and develop compatible

QoE models in the future, if QoE-aware network management

should not remain limited to a single service.

V. CONCLUSION

The novel Internet-supported educational paradigm is based

on reliable devices and high quality Internet access. Education

Service Providers (ESPs) have a paramount role in this context,

as they must guarantee a high QoE for teachers and students

to enable a succesful learning experience. In a collaboration

with a major Uruguayan ESP, nationwide QoE measurements

were collected from more than 800 schools and about 4000

devices. The QoE monitoring was implemented as a browser

plugin, which could log user behavior and key performance

indicators (KPIs) of web browsing and video streaming.

When analyzing the QoE of web sessions to derive more

detailed insights, which can be leveraged for QoE-aware

network management, we identified a fundamental issue with

the compatibility of QoE models for web browsing and video

streaming. It could be observed that these QoE models are

incompatible, and thus, cannot be reliably used for network

management to quantify and improve the QoE of sessions

with both web browsing and video streaming. The identified

incompatibility of QoE models for different services inhibits

the successful application of QoE-aware network management

for multiple services. Thus, there is a need to conduct novel

QoE studies to research and develop compatible QoE mod-

els in the future to be able to provide QoE-aware network

management for multiple services.
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