
HAL Id: hal-03939135
https://hal.science/hal-03939135

Submitted on 22 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Service Placement and Load Distribution in
Edge Computing

Adyson Magalhaes Maia, Yacine Ghamri-Doudane, Dario Vieira, Miguel
Franklin de Castro

To cite this version:
Adyson Magalhaes Maia, Yacine Ghamri-Doudane, Dario Vieira, Miguel Franklin de Castro. Dy-
namic Service Placement and Load Distribution in Edge Computing. 16th International Con-
ference on Network and Service Management (16th CNSM), Oct 2020, Izmir, Turkey. pp.1-9,
�10.23919/CNSM50824.2020.9269059�. �hal-03939135�

https://hal.science/hal-03939135
https://hal.archives-ouvertes.fr

Dynamic Service Placement and Load Distribution
in Edge Computing

Adyson Magalhães Maia∗†, Yacine Ghamri-Doudane†, Dario Vieira‡, Miguel Franklin de Castro∗
∗Federal University of Ceará (UFC), GREat Lab, Fortaleza, Brazil

†La Rochelle University, L3i lab, La Rochelle, France
‡Engineering School of Information and Digital Technologies (EFREI), Villejuif, France

Email: adysonmaia@great.ufc.br, yacine.ghamri@univ-lr.fr, dario.vieira@efrei.fr, miguel@great.ufc.br

Abstract—Edge computing enables a wide variety of applica-
tion services for the Internet of Things, including those with
performance-critical requirements. To achieve this, it brings
cloud computing capabilities to network edges. A key challenge
therein is to decide where and when to place or migrate
application services considering their load variation and seeking
the optimization of multiple performance objectives. In this
paper, we address this optimal service placement issue by
further considering how to distribute the load of an application
placed in different locations. By estimating the performance-cost
trade-off of services migration, we propose a dynamic service
placement and load distribution strategy that uses limited look-
ahead prediction to handle load fluctuations. Evaluation analysis
demonstrates that our proposal outperforms other benchmarks
solutions in terms of multiple conflicting objectives.

Index Terms—edge computing, internet of things, service
placement, service migration, load distribution.

I. INTRODUCTION

Edge Computing (EC) bridges the gap between Cloud
Computing (CC) and end-user devices by enabling computing,
storage, networking, and data management on EC nodes (e.g.,
cellular base stations, routers, wireless access points, and
mini data centers) within close vicinity of these end-user
devices [1]–[3]. This proximity characteristic allows EC to
support time-sensitive applications such as those made possi-
ble by the Internet of Things (IoT) (e.g., patient monitoring,
real-time manufacturing, and self-driving cars). Indeed, CC
with its distant data centers cannot satisfy the low latency
requirements of such applications [1], [2].

Although EC brings various benefits to many of nowadays
applications, it also faces some challenges to deliver their
services due to (i) the resource constraints in the edge network,
(ii) the geo-dispersed EC nodes, (iii) the heterogeneity of
application requirements, and (iv) the dynamic services de-
mands [1], [2]. In this context, an important issue is deciding
where to place multiple applications, i.e., selecting EC nodes
with hosting capability to deploy and run applications accord-
ing to the demands, constraints, and performance criteria. As
an EC node may not have sufficient resources to handle all
user-generated loads for a specific application, another related
challenge is how to efficiently distribute these loads among
multiples nodes [1]. Indeed, an application (service) placement
decision can also affect the load distribution (and vice versa).
For instance, it is only possible to distribute requests to nodes

hosting the requested application. Thus, an optimal decision
strategy requires a joint optimization of these two aspects [4].

Speaking about an application load, this one might vary
in both spatial and temporal domains due to, for instance,
user mobility. This dynamic load implies re-evaluating, over
time, the placement and distribution decisions to maintain sat-
isfactory service performance. However, decision adjustments
could also lead to additional operational or performance costs.
For example, an application can be migrated or replicated to
a new location to keep low latency. Nevertheless, excessive
reallocation may result in network overload or even latency
degradation due to the migration operation itself, especially in
the case of large applications [5], [6]. As a result, a dynamic
service placement and load distribution strategy is needed, but
it should consider the benefits and costs of reallocations.

Existing studies on service placement in EC do not address
some of the above-discussed complexities, such as (i) the dy-
namic load [7], [8]; (ii) the load distribution [6], [9]; (iii) the
constrained resource capacity [5], [10]; (iv) the applications
heterogeneity, including the time-sensitive vs. time-tolerant
feature [6], [11]; (v) the optimization of multiple and possibly
conflicting objectives [9], [12]; or (vi) the impact of service
migration on latency/response time [4], [12]. Therefore, we
intend in this paper to propose and validate a solution covering
all these aspects. Our proactive service placement and load
distribution strategy uses the Limited Look-ahead Control
(LLC) [13], [14] to predict and handle the fluctuations on the
request loads. Our main contributions are as follows:
• We go far beyond our previous works [15], [16] by

supporting dynamic request loads of end-user devices
on an EC system model. This model considers different
attributes for nodes (e.g., resource capacity and cost)
and applications (e.g., response deadline, and resource
demand) to place multiple application replicas within the
network and distribute requests among these replicas.

• Using the LLC concept, we estimate how the modeled
EC system evolves under controllable (placement and
distribution) decisions and uncontrollable (user-generated
load) events. Then, we jointly formulate the service
placement and load distribution as an optimization prob-
lem of multiple performance criteria over a look-ahead
prediction window while satisfying a set of constraints.

• We use a genetic algorithm to solve the formulated

problem in a discrete prediction window with length
H . We first propose a chromosome representation and
a decoder algorithm to obtain a single and valid control
decision when H = 1. Then, two heuristics extending this
genetic solution are proposed to solve the problem when
H > 1. The first heuristic generates simple sequences of
control decisions over the prediction window, while the
second one produces more general control sequences.

The remainder of this paper is organized as follows: we
review related work in Section II. Section III overviews the
LLC concept. In Section IV, we describe our system model
and formulate the targeted problem. Then, Section V presents
our proposed heuristics. We conduct performance evaluations
in Section VI, and Section VII concludes this paper.

II. RELATED WORK

There are studies in the literature that jointly address service
placement and load distribution problems in the context of
EC to minimize resource cost [7], response time [8], Quality
of Service (QoS) violations [15], or multiple performance-
related objectives [16]. However, these mentioned works do
not handle spatial and temporal changes in applications loads.

Some works use a Follow-me Cloud/Edge approach to
handle dynamic loads caused by user mobility. In this ap-
proach, each user is associated with a dedicated application
to execute its offloaded tasks. Moreover, an application may
be migrated to another EC node to follow user mobility
and maintain satisfactory service performance. This approach,
however, such as in [5], [6], [9], [10], usually ignores that
several users may request the same application, and multiple
replicas of this application can be in the system. As a result,
this approach does not consider load distribution.

Few studies deal with dynamic service placement and load
distribution problems in EC. In [11], the authors jointly model
these problems as a Markov Decision Process (MDP) to
optimize transmission and migration costs while providing
maximum delay guarantees. Due to the computational com-
plexity, the work relaxed and decoupled the problem into
independent sub-problems. However, this relaxation replaces
the maximum delay constraints by queue stability constraints,
which only provides worst-case delay guarantees. Authors
in [12] study dynamic Virtual Machine (VM) placement and
request distribution to minimize network traffic from requests
data and VMs migration. They propose a heuristic algorithm
that places first VMs for serving the most critical flows, which
are flows with higher bandwidth requirements or with a larger
number of requests. The work in [4] addresses service place-
ment and request scheduling for data-intensive applications,
but decisions for these problems are separated in different
time scales. Service placement happens on a larger scale to
prevent system instability, while requests are scheduled on a
smaller scale to support real-time services. It also imposes a
budget constraint to control service migration costs. However,
neither [12] nor [4] studies the impact of placement, migration,
and distribution decisions on the application response time.

In this work, we overcome the limitations identified in the
above-discussed studies when investigating dynamic service
placement and load distribution in EC.

III. LIMITED LOOK-AHEAD CONTROL OVERVIEW

The Limited Look-ahead Control (LLC) [13], [14] describes
the continuous dynamics of a system by the following discrete-
time state-space equation:

s(t+ 1) = φ (s(t), c(t), e(t)) (1)

where t is the discrete-time index, s(t) is the system state or
output, c(t) denotes the control input or decision variable, and
e(t) represents the environment input or disturbance at time
step t. In general, environmental inputs (e.g., system incoming
load) are uncontrollable, but they can be estimated using
well-known forecasting techniques, such as AutoRegressive
Integrated Moving Average (ARIMA). The system dynamics
model φ(·) captures the relationship between a system state
and its (control and environment) inputs.

In LLC, an online controller estimates relevant environment
parameters to be used by the system model φ(·) to forecast
future system behavior over a limited look-ahead prediction
horizon. The controller optimizes the forecast behavior for
a specified performance criteria by selecting the best con-
trol input to apply to the system. More specifically, at the
beginning of a time step t, the LLC constructs a set of
future states from the observed state s(t) up to a predic-
tion horizon H . It selects within this horizon a sequence
πc∗ = {c∗(k) | k ∈ [t, t+H − 1]} of control decisions that
optimizes the system performance while satisfying both state
and inputs constraints. Then, the controller applies the first
control input c∗(t) of this sequence into the system. This
process is repeated at time step t+ 1 when the new measured
system state s(t+ 1) is available.

Such predictive approach is well adapted to the problem we
address in this paper. We show in the following how this can
be combined with our targeted optimization problem.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Based on our previous works [15], [16], we consider an EC
system consisting of an Infrastructure Provider (InP), various
Application Service Providers (ASPs), and end-user devices.

1) InP: An InP owns the EC infrastructure and provides
a set R of different types of virtual resources to ASPs, such
as R = {CPU,RAM,DISK}. We model the EC infrastructure
as a unidirectional connected graph G = (V, E) of nodes V
and links E that are geographically dispersed among end-users
and a remote centralized cloud data center. Fig. 1 illustrates an
EC system for a mobile network where nodes are located on
the Radio Access Network (RAN), Core Network, and Cloud
regions of the network.

In the graph G, a node can represent a (mini) data center,
a wireless access point, a network router, or all of them at the
same time if they are co-located. Each node n ∈ V has the
following properties:

Fig. 1. Proposed Edge Computing system model for a mobile network.

• Resource capacity N cap
n,r is the total capacity for resource

r ∈ R on node n. We assume that the cloud node
has unlimited resources due to the capacity difference
between such a system and a mini data center close to
the users.

• Usage cost N cost
n,r (x) is a (monetary) cost function of

allocating a specific amount x of resource r ∈ R to an
application on node n.

A link l = (m,n) ∈ E corresponds to a (physical or virtual)
network connection between nodes m and n, and it has the
following attributes:
• Bandwidth Lbw

l is the average transmission rate between
end-points of link l.

• Propagation delay Lpd
l is the time required for bits to

reach the other end of link l.
2) ASPs: An ASP offers application services to end-user

devices by renting on-demand resources from the InP to
deploy its application on EC nodes through virtualization
technologies, such as VMs or containers. However, ASPs
do not directly determine where to deploy their applications.
Instead, the InP is responsible for selecting the place where to
deploy an application based on the requirements specified by
each ASP. Let A be the set of all applications to be placed
over the EC infrastructure. Then, each application a ∈ A has
the following requirements:
• Response deadline Ard

a is the maximum time (i.e., dead-
line) allowed for application a responding to a request.

• Maximum number of replicas Amax
a of application a

that can be placed independently on different nodes.
• Resource demand Ar

a(λ) is a function expressing the
amount of resources r ∈ R that must be allocated to
handle a load λ. Load λna is defined as the arrival rate of
requests for a replica of application a placed on node n.

• Work size Awork
a is the amount of processing required

to get a response to a request for a. It is measured by the
number of CPU instructions or clock cycles.

• Data length Adata
a is the amount of data (in bits or bytes)

in a request for application a sent over the network.
• Request rate Areq

a is the average request generation rate

of an end-user device requesting application a. It follows
a Poisson distribution.

3) End-User Devices: As shown in Fig. 1, a device is
attached to a wireless access point node where it sends requests
to be processed by an application. The EC system routes a
request to a node hosting a replica of the required application
based on a load distribution decision. This replica then puts
the task in its waiting queue for processing where the result
is sent back to the device as a response. In this way, users
do not know where their requests are handled as multiple
replicas of an application can be placed on the system, and
their placement locations may change over time. Besides that
and unlike our previous works [15], [16], users may move
or be inactive without sending requests in this work, thereby
changing the number of devices attached to each access point
node over time. Hence, we model this dynamic by defining
una(t) as the number of active users connected to node n
requesting application a at a time t.

B. System Dynamics

We adopt the LLC concepts introduced in Section III to
model the EC system behavior under dynamic loads. The
following adjustable system parameters are designed as control
inputs for c(t) = (ρ(t), δ(t)):
• Application placement ρ(t) = {ρna(t)} is a set of binary

variables, where ρna(t) ∈ {0, 1} indicates whether or not
a replica of application a should be placed on a node n
at time step t.

• Load distribution δ(t) = {δm,n
a (t)} is a set of real

variables, where δm,n
a (t) ∈ [0, 1] establishes the fraction

of requests for an application a that should be distributed
from a node m to another node n at time t.

A relevant performance metric to observe in EC is the
application response time. Therefore, we define a system state
s(t) = (d(t), q(t)) as follows:
• Response time d(t) = {dm,n

a (t)} is the average response
time of each request flow Fm,n

a (t) at the beginning of
time step t. We define a request flow Fm,n

a (t) as the
requests rate for application a from node m (source node)
being handled by a replica of a on node n (target node).

• Queue length q(t) = {qna (t)} is the number of requests
waiting to be processed on each application replica de-
ployed on the system at the beginning of time step t.

Here, the environment input e(t) = {Qn
a(t)} represents the

rate of requests generated by users, where Qn
a(t) = Areq

a una(t)
is the observed request generation rate from all users of an
application a attached to a node n at the current time step
t. As the actual values for an environment input within the
horizon window cannot be measured until the next sampling
instants, we propose the use of a forecasting technique to
predict the environment input Q̂n

a(k) for each time step k along
the prediction horizon.

Regarding a system state s(k + 1), k ∈ [t, t + H], we
formulate in (2) its response time d(k+1) as the combination
of network dnet, request processing dproc, and application

initialization dinit delays. These delays and the queue length
q(k + 1) are estimated in the remainder of this subsection.

dm,n
a (k+1) = da,m,n

net (k+1)+da,nproc(k+1)+da,ninit(k+1) (2)

1) Network Delay: Eq. (3) expresses the average network
delay of a request flow Fm,n

a (k + 1) as the average time to
send requests from the source node m to the target node n,
where Pm,n contains the links in a routing path from m to n.
This path can be obtained a priori by some shortest routing
path algorithm, such as Dijkstra or Floyd–Warshall algorithms.

da,m,n
net (k + 1) =


0 if m = n∑
l∈Pm,n

Adata
a

Lbw
l

+ Lpd
l otherwise (3)

2) Processing Delay: For a replica of application a running
on a node n, we model its processing as an M/M/1 queue.
Moreover, let Λn

a(k) and λna(k) be the request arrival rate
before and after load distribution at time step k, respectively.
In (4), the arrival rate Λn

a(k) is given by the predicted
environment input Q̂n

a(k) plus the estimated queue length,
which is converted to a rate value using Ts as the sampling
period, i.e., the time step duration. Meanwhile, the control
input δ(t) regulates the arrival rate λna(k), as shown in (5).

Λn
a(k) = Q̂n

a(k) +
qna (k)

Ts
ρna(k − 1) (4)

λna(k) =
∑
m∈V

δm,n
a (k)Λm

a (k) (5)

In (6), the average processing rate µn
a(k) is determined by

the CPU speed ACPU
a (·) allocated to the application replica,

and the amount of CPU work Awork
a necessary to process a

request for this application.

1

µn
a(k)

=
Awork

a

ACPU
a (λna(k))

(6)

According to the M/M/1 queueing model, (7) and (8)
estimate the average queue length qna (k + 1) and the average
processing delay da,nproc(k + 1), respectively.

qna (k + 1) =
λna(k)

µn
a(k)− λna(k)

− λna(k)

µn
a(k)

(7)

da,nproc(k + 1) =
1

µn
a(k)− λna(k)

(8)

3) Initialization Delay: In order to initialize the placement
of an application on a selected node, an EC system migrates or
replicates an instance of this application over the network from
another node already hosting it to the selected node. Mean-
while, requests for this application arriving at the selected node
need to wait for the migration/replication conclusion before
they can be processed. Thus, the application migration delay
is an impact factor to the response time. We can determine this
migration delay as the time to transfer the application state,

which includes the disk and RAM contents, from the nearest
node hosting the application, as shown in (9).

da,nmig(k) = (1− ρna(k − 1)) ρna(k)

× min
m∈V

{
da,m,n
mig (k)ρma (k − 1)

} (9a)

da,m,n
mig (k) =

∑
l∈Pm,n

AD+R
a (λma (k − 1))

Lbw
l

+ Lpd
l (9b)

AD+R
a (λ) = ADISK

a (λ) +ARAM
a (λ) (9c)

Assuming that a migration process starts and finishes at
the same time step, then, not all requests and their response
time are impacted by this process. Hence, let us define an
application initialization delay as the impact of a migration
process in the response time. In a M/M/1 queue, a node n
receives λna(k)∆t requests on average for an application a
during a time interval ∆t. We can split the migration delay
into M = dda,m,n

mig (k)e consecutive intervals of one unit of
time (e.g., ∆t = 1s). Then, during the i-th migration interval,
λna(k) requests arrive and wait for M − i + 1 units of time
until the migration is complete. We calculate da,ninit(k + 1)
as a weighted average by using the arrived requests of each
migration interval against all requests during sampling period
Ts. We then approximate it by setting M ≈ da,m,n

mig (k), as
shown in (10).

M = dda,m,n
mig (k)e (10a)

da,ninit(k + 1) =

∑M
i=1 λ

n
a(k) (M − i+ 1)

λna(k)Ts

≈
da,nmig(k)

(
da,nmig(k) + 1

)
2Ts

(10b)

C. Optimization Formulation

Let F =
(
f1, . . . , fi, . . . , f|F |

)
be a list of functions and fi

a function that associates some performance for reaching and
maintaining a system state. Then, at each time step t, the LLC
controller aims to optimize the following problem:

min
c(k)∈C

t+H−1∑
k=t

F (s(k + 1), c(k), e(k)) (11a)

s.t. s(k + 1) = φ (s(k), c(k), e(k)) (11b)

1 ≤
∑
n∈V

ρna(k) ≤ Amax
a ∀a ∈ A (11c)

δm,n
a (k) ≤ ρna(k) ∀a ∈ A,∀m,n ∈ V (11d)∑
i∈V

δn,ia (k)Λn
a(k) = Λn

a(k) ∀a ∈ A,∀n ∈ V (11e)∑
a∈A

ρna(k)Ar
a (λna(k)) ≤ N cap

n,r ∀r ∈ R,∀n ∈ V (11f)

λna(k) < µn
a(k) ∀a, n (ρna(k) = 1) (11g)

where C is the set of all possible control inputs and (11c)
constraints the allowed number of application replicas placed
in the system. Eq. (11d) restricts load distribution to nodes
that host the requested application, while (11e) ensures the
distribution of all loads. Constraint (11f) assures that the

amount of resources allocated on a node does not exceed its
capacity, and (11g) guarantees the processing queue stability.
Then, a feasible solution for problem (11) is associated to a
sequence of control decisions that satisfies all these constraints
within the prediction horizon H .

For an optimization problem with multiple conflicting ob-
jectives, we can use the Pareto dominance concept to find
a set of best trade-off solutions that cannot be improved in
any objective without degrading other objectives. Formally,
x1 ≺ x2 expresses that a solution x1 dominates and is better
than another solution x2 when:

x1 ≺ x2 if fi(x1) ≤ fi(x2) ∀i ∈ {1, 2, . . . , |F |}
and fj(x1) < fj(x2) ∃j ∈ {1, 2, . . . , |F |}

(12)

Feasible solutions that are not dominated by any other
feasible solution are equally good/optimal if there is no addi-
tional preference information. However, for our optimization
problem (11), a preference can be the improvement of time-
sensitive applications. Hence, we define a dominance operator
that prioritizes a selected function fi as follows:

x1 ≺i x2 if fi(x1) < fi(x2)

or (fi(x1) = fi(x2) and x1 ≺ x2)
(13)

That is, it is sufficient that fi(x1) < fi(x2) in order for x1 to
dominate x2. Otherwise, if they have equal values for fi, then
the traditional Pareto dominance operator is used instead.

V. ONLINE CONTROLLER ALGORITHMS

An LLC algorithm that exhaustively evaluates all possible
control inputs presents an exponential increase in worst-case
complexity with an increasing number of control inputs and
longer prediction horizons [13]. Furthermore, not all control
inputs produce a feasible solution satisfying all problem (11)
constraints. A way to alleviate this complexity issue is by using
(meta-)heuristic algorithms that find sub-optimal solutions in
a reasonable time, and thus, trading optimality for speed.
Hence, in this section, we propose some heuristic algorithms
to solve (11). First, we present an algorithm that solves the
problem for a single time step in Section V-A. Then, we extend
this algorithm by taking into account a prediction horizon
H > 1 in Section V-B.

A. One Time Step Algorithm

In order to obtain feasible solutions for a multi-
objective problem, we use our proposed genetic algorithm
BRKGA+NSGA-II [16], which is a combination of two ge-
netic algorithms: (i) Biased Random-Key Genetic Algorithm
(BRKGA) [17], and (ii) Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [18]. BRKGA+NSGA-II evolves a
population of individuals toward better solutions over several
generations. Each individual has a corresponding chromosome
represented by a vector of real numbers in the interval [0, 1].
A deterministic algorithm, named decoder, takes any chromo-
some as input and associates it with a feasible solution. Then,
the genetic algorithm ranks these solutions according to a
multi-objective dominance and diversity operators. Individuals

associated with best-ranked solutions are kept in the next gen-
eration as an elite group. The next generation also comprises
offspring resulting from a crossover between elite and non-
elite parents, and mutant individuals randomly generated.

1) Chromosome Representation: In BRKGA+NSGA-II, the
chromosome representation and decoder algorithm play essen-
tial roles as the problem-dependent portion of the algorithm.
However, [16] only considers a static load, and thus, its
problem-dependent part cannot be applied in a dynamic load
case. Therefore, we need to propose a new chromosome
representation and decoder algorithm to produce valid control
inputs that satisfy problem (11) constraints for any system
state and load values at a single time step within the prediction
horizon. Then, the following chromosome encode is proposed:

C =
[
C1

I , C
2
I , . . . , C

|A|
I ,

C1,1
II , C1,2

II , . . . , C
1,|V|
II , . . . , C

|A|,1
II , C

|A|,2
II , . . . , C

|A|,|V|
II ,

C1,1
II , C1,2

III , . . . , C
1,|V|
III , . . . , C

|A|,1
III , C

|A|,2
III , . . . , C

|A|,|V|
III

]
where
• Ca

I is the fraction of nodes to be candidates for hosting
application a.

• Ca,n
II is the priority to place application a in node n.

• Ca,m
III is the priority to distribute requests for application

a from a (source) node m.
2) Chromosome Decoder: Algorithm 1 decodes a chromo-

some with the above representation into a valid control input.
This algorithm operates in three stages: (i) nodes selection, (ii)
load distribution, and (iii) local search. First, it selects nodes
as potential placement locations for each application (lines 3
to 5). For this, the first part of the chromosome (CI) delimits
the number of nodes to be selected on line 4. Then, the next
line selects nodes with high values in the second part of the
chromosome (CII) as host candidates.

The second stage (lines 6 to 18) of Algorithm 1 is related
to load distribution. It first orders all possible load sources
according to the third part of the chromosome (CIII) on line 6.
Following this order, it distributes the total loads Λm

a (k) of
a source in chunks λ∗ among the nodes selected in the first
stage plus the cloud node. The cloud node addition ensures
there are enough resources to deploy at least one replica of
each application. Note that the chunk size λ∗ = Λm

a (k)λ%
can be an algorithm input by setting parameter λ% ∈ (0, 1].
Line 10 orders the selected nodes by the estimated response
time. Then, while there are still loads to be dispatched, the
decoder searches in the sorted nodes for one with sufficient
resources to receive an additional chunk of load. When the first
envisioned target node is found on line 13, it sets to place a
replica of the requested application on this node and assigns
an additional chunk to the replica.

In the last stage, Algorithm 1 performs a local search around
the placement decision from line 19 to 26. If the number of
replicas deployed by previous stages exceeds the maximum
allowed, it replaces surplus replicas with one on the cloud
node. Otherwise, the decoder tries to place an application

Algorithm 1: Chromosome Decoder.
Data: C = [CI, CII, CIII], s(k), e(k)
Result: c(k) = (ρ(k), δ(k))

1 ρna(k), δm,na (k), λna(k)← 0;
2 λ% ← 0.25; // 25%
3 forall a ∈ A do
4 x← min(|V|, dCaI Amaxa e);
5 Va ← select x nodes with higher Ca,nII , n ∈ V;

6 P ← list of pairs (a,m) ∈ A× V sorted by Ca,mIII ;
7 forall (a,m) ∈ P do
8 l← Λma (k);λ∗ ← Λma (k)λ%;
9 V ′a ← Va ∪ {cloud};

10 sort nodes n ∈ V ′a by dm,na (k + 1) in (2);
11 while l > 0 do
12 forall n ∈ V ′a do
13 if λna(k) + λ∗ respects (11f) ∧ (11g) then
14 ρna(k)← 1;
15 δm,na (k)← δm,na (k) + λ∗/Λna(k);
16 λna(k)← λna(k) + λ∗;
17 l← l − λ∗;λ∗ ← min{l, λ∗};
18 break;

19 forall a ∈ A do
20 x← Amaxa −

∑
i∈V ρ

i
a(k);

21 if x > 0 then
22 replace x+ 1 replicas of a with one on cloud;
23 else
24 forall n ∈ Va do
25 if λna(k) respects (11f) and (11g) then
26 ρna(k)← 1;

replica on each node selected by the first stage. This former
case allows the pre-deployment of an application that may be
requested in the next time steps, avoiding future migration
burden on response time.

3) Initial Population: It is composed of random-generated
individuals, elite members from the previous time step, and
individuals generated by the following heuristics:

• Deadline. One heuristic would be to prioritize re-
quests for applications with shorter deadline require-
ments, which is encoded as:

Ca
I = 1, Ca,n

II = 0, Ca,n
III = 1− Ard

a

maxi∈AArd
i

• Net Delay. Another heuristic is to select nodes with the
lowest network delay for all other nodes as candidates to
host an application. We encode this heuristic as follows:

Ca
I = 1, Ca,n

II = 1−
∑

i∈V d
a,i,n
net (k + 1)

max
j∈V

∑
i∈V

da,i,jnet (k + 1)
, Ca,n

III = 0

• Combined Solution. We can obtain a new individual by
combining two or more solutions. For this, we add their
chromosome vectors and divide the result by the number
of added solutions.

Algorithm 2: Control Sequence Decoder.
Data: πC = {C(t), . . . , C(t+H − 1)}, s(t), e(t)
Result: πc = {c(t), . . . , c(t+H − 1)}

1 forall k ∈ {t, t+ 1, . . . , t+H − 1} do
2 c(k)← Algorithm 1 with C(k), s(k), e(k);
3 s(k + 1)← φ (s(k), c(k), e(k));
4 e(k + 1)← by a forecasting method;

B. H-Steps Look Ahead Algorithms

Instead of directly establishing a control input sequence for
a prediction horizon H , let πC = {C(k) | k ∈ [t, t+H − 1]}
be a sequence of chromosome vectors where C(k) is the chro-
mosome selected for time step k. Then, Algorithm 2 describes
how we can obtain a control input sequence by applying the
system dynamics of Section IV-B and Algorithm 1 in this
πC sequence. Observe that a control input sequence generated
by Algorithm 2 is a feasible solution for problem (11), as
Algorithm 1 always decodes a chromosome to a control input
that satisfies this problem constraints.

An evaluation of all possible πC sequences may present a
similar computational complexity issue to the control input
sequence case. Therefore, we propose two heuristics in the
rest of this section to obtain chromosome sequences that are
decoded to sub-optimal solutions for problem (11).

1) Simple Sequence: Given a chromosome vector C, this
heuristic creates a simple sequence only containing this chro-
mosome, i.e., πC = {C(k) = C | k ∈ [t, t+H − 1]}. In this
way, we can adopt both the genetic algorithm and chromosome
representation of Section V-A to solve (11), but, instead, using
this simple sequence as an individual associated solution.

2) General Sequence: Given |C| as the vector length of a
chromosome presented in the previous subsection, we design
a new chromosome representation C ′ where |C ′| = H × |C|.
Thus, we can obtain a sequence of former chromosome
representation by splitting C ′ into H consecutive parts with
length |C|. By using this new representation and Algorithm 2
as the decoder method, we can perform BRKGA+NSGA-II to
find sub-optimal solutions for problem (11).

VI. PERFORMANCE EVALUATION

A. Evaluated Algorithms

In order to evaluate our proposed strategy the following
algorithms are compared:
• Cloud. It places all applications in the cloud node.
• N+D. It is a combination of Net Delay and Deadline

heuristics presented in Section V-A3.
• H1. We apply the proposed one-time step algorithm when

the prediction horizon H = 1.
• Static. It performs the one-time step algorithm only in

the first time step. Then, the resulted control decision
is maintained almost without changes for the remaining
time steps. Control changes happen when an application
replica cannot handle a load increase due to a lack of
resources, and then, this excess load is sent to the cloud.

TABLE I
PERFORMANCE EVALUATION PARAMETERS

Parameter Value
CPU (MIPS) Cloud: ∞, Core: 2× 104, BS: 104

DISK (GB) Cloud: ∞, Core: 32, BS: 16
RAM (GB) Cloud: ∞, Core: 16, BS: 8
Usage Cost
for resource/second

Ncost
n,r (x) = a× 10−b(x+ 1)

a = Cloud: 0.25, Core: 0.5, BS: 1
b = CPU: 12, DISK: 18, RAM: 15

User Proportion (%) mMTC:70, eMBB:20, URLLC:10
App. Proportion (%) mMTC:34, eMBB:33, URLLC:33
Bandwidth (Gbps) BS↔BS: 0.1, BS↔Core: 1,

Core↔Cloud: 10
Propagation delay (ms) BS↔BS: 1, BS↔Core: 1,

Core↔Cloud: 10
Max. Replicas Amaxa [1, |V|]
Deadline Arda (s) mMTC:[0.1, 1], eMBB:[0.01, 0.1],

URLLC:[0.001, 0.01]

λa (requests/s) mMTC: [0.1, 1], eMBB: [1, 100],
URLLC: [1, 100]

Data Adataa (Kb) mMTC: [0.1, 1], eMBB: [1, 10],
URLLC: [0.1, 1]

Work Aworka

(CPU Instructions)
mMTC, URLLC: [1, 5]× 106,
eMBB: [5, 10]× 106

RAM, DISK Demand
Ara(λ) = bλ+ c (MB)

b = mMTC, URLLC: [0.1, 1],
eMBB:[1, 10]

c = mMTC, URLLC: [10, 100],
eMBB: [100, 1000]

CPU Demand (IPS)
Ara(λ) = bλ+ c

b = Aworka + 1, c =
Awork

a

αArd
a

+ 1,
α = [0.1, 0.5]

• SS. It is the proposed simple sequence heuristic with
ARIMA as the forecasting method. We set H = 2, which
allows pre-migrations exploration.

• GS. Our proposed general sequence heuristic also using
ARIMA as the forecasting method. We also set H = 2.

B. Performance Evaluation Metrics

We define the following metrics as the optimization objec-
tives upon which we evaluate the algorithms:
• Deadline Violation. An important metric is to keep an

application response time below its deadline. Thus, we
would like to minimize potential deadline violations.
Eq. (14) expresses the deadline violation among all
requests flow, where [x]+ = max(0, x). Each request
flow contributes to this violation according to its request
transmission rate as a weight. Furthermore, we select this
metric as the priority objective described in Section IV-C.∑

a∈A
∑

m,n∈V [dm,n
a (k + 1)−Ard

a]+δm,n
a (k)Λm

a (k)∑
a∈A

∑
m,n∈V δ

m,n
a (k)Λm

a (k)
(14)

• Operational Cost. Eq. (15) specifies the operational cost
during a time step as the total cost of the resources
allocation for all deployed application replicas.∑

a∈A

∑
n∈V

ρna(k)Ts
∑
r∈R

N cost
n,r (Ar

a (λna(k))) (15)

• Migration Cost is the ratio of application replicas mi-
grated/replicated in the system at a time step, as shown
in (16). The application state size is a weight in this met-
ric as large applications may take longer to be transferred
and consume more network resources.∑

a∈A
∑

n∈V A
D+R
a (λna(k)) ρna(k) (1− ρna(k − 1))∑

a∈A
∑

n∈V A
D+R
a (λna(k)) ρna(k)

(16)

C. Evaluation Setup

We developed simulation experiments using Python to eval-
uate our proposed algorithms in a 5G network scenario with
EC. In this scenario, we consider nine Base Stations (BSs),
forming a 3×3 grid network. These BSs are also connected
to a core node, which is connected to the cloud on the other
side. All of these nodes (BSs, core, and cloud) have hosting
capabilities, and their total resource capacities are lower as we
descend from cloud to BSs. On the other hand, the resource
allocation cost increases as nodes get closer to end-users due
to resource scarcity. Besides, we assume that a node usage
cost function N cost

n,r (·) is linear.
We analyze the placement of the three types of applications

specified for a 5G network [19], [20]. First, massive Machine
Type Communications (mMTC) applications are characterized
by low resource requirements, delay tolerance, and a quite
large number of users. Then, enhanced Mobile Broadband
(eMBB) applications have high resource demand, a medium
deadline, and an intermediate number of users. Finally, Ultra
Reliable Low Latency Communications (URLLC) applications
have low resource usage, a strict deadline, and a small num-
ber of users. Based on these characteristics, we randomly
assign the values for the application parameters. Note that for
evaluation purposes, it is sufficient to use relatively different
parameter values among diverse application types instead of
applying more realistically accurate values. Moreover, appli-
cation resource demands Ar

a(·) are considered to be linear
functions. In the CPU demand case, the linear constants are
selected based on queue stability and deadline requirements.

A test case of the evaluated scenario consists of 48 time
steps with 30 minutes of duration each, totaling one day. In
this way, it is possible to make, apply, and measure the result
of a control decision in a single time step. Moreover, users
generate requests with an unchanged average rate. However,
the number of active users in the system can change over
time, and consequently, varying the aggregate request arrival
rate. Thus, we change the number of active users for each
application in each node according to some workload patterns
for cloud environments as described in [21]: Stable, Grow-
ing, Cycle/Bursting, and On-and-Off. A Stable workload is
characterized by a constant number of requests per time unit.
A growing pattern shows a load that increases due to, for
instance, an application becoming popular. We also add the
inverse of this pattern where a load decreases along the time.
A Cyclic/Bursting may present regular periods or bursts of
loads (e.g., daytime has more workload than nighttime). In the

(a) Deadline Violation (b) Operational Cost (c) Migration Cost

Fig. 2. Average performance per time step with 10000 users.

(a) Deadline Violation (b) Operational Cost (c) Migration Cost

Fig. 3. Average performance per time step with 5 applications.

last pattern, On-and-Off, workloads are processed periodically
or occasionally processed in batches.

The results shown in the following sub-section come from
an average of 30 different random runs for each test case, and
Table I summarizes the main evaluation parameters.

D. Results and Discussion

Figures 2(a) and 3(a) show the normalized deadline viola-
tion per time step when increasing the number of applications
and users, respectively. This normalization uses the Cloud
results as the base. We can see in both figures that GS achieves
lower violation levels than the other algorithms, and SS has
better or similar results than H1, Static, and N+D. Moreover,
GS reduces violations in Fig. 2(a) when there are more
applications, but keeping the total number of users fixed. This
drop can be an effect of having fewer users per application,
especially for the URLLC type that is characterized by low
user percentages and strict deadlines. On the other hand,
violations rise when the number of users increases with a
fixed number of applications in Fig. 3(a). This is caused by
the growth of requests traffic to the remote cloud node when
there is more competition for resources on the other nodes.

We observe an augmentation of operational costs by having
more applications or users in Figs. 2(b) and 3(b), respectively.
Cloud exhibits the lowest costs because only one replica of
each application is placed in the system, and cloud resources
are cheaper than in other locations. Meanwhile, N+D tends to
place as much replicas as possible, having the highest cost.
The other compared algorithms have similar costs.

Regarding migration costs in Figs. 2(c) and 3(c), Cloud
and Static present no migration as expected. In both figures,

GS has the highest costs, which is a trade-off of prioritizing
deadline violation. In addition, migration costs for H1, SS,
and GS initially decrease and then increase when there are
more than ten applications in Fig. 2(c). This cost turning
point happens because of two aspects that impact the volume
of migration traffic: the total number of application replicas
that increase with more applications, and their state size that
shrinks when there are fewer users per application. In Fig. 3(a),
migration costs fall when there are more than 104 users for a
fixed number of applications. As well as the rise of deadline
violation in Fig. 3(a), this migration cost reduction is also a
consequence of cloud traffic growth.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we studied a joint optimization of service
placement and load distribution with dynamic request loads in
EC. We then proposed a limited look-ahead prediction strategy
to handle the impact of service migration on application
response time while optimizing multiple performance-related
objectives. In this strategy, we designed a genetic algorithm to
solve the formulated problem for a single time step, and two
extensions of this algorithm, SS and GS, when looking at more
time steps in a prediction window. Evaluations showed that our
proposed SS and GS algorithms outperform other benchmark
algorithms in terms of deadline violations while having similar
operational costs. A trade-off when our proposals prioritize the
deadline violation minimization was the occurrence of more
service migrations.

As for future work, we plan to study a distributed control
strategy to make decisions more frequently in a scalable way.

REFERENCES

[1] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, “Potentials, trends, and
prospects in edge technologies: Fog, cloudlet, mobile edge, and micro
data centers,” Computer Networks, vol. 130, pp. 94 – 120, 2018.

[2] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, and J. P. Jue, “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” Journal of
Systems Architecture, vol. 98, pp. 289 – 330, 2019.

[3] J. Gedeon, F. Brandherm, R. Egert, T. Grube, and M. Mühlhäuser, “What
the fog? edge computing revisited: Promises, applications and future
challenges,” IEEE Access, vol. 7, pp. 152 847–152 878, 2019.

[4] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang,
and K. S. Chan, “Service placement and request scheduling for data-
intensive applications in edge clouds,” in IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, 2019, pp. 1279–1287.

[5] X. Yu, M. Guan, M. Liao, and X. Fan, “Pre-migration of vehicle to
network services based on priority in mobile edge computing,” IEEE
Access, vol. 7, pp. 3722–3730, 2019.

[6] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint
network selection and service placement for mobile edge computing,”
in IEEE INFOCOM 2019 - IEEE Conference on Computer Communi-
cations, 2019, pp. 1459–1467.

[7] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, “Cost efficient re-
source management in fog computing supported medical cyber-physical
system,” IEEE Transactions on Emerging Topics in Computing, vol. 5,
no. 1, pp. 108–119, 2017.

[8] L. Zhao and J. Liu, “Optimal placement of virtual machines for support-
ing multiple applications in mobile edge networks,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 7, pp. 6533–6545, 2018.

[9] X. Sun and N. Ansari, “Green cloudlet network: A sustainable platform
for mobile cloud computing,” IEEE Transactions on Cloud Computing,
vol. 8, no. 1, pp. 180–192, 2020.

[10] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, 2018.

[11] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-clouds,”
Performance Evaluation, vol. 91, pp. 205 – 228, 2015, special Issue:
Performance 2015.

[12] Y. Yu, T. Chiu, A. Pang, M. Chen, and J. Liu, “Virtual machine place-
ment for backhaul traffic minimization in fog radio access networks,” in
2017 IEEE International Conference on Communications (ICC), 2017,
pp. 1–7.

[13] S. Abdelwahed, Nagarajan Kandasamy, and Sandeep Neema, “Online
control for self-management in computing systems,” in Proceedings.
RTAS 2004. 10th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2004., 2004, pp. 368–375.

[14] N. Kandasamy, S. Abdelwahed, and M. Khandekar, “A hierarchical
optimization framework for autonomic performance management of
distributed computing systems,” in 26th IEEE International Conference
on Distributed Computing Systems (ICDCS’06), 2006, pp. 9–9.

[15] A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro,
“Optimized placement of scalable iot services in edge computing,”
in 2019 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), 2019, pp. 189–197.

[16] ——, “A multi-objective service placement and load distribution in
edge computing,” in 2019 IEEE Global Communications Conference
(GLOBECOM), 2019, pp. 1–7.

[17] J. F. Gonçalves and M. G. C. Resende, “Biased random-key genetic al-
gorithms for combinatorial optimization,” Journal of Heuristics, vol. 17,
no. 5, pp. 487–525, Oct 2011.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[19] N. Alliance, “5g white paper,” Next generation mobile networks, white
paper, pp. 1–125, 2015.

[20] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari,
S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann,
A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency
critical iot applications in 5g: Perspective on the design of radio interface
and network architecture,” IEEE Communications Magazine, vol. 55,
no. 2, pp. 70–78, 2017.

[21] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of grid computing, vol. 12, no. 4, pp. 559–592, 2014.

